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Electronic structure of dilute impurities near surfaces.
An approach to dissolution and segregation energies
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We present the extension of the electronic structure of bulk substitutional impurity to the
surface in the tight-binding model. Self-consistency is assumed as we11 for the surface as for
the impurity potential. The band contribution to the dissolution energy is obtained for
Ni(111) surface, versus the valence and the position of the impurity to the surface in a local-
ized potential model. Good agreement with experiment is obtained for

~

Z
~

&4.

1. INTRODUCTION

The knowledge of the surface composition of
transition- and noble-metal-based alloys is essential
in metallurgy or catalysis. The progress of vacuum
science and technology has allowed many authors to
analyze in a reliable way the composition of surface
of the alloys [by Auger, x-ray photoemission spec-
troscopy (XPS},ion, and neutral retrodiffusion, etc.].
It has been demonstrated that the surface composi-
tion may differ strongly from the bulk one; some au-
thors even tried to obtain concentration profiles. '
Many approaches to explain these phenomena have
been used: phenomenological ones, such as bond
models (Defay et al. ), elastic models based on the
strain created by the atomic-size discrepancy
(McLean4), or a combination of electronic and size
effects (Miedema, s Hamilton, s Abraham, 7 Kumars}.
The first-principles approaches to the segregation
problem are more limited, the coherent-potential ap-
proximation for bulk concentrated alloys have been
adapted in an approximate way to surface. s'

More recently, another way to compute directly
the segregation energy in an alloy AB has been
developed; it is the energy variation shown by the
exchanging of positions of a pair of atoms A, 8,
respectively, near the surface and in the bulk. Lam-
bin and Gaspard" obtained trends for transition-

metal alloys with a very simplified band structure,
the tight binding up to the second moment. Mus-
cat' applied the same principle to an impurity
within a metallic cluster treated within the muffin-

tin potential approximation, the whole being im-
mersed in a free-electron gas. Let us focus more
precisely on the dilute alloy case which will be our
subject of study in the remainder of this paper. It is
known that impurities in the bulk, even traces, may

segregate strongly at surfaces or grain boundaries,
producing effects such as temper embrittlement. 's'4
These effects are often difficult to observe reliably,
due to the extreme condition of cleanliness required
for the sample. Other traces of impurities (S, C, N,
0, etc.) may mask the binary effect we try to
study. ' ' Gewinner' observed that at the end of
nitrogen elimination from chromium, an important
surface segregation of vanadium occurs, although
traces only are present in the bulk. In Sec. II, we
develop the theory of the electronic structure of a
substitutional impurity in the tight-binding model
with the aid of a Green-function theory and show
that the band contribution to the dissolution energy
can be expressed in terms of phase shifts requiring
only local Green functions limited to the nonvanish-
ing perturbing impurity potential region.

In Sec. III we perform a calculation of impurities
within the localized potential model, using the
Friedel sum rule' and the self-consistent dense
Ni (111)surface band-structure parameters. 's We re-
port our results of the band contribution to the
segregation energy versus the atomic number of the
impurity and its position relative to surface.

In Sec. IV we discuss the equilibrium concentra-
tions and a simple model for segregation kinetics,
which we compare to experience, neglecting in the
numerical application all contributions except that
of the electronic band structure. Lattice distortion
contributions to the segregation energies and the
ion-ion repulsion modifications are not considered
here.

II. ELECTRONIC STRUCTURE
OF AN IMPURITY NEAR A SURFACE

The results for the dilute substitutional impurities
in the bulk case are well established. Within the
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tight-binding models or interpolation schemes, we
may refer to Friedel, '7 Wolff, '9 Clogston, Ried-
inger. ' There is still active research being done in
the muffin-tin-model field today. ' The study of
the electronic structure of dilute impurities in semi-
conductors with the tight-binding formalism near
surfaces and interfaces is also an active research
field, owirig to the technological implications on the
electronic properties of devices, 24' 5 but we have not
found in the literature an extensive application of
this study to the segregation energies. In this sec-
tion we will present the most concise formalism for
this problem.

The Hamiltonian describing our ideal semi-
infinite medium with a surface is the following:

LI =g g ~Rmcr)e„(Rrno
~

0 Rm

+ g ~

R'm'cr)t„(Rmcr
~

m', m
R', R

(2.1)

~

Rrno ) is an atomic spin orbital of orbital symme-
try m, centered at R; R is limited to the semi-infinite
medium bounded by the surface plane; ez is the re-
normalized self-consistent level, comprising an
a priori crystal shift, intra-atomic Coulomb and ex-
change, and electrostatic dipolar contribution; tR R
are the hopping integrals, supposed to be rapidly de-
creasing with distance. We will not expand further
here on the difficult problem of obtaining a self-
consistent band structure for the ideal semi-infinite
tight-binding medium because this problem has been
tackled by the authors elsewhere.

From this work it was found that the simplified
model of Allan and Lenglart, adjusting the surface
level in order to achieve the global charge neutrality,
gives satisfactory qualitative results in most of the
cases, and this simplified prescription of a surface
ideal medium will be used in the application of Sec.
III. The substitutional impurity is described by a
perturbing potential of finite range V~, the perturbed
Hamiltonian being

H =Ho+tV (2.2)

This potential may include within it a finite neigh-
borhood of the impurity intrasite level modifications
as well as the hopping integral ones. The latter may
reflect the chemical difference and the distortion of
the lattice around the impurity.

It is usual to introduce the Green operator

beled by 0). It is possible to obtain explicit represen-
tation for the unperturbed surface Green function
G0.9'zs' 7 We obtain the perturbed function with the
aid of Dyson's equation,

G=Go+GoV G,
which can be solved in a matrixlike form as

G Go+ Go~TG o

with

~T = Vp (1 Go~V—}

(2.4)

(2.5}

(2.6)

~T being the T matrix. The case of a perturbing po-
tential limited to the impurity cell is particularly
simple, the size of ~T being reduced by symmetry.
In the case of the dense Ni(111) surface that we are
studying, the same formulas as in bulk are valid; the
Green-function matrix elements are just the local
formula on the impurity site p. But the reduction by
symmetry is lower than in bulk, as we will see in
Sec. III.

From the Green function it is usual to define the
total density of states as

n(E)= lim ——trImG(z), z~E+iO1

7T

n (E,R)= lim ——Im(Rmo
~

G(z) ~Rmo)
1

(2.7b)

The last matrix element is notated G (z,R) for the
sake of brevity. As in the bulk, it is mandatory to
impose the Friedel sum rule, i.e., the global neutrali-

ty of the system. The increment of the total number
of occupied states under the Fermi level Ez pro-
duced by the impurity potential must be equal to the
difference of the number of electrons introduced by
it, i.e., Z, the difference of atomic numbers (impuri-
ty host),

J [n (E) n(E)]dE =Z .— (2.8)

From (2.5), it is easy to show that the first member
of (2.8) can be written as a phase shift; indeed, since

(2.7a)

the trace being peformed over any complete ortho-
normal basis. The local density of states on orbital

~

Rm0 ) is given by the projection of G on this orbi-
tal

G(z) =(z —H)-' (2.3) tr[GO(1 —GO~V ) '~V Go] = tr ln(1 —GO~V ),
Z

for the perturbed or unperturbed case (the latter, la- we obtain
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with

g(E)= —Imtrln(1 —GO~V) .

(2.9)

(2.10)

III. BAND CONTRIBUTION TO THE
DISSOLUTION AND SEGREGATION
ENERGIES OF IMPURITIES NEAR

THE Ni(111) SURFACE

Owing to the localized nature of Vz, the most ade-
quate basis is the symmetry-adapted atomic-orbital
basis in which the phase shift appears as

g(E) = A—rg Det(1 —
GO~V) . (2.1 1)

Let us discuss now the electronic band contribution
to the dissolution energy of a substitutional impurity
located at site R. In the framework of random-
phase approximation (RPA) the total band contribu-
tion can be written as

E~ —E~ +E~ (2.12)

Ed is the one-electron contribution:
1

Ed, —— nE —n E E E. (2.13)

With the introduction of the phase shift and by in-

tegration by parts, this is

1 E
Ed, =Z Ep —I g—(E)dE . (2.14)

Only the knowledge of a finite amount of ideal
Green-function matrix elements of the semi-infinite
medium at the sites of nonvanishing impurity poten-
tial are required. Moreover, if one assumes V~ to be
localized and the same for the five d orbitals, this
single potential matrix element is entirely deter-
inined by Friedel's rule (2.9).

The electron-electron contributions are counted
twice in E~, , thus

Eg, = (I„). — (2.15)

They comprise intra-atomic Coulomb and exchange
long-range electrostatic interactions (of a dipolar
Coulombic nature near the surface) and correlations.
It is not possible in this simple model to obtain reli-
able estimations of this term, and it will, therefore,
be neglected in the following. Even the computation
of the local ionicities which can be computed along
the same lines as those of the ideal surface would
lead to a prohibitive computer cost. In conclusion,
we showed that the localized impurity problem can
be generalized formally from bulk to surface; only
the matrix elements of the ideal self-consistent
semi-infinite medium sensitive to the position of the
surface appear instead of the bulk ones. In Sec. III
we will see, however, that the realization is not com-
pletely trivial.

In this section we discuss a specific case with the
preceding model; impurities described by a potential
localized on one site in semi-infinite paramagnetic
fcc Ni bounded by a (111)dense plane. Our choice
is justified by the following reasons:

(i) A lot of experiinental and theoretical informa-
tion exists for this system.

(ii) It allows us to perform significant calculations
with our very limited computer time and size alloca-
tions for cases where the elastic strain effects can be
neglected.

The point-group symmetry of bulk fcc Os is re-
duced by the (111) surface to C3„. Therefore, we
have to reconsider the symmetry-adapted d orbital.
It is easy to check that the cubic harmonics belong-
ing to representation I i2 from an irreducible repre-
sentation of dimension two of Ci„, and that I'25

splits into a two-dimensional irreducible representa-
tion we constructed isomorphic to the preceding
one, and a one-dimensional identity representation.
We report in Table I the set of parameters for self-
consistent semi-infinite Ni(111), and in Table II the
C3„adapted d harmonics.

From the selection rules applied to C3„adapted
orbitals, we check that we have to compute three di-
agonal matrix elements of Green function, 6 ii ——gi,

0 0 0 062' ——633 —g2 and G44 ——655 ——g3, and a nondj. ago-
nal one, G24 ——G35 —g4 which vanishes in the bulk.
The latter matrix elements do not infer on the deter-
mination of the density of states and Fermi level,
but are present in the phase shift and the dissolution
energy.

We used Desjonqueres and Cyrot-Lackmann'
first-neighbor parameters dda, ddt, dd5 and
checked their self-consistent surface level Vo. The
overlap matrix is assumed to be unity. We adapted
the Haydock, Heine, and Kelly recursion method
for calculating the local Green-function matrix ele-
ments on the different planes parallel to the (111)
surface as continued fractions:

G(z) =Gi(z),

G„(z)= 1/[z —a„b„G„ i(z)] . —
(3.1)

TABLE I. Parameters (in Ry) for self-consistent

Ni(111) (Ref. 18).

dd0'= —0.041 676 ddt =0.018 842 dd5= —0.002 331
EF——0. 101 81 a „=—0.033 022 b „=0.080 190
Vp ——0.016
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TABLE II. cfc(111)surface-adapted d harmonics [a=(15/4rr)'~i].

Symmetry

Bulk
OI Label

cfc(111) surface
bounded semi-infinite

C3v Comments

I as axy (xy +yz +zx) Identity
representation

ayz (yz —zx)
2

a
(2xy —zx —yz)

6

Two-
dimensional ir-
reducible rep-
resentation

—(x2—y )
2

{3z2—R2)
12

—(x —y )
Q

2

(3z2 —R )
12

Two dimen-
sional repre-
sentation iso-
morphic to
(2-3)

We were able to obtain eight levels of coefficients a„
and b„ for the local Green function. We stop the
continued fraction by assuming that the coefficients
are constant, equal to their asymptotic values

a„b„,i.e.,

G„+i(z)=G„(z)=1/[z a„b „G„—(z)],
thus

6„{z)= [(z —a „)—[{z—a „)z —(2b „)]'/z I /2b „,
(3.2)

(3.4)

In Fig. 1 we report the local density of states on the
different planes and also the interorbital transfer
spectral density —(I/m)lmg4. In Fig. 2 we trace
the phase shifts. It is easy to check that the phase
shift becomes

rl(z)= —argI (1—g, Vz)

with the correct determination of the square root.
We determined the coefficients a „and b „from the
bulk band extension by calculating E„(k) at three-
dimensional Brillouin-zone high-symmetry points
a „is the middle of the band, b „=W/4, the fourth
of the bandwidth.

We know that this procedure is fair since there
exist no surface states for Ni(111) with the set of
parameters of Desjonqueres et al. ,

' and the spectral
domain is thus the same as in bulk. The nondiago-
nal eleinents of the Green function are also brought
into a form similar to the diagonal elements, i.e., the
difference of continued fractions by a trick devised
by Heine28(c).

(3.3)

with

per spin. The heat of dissolution is known to be

H =E~—Ts„,+Pv,

(3.5)

(3.6)

where s„, represents the variation of entropy not of
purely random configuration type and v the varia-
tion of volume of the sample occurring by the sub-
stitution of one host by an impurity atom. E~ is the
total energy variation associated with such a substi-
tution, and comprises an electronic band contribu-
tion, as well as a lattice distortion and ion-ion contri-
bution. It may be conceivable to generalize a cal-
culation of the type developed by the authors in
Refs. 30 and 31 for the relaxation and recontruction
of pure surfaces (or for impurities in the bulk or
adsorbates on surfacesi ) to the present problem, but
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FIG. 1. Spectral densities [—(1/sr)img;], i =1,4 [(a), (b), (c), and (d), respectively], and total local density of states (e) vs

the plane position relative to the surface (1st plane); the bulk is represented up from the 6th plane.

at a prohibitive cost. We do not believe that a mac-
roscopic evaluation within linear elasticity, versus
the position of the impurity to the surface, may be
reliable. Thus, in the following, we suppose that the
lattice is undistorted; we neglect, therefore, volume
term u in (3.6). The entropy term (requiring a pho-
non impurity calculation along the same lines as the
one developed here for electrons) is also neglected,
and in the energy term E~ the elastic and two-
electron contributions are neglected. Thus with
these approximations and (3.6) we identify the heat
of dissolution with Ed, . Since the segregation ener-

gy is the energy associated with an exchange of posi-
tion between a host atom on a plane near the surface
and an impurity dissolved in the bulk, we obtain
simply these quantities as the difference of dissolu-
tion energies of the impurity at site R and in the
bulk:

E„s,(R)=Ed, (R)—Eg, (bulk) . (3.7)

Thus we obtain as far as the electronic contribution
is concerned, a much finer description than those
currently existing in the literature which are limited
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FIG. 2. Total displaced charge [renormahzed phase
shifts (1/m)g(EF, R, V) vs location (y) and the impurity
potential {Ry)].

to "surface" and bulk only, since the position-
dependent segregation energies obtained here may be

, used to construct an equilibrium concentration pro-
file (Sec. IV). In Table III we report the dissolution
and segregation energies on the different planes.
The main qualitative features deduced from this
table are the following:

(i) The oscillatory behavior of segregation energy
versus the distance to the surface.

(ii) The sign of the segregation energy for an atom
localized on the surface plane agrees with the experi-
mental values available. We note a segregation on
the surface for chromium, ' copper, ' vanadium,

and zinc, but we did not find reliable studies for the
latter alloys. With the positive value of E„s, for
iron, we predict an enrichment of the surface by the
host Ni, as observed by Wandelt and Ertl. " A simi-
lar result is expected for cobalt and manganese.

(iii) The infiuence of the off-diagonal matrix ele-
ment of the Green function g4 in (3.5) is sensitive on
the surface plane, and for big valence differences

i
Z

~
only (of second order in V~).

(iv) Our model is much more detailed than the ex-
isting surface and bulk models. The order of magni-
tude of the segregation energy agrees with other ex-
isting data; for instance, our segregation energy at
the surface of Ni-Cu is about three times that of
Muscat's. '

For high values of
~

Z ~, the localized model may
not be reliable, even when brought to self-
consistency, due to the extended nature of the im-
purity potential. For the determination of EF and
band contribution to dissolution energies, we used
complex integration, deforming the contour from a
lace around the real axis from —oo up to Fermi lev-
el into a vertical path (Ez+iy),y E [0,+ 00 ], and us-
ing Gaussian integration. A great advantage is
that there is no problem of phase determination; the
real part involved in the calculation is uniform and a
high accuracy necessary for significant energies is
obtained. Let us mention that it is possible to com-
pute directly the segregation energy as an impurity
pair problem, on the semi-infinite system, with one
impurity in the bulk. The perturbing potential is

TABLE III. (A) Impurity perturbing potentials, (B) segregation energies versus position in cfc(111) surface bounded
semi-infinite Ni, and (C) dissolution energy in bulk Ni (in Ry).

Impurit Cr
—4

Mn
—3

Fe
—2

Co
—1

Ni
0

Cu
+1

Zn
+2

1

2
3
4
5

Bulk

0.090271
0.080687
0.124 175
0.114143
0.102914
0.102 810

0.060 183
0.051 380
0.067679
0.068 193
0.064 165
0.063411

0.044 893
0.036023
0.044571
0.046439
0.044766
0.044 120

(A)
0.032 647
0.024605
0.029 305
0.031 006
0.030251
0.029 909

0.018770
0.013439
0.015411
0.016507
0.016 142
0.016056

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

—0,028 161
—0.019600
—0.019749
—0.022 361
—0.021 926
—0.021 905

—0.084 341
—0.059 685
—0.052058
—0.063 074
—0.063 147
—0.062 680

—0.075 215
—0.086974

0.056989
0.033 781
0.000596

—0.028 930
—0.070446

0.018 818
0.024 108
0.004 105

0.000 393
—0.056272

0.000723
0.014773
0.004 330

(B)
0.018 302

—0.04Q 681
—0.006038

0.007 956
0.002 599

0.021 301
—O.Q21 526
—0.006 121

0.003 570
0.000721

0.000000
0.000000
0.000000
0.000000
0.000000

—0.057479
0.020551
0.020919

—0.004036
—0.000221

—0.208 700
0.026 2OQ

0.104600
—0.003 200
—0.004 600

Bulk 0.111720 O.OSS 382 0.045 297
(C)

0.046791 0.037 963 0.000000 —0.101067 —0.393 320
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IV. EQUILIBRIUM CONCENTRATIONS,
DIFFUSION KINETICS

In the usual segregation model comprising two
"phases, " the bulk and the surface, we are led to the
McLean formula for the surface to bulk concentra-
tion,

cs cb

1 —cb

—h
exp (4.1)

where h is the segregation enthalpy and c„ the con-
centration in the bulk. It is easy to extend this rela-
tion to our case by minimizing the free energy with
respect to the local concentration on each plane c;
and imposing conservation of the total number of
impurity atoms. Within our approximations,

6 = $c;E;+kT [c;inc; +(1—c; )ln(1 —c; )],

$(c;—c„)=0.
(4.2}

(4.3)

[E; is the segregation energy E~s,(i} defined in
(3.7).] Thus we obtain, as long as the bulk acts as an
impurity atom reservoir,

V=V~(n'}
I
n'&t,'n'~ —V~(n}

~

n &(n
I

~

(The positions of a host atom with the impurity, ini-
tially at n' and n, are exchanged. }

We must also mention a puzzling problem: The
number of levels on the calculation (8) is not yet suf-
ficient to ensure the convergence of the segregation
energies. Unfortunately, we cannot further increase
the number of levels due to our limited computer
size and time allocations. This fact may shed some
doubts about the validity of the results existing in
the literature where even cruder approximations to
the densities of states than the one here are used.

low-energy backscattering}. If the plane by plane
crystal growth is well controlled by molecular-
beam epitaxy, the reverse secondary-ion mass-
spectroscopy analysis technique does not work due
to a difference in the sputtering cross section. For
Ni-Cu alloys, Ling et al. ' predicted at least one os-
cillation in the concentration profile. More recently,
Webber et al. , with a combined XPS and/or Auger
electron spectroscopy study for a 5 at. % Cu alloy,
found a very strong segregation of Cu at the surface
plane (85—100 at. %) followed by a depletion region
with less than 5 at. % over 3—6 A and an enriched
region Cu (8—17 at. %) around 12 A depth. By (4.4)
we find a Cu concentration profile very similar (Fig.
3). As mentioned by Webber et al. , no oscillation
was expected from regular solution models treated
by free-energy minimization 5 or Monte Carlo
methods. We hope that many other concentration
profiles of Ni-based alloys will be available.

In general, we note that in case of a strong segre-
gation on a plane (E„s,»kT), the concentrations
on these planes are not very sensitive to the bulk
value since the segregation energy in the exponential
factor (4.4) dominates the bulk concentration prefac-
tor. In any case, our model presented here can only
be qualitatively valid in the case of strong enrich-
ment. A combined model of concentrated alloy
planes coupled to a dilute system may be construct-
ed.

Our point is that alternative information about
the energies on the different planes may be obtained
from segregation kinetics, with the knowledge of the
time dependence of the concentration on the first
plane only. This is in a certain sense a time-space
converter. It widens also the temperature range for
the study of segregation, allowing one to analyze
nonequilibrium situations.

One of the simplest models of diffusion adapted
to the present study is

CI.

1 —c.
c —E.

00
(4.4)

Icc.
1-

and the usual Arrhenius law for concentration
versus temperature, as long as c; &&1.

We expect this relation to be valid in the dilute re-
gime; otherwise, we should modify the model in or-
der to include concentrated alloy layers in the very
enriched regions. This relation may be used to
check equilibrium concentration profiles. As far as
we know, the experimental determination of indivi-
dual concentration on each plane is a very difficult
challenge, since usually, one observes an integrated
signal over a few planes by Auger spectroscopy, or
only related to the surface plane (ion and neutral

I

{:CU

I

Ccu
1-

0.5- x= 0.1

x= 0.05

1 2 3 i, 5 HU LK

FIG. 3. Cu equilibrium concentration profile in'

Cu„,Ni~ „alloys (x =0.20, 0.10, 0.05) at T =900 K.
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—ci ———W(1~2)ci+ W(2~1)c2,d
dt

[W—(i~i+1)+W(i —+i —1)]c;

+W(i +1~i}c;+i.

(4.5)

dn
c(t =0)=W" c(t =0) .

dtn

The experimental data may be fitted to such a poly-
nomial. It is easy to check that from the rate
(d/dt}ci(t}; for instance, one obtains E2 Ei—within
the approximation of this paper,

dc~
2Woc„sinh{p(E2 Ei))—= "

ci(t =0) .
dt

with

1+r exp( PE; )—
X 71+r exp( PE )— (4.6)

and

r =c„/{1—c„),
P= 1/kT,

(4.7)

(4.8)

Wo D/I. —— (4.9)

D is the bulk heterodiffusion coefficient and I. the
distance separating two neighboring planes; the en-

ergies are the segregation energies. The last relation
is simply derived by identifying the difference sys-
tem to a partial differential diffusion equation in the
limit I.~0.

The last ratio in (4.6) has been introduced here in
a heuristic manner; with this term, the thermo-
dynamic equilibrium solution (4.4) becomes the ex-
act stationary solution of (4.5). In practice, this fac-
tor is often negligible in dilute systems. In order to
sketch the arguments developed in this section, let
us simply show that from the knowledge of ci(t)
one is able to obtain the difference of segregation en-

ergies on the neighboring planes, starting from an
uniform concentration distribution c;=c„,whatev-
er i, c(t) can be written as a Taylor series (a way to
obtain formally the matrix exponential general solu-
tion},

c(t)= c(t =0)+—c(t =0)t
dt

with

+— c(t =0)t +1 d
2f d

W(i ~j ) is the probability per unit time that an im-
purity diffuses from ith to jth plane. We associate
these probability rates with those of an activation
barrier; W(i~j)=0 if ij are not first-neighbor
planes,

W(i~j )= Woexp[ P(E—/ —E;)]

Other properties of this system of equations will be
discussed elsewhere.

V. CONCLUSION

We studied the electronic structure of a substitu-
tional impurity in a semi-infinite medium in the
tight-binding model. We showed that the band con-
tribution to the dissolution energy can be expressed
by phase shifts which require only the knowledge of
a finite number of matrix elements in the atomic-
orbital basis. The segregation energy at a given site
E is obtained as the difference of dissolution ener-
gies at this site and in the bulk; this gives us a much
finer description than the usual surface and bulk
models. Within the localized potential approxima-
tion, brought to self-consistency in the Friedel sense,
we computed the segregation energies of impurities
dissolved in a semi-infinite Ni crystal bounded by a
(111) plane versus the difference of atomic number
and the distance to the surface. This calculation is
completely parameter free. It neglects, however, the
lattice strain induced by the impurity, which needs
to be considered when solvent and solute atom sizes
differ too much. For the alloys reported in this pa-
per, this approximation may not be too crucial.
These energies are in good agreement with the exist-
ing experimental data and allow one to construct
concentration profiles with an oscillatory character
not predicted by a regular solution model. ' In
case of a strong enrichment (E„s,»kT), the bulk
concentration prefactor in the concentration on
these planes is of minor importance, since the ex-
ponential term exp( —E„s,/kT) is dominating. We
suggested also that full information on the segrega-
tion energies on the different planes may be extract-
ed from the kinetics by monitoring the time depen-
dence on a single plane of the concentration (the sur-
face plane, for instance). The study of bcc iron al-
loys, that we could not yet realize since a cluster
eight times larger is required for the same accuracy
(next-nearest-neighbor interactions are important), is
in progress. The fact that we used a paramagnetic
band structure is not a restriction to this work since
the effects are sensitive at a sufficient high tempera-
ture.
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