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In order to obtain new, general, conceptual insight into some aspects of the theory of
photoemission, a consistent treatment was developed for photoemission from a free-electron
(FE) metal with vanishingly small absorption at photon energies larger than the bulk-
plasmon excitation energy. The electromagnetic response of the FE metal was described by
the dielectric function €(q,w) derived by Melnyk and Harrison. Calculated photoelectron
energy-distribution curves (EDC) differ significantly both in magnitude and dependence on
photon energy from the conventional FE results. The wave-vector selection rule for photo-
emission from a semi-infinite FE solid was derived. The separation of bulk and surface
contributions to photoemission and its relation to “direct” and “nondirect” electronic transi-
tions are reexamined and shown to be less reliable than commonly assumed. A new bulk
contribution to the photoemitted current is identified and is associated with transitions
which do not conserve the component of momentum normal to the surface. These “direct-
like” transitions are shown to be closely related to ordinary direct (bulk) transitions; their
occurrence is independent of an explicit electron-electron or electron-phonon interaction,
and is not necessarily related to a finite extraction depth of the electrons. A bulk enhance-
ment of the classical surface photoeffect associated with the gradient of the surface barrier
is also identified. The vectorial effect is shown not to discriminate between surface and bulk
photoeffects. For p-polarized photons the EDC is shown to depend strongly on the photon
angle of incidence. The photoyield is shown to exhibit a sharp peak at the critical angle for
total reflection. In contrast to earlier calculations, our calculation of the high photon-energy
limit of the photoelectric yield from the FE metal agrees with the asymptotic yield from an
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atom.

I. INTRODUCTION

This is the first of a series of papers whose pur-
pose is to provide general qualitative insight into the
theory of photoemission. This can be achieved by
considering relatively simple models which permit a
more complete formal analysis than the more com-
plex models which require a primarily numerical
analysis. In the present paper we concentrate on the
rather subtle relation between bulk and surface
photoemission. The derivation and elucidation of
the wave-vector selection rule for bulk photoemis-
sion from semi-infinite solids is one of the more in-
teresting new results obtained.

The separation of surface from bulk effects is a
central and long-standing problem in the analysis of
photoemission data. Much of the current qualita-
tive understanding of this problem is based on the
free-electron (FE) model of a semi-infinite metal. In
the simplest version of the model the surface barrier,
confining the electrons in the metal, is represented
by a step-function discontinuity in the potential.
This FE model has been applied in the theory of
photoemission by Fowler,! Mitchell,? and others.3~*
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In all of these theories, photoemission from a free-
electron metal was considered to be an example of a
pure surface photoeffect. This conclusion, and more
generally, one of the current theoretical interpreta-
tions of the surface photoeffect rests on the follow-
ing operator identity:

d_, =
Zpopz—VVop .

Applying this identity in a transformation of the
matrix element for photoexcitation, in the approxi-
mation of a spatially constant vector potential, the
photoemitted current is seen to exhibit a contribu-
tion proportional to the gradient of the surface po-
tential. This contribution to the photoemitted
current has been conventionally identified as the sur-
face photoeffect. In the simple model of a free-
electron metal considered by Mitchell*> and Adawi’
this represented the entire photoeffect. We shall
show that the matrix element for photoexcitation
can be evaluated directly and that it differs from the
transformed matrix element. Part of this discrepan-
cy is readily interpreted as a bulk contribution to the
photocurrent. This result demonstrates directly that
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photoemission from a free-electron metal cannot be
viewed as a pure surface effect. In particular, in the
limit of a vanishingly small photon-absorption prob-
ability we find a contribution to the energy-
distribution curve (EDC) of the photoelectrons
which is closely related to the “direct,” i.e.,
momentum-conserving, transitions which cannot
occur in the FE model. The physical reason for the
difference between our analysis and other free-
electron analyses such as the classical work of
Mitchell? and other more elegant reformulations of
this model’~7 is that we required the photon flux
transmitted into the semi-infinite solid to be com-
pletely absorbed:

lim A(T)=0.
Z—>—o
This physical constraint must be satisfied even in
the limit of a vanishingly small absorption coeffi-
cient which occurs at photon energies above the
plasmon-excitation energy. This implies that we
should no longer apply the approximation

(FIEB|i)=AAf|B|i)

A1V
(0] fi

This conclusion has also been previously reached for
a totally different reason by authors*®~1° consider-
ing the rapid spatial variation of the vector potential
in the surface region. These authors found that the
complete matrix element of A-P must be evaluated
in that case. We shall show that a consistent model
of photoemission from semi-infinite metals above
the plasmon excitation energy must also account for
the inherent spatial decay of the amplitude of the
electromagnetic far field in the bulk.

The effects of the several different kinds of spatial
variation of the vector potential on the photoemis-
sion from a free-electron metal have been discussed
in the literature.*®~!> We shall analyze in some de-
tail the effects of the spatial variation of the bulk or
propagating far field, which, in a free-electron metal
can be represented by a single transverse inhomo-
geneous plane wave. These effects have received rel-
atively little attention compared to the much more
extensive discussion of the effects of the spatial vari-
ation of the surface-bound near field, which in-
herently exhibits a longitudinal component.

Makinson,* Schiff and Thomas,® Endriz,’ Feibel-
man,'® Kliewer,!! and most recently Maniv and
Metiu!? were all concerned with the spatial variation
of the vector potential and/or its divergence in the
surface region. Both effects are manifestations of
the near field established by the incident photon flux
at the surface. The amplitude of this near field,

which in principle should be calculated self-
consistently so as to include the dynamical response
of the free electrons, typically decays quite rapidly
with distance from the surface.'®~!” For photon en-
ergies below the bulk-plasmon excitation energy this
near field represents the entire field. Recently, some
authors attributed the surface photoeffect to the
near field.'%!16 This presumably plausible rejec-
tion of the conventional interpretation of the surface
photoeffect in terms of the gradient of the surface
barrier raises the following questions:

(1) Does there exist a surface photoeffect which
can be experimentally and unambiguously dis-
tinguished from the bulk effect, or is the distinction
between surface and bulk effects model dependent?

(2) Is the surface photoeffect unique, or are there
several contributions to this effect which are distinct
and which correspond to different physical mecha-
nisms?

For photon energies above the plasma excitation
energy our analysis leads to a meaningful and
model-independent identification of the bulk contri-
bution to the “elastic” photoemitted current; that is,
the contribution to the current due to strictly one-
electron excitations as opposed to more complex ex-
citations in which the photon energy is not entirely
transferred to the single electron which is emitted.
The remainder of the elastic current may, in general,
be attributed to several distinct surface effects. Our
analysis reveals a contribution to the current which
is proportional to the classical free-electron result of
Mitchell.> This contribution is also independent of
the details of the near field at the surface. Other
surface effects which are associated with this near
field have been considered by Feibelman!® and
Kliewer.!! Feibelman calculated the vector potential
for the semi-infinite jellium self-consistently. His
analysis was not devised to discriminate between the
several factors contributing to the photoemitted
current, though it evidently includes both a rapidly
varying A and a longitudinal component of A.
Kliewer,!! in a quasiclassical analysis, first identi-
fied the surface photoeffect as being exclusively due
to the presence of a longitudinal component of the
vector potential inside the solid.!’® In a later publi-
cation Kliewer emphasized also the importance of
the rapid spatial variation of the vector potential in
the surface region.!'"® Mukhopadhyay and
Lundqvist'? (ML) discussed the physical mechanism
responsible for the contribution of the longitudinal
fields to the surface photoeffect. Above the bulk
plasma frequency they identified it with the spon-
taneous decay of plasmon excitations into particle-
hole excitations. Recently, Levinson and Plummer!®
reported the observation of a surface-related,
enhanced photoemission from aluminum with the
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use of p-polarized photons. They attributed this
enhancement to the strong spatial variation of the
vector potential in the surface region, a few
angstroms wide. They emphasized that they did not
observe contributions to surface photoexcitation by
induced longitudinal fields, i.e., optically excited
plasmons.

The spatial variation of the far field has been con-
sidered by Kliewer and Bennemann'’ in their
analysis of bulk photoemission from a Drude model
of a free-electron metal. In their analysis, Kliewer
and Bennemann apply the photoabsorption probabil-
ity calculated by Dumke!'® for an infinitely extended
homogeneous metal and a spatially constant vector
potential. In contrast, we treat explicitly the semi-
infinite aspects of the problem. That is, we account
for the effect of the surface both on the electronic
states bound by a finite surface barrier, as opposed
to the specularly reflecting (and impenetrable) bar-
rier' 13 of Kliewer and Bennemann (KB) and on the
electromagnetic far fields which are subject to
“outgoing-wave” boundary conditions rather than
the symmetry imposed on them by KB. Recently,
Maniv and Metiu'? (MM) have achieved consider-
able progress in the calculation of the electromag-
netic fields in the metal-vacuum interfacial region.
These authors, who are primarily concerned with
the near fields in the immediate vicinity of the inter-
face, developed a scheme for a more general solution
of Feibelman’s'® model. They were thus able to
determine a dielectric response function which, in
contrast to more conventional models, is continuous
.across the interfacial region. Maniv and Metiu ap-
plied their model and the three-step model of photo-
emission!® to calculate the photoyield from a thin
metallic film."> From their analyses MM conclude
that, outside an interfacial region a few angstroms
wide, their electromagnetic fields tend rapidly to the
far fields obtained from the more conventional
boundary matching solution of Maxwell’s equations.
This rather intuitive conclusion provides a more for-
mal justification of the latter approach, as developed
by Melnyk and Harrison'* and others, in analyses of
long-range surface effects manifest in the far fields.

Unlike Kliewer and MM, we do not use the
three-step model. Instead, we apply the more funda-
mental scattering formalism introduced by Adawi.’
We calculate the “matrix elements” for photoemis-
sion in terms of the explicitly spatially varying vec-
tor potential. Our improved treatment of the semi-
infinite aspect of the system has led to several unex-
pected new results, and also a gratifying agreement
with some intuitive expectations. The former unex-
pected results concern primarily the relation between
“direct” and ‘“‘nondirect” photoelectron transitions
and the bulk and surface photoeffects. The latter

more expected results concern several aspects of the
“index-of-refraction corrections.” Specifically, we
found the following:

(1) In a semi-infinite system the direct, that is,
wave-vector—conserving, transitions characterizing
the translationally invariant infinite system persist,
but are inherently associated with a continuous
background of ‘“directlike” transitions which con-
serve only the components of the wave vector paral-
lel to the surface. For a free-electron metal the
direct transitions are forbidden, just as for the strict-
ly free electrons. However, the directlike transitions,
which we shall show to represent a bulk effect, make
an important contribution to the photoemitted
current.

(2) There is a significant contribution to the pho-
tocurrent which involves neither direct nor directlike
bulk transitions. This current is shown to corre-
spond to the classical surface photoeffect first
analyzed by Mitchell,> though enhanced by what
may be interpreted as an interference with the bulk
effect.’’ This contribution to the surface photoef-
fect is independent of, and unrelated to, any pho-
toemitted current arising from the near-field region,
that is, the region in which the vector potential may
exhibit a significant spatial variation'® and/or a
longitudinal component which decays rapidly with
distance from the surface.!!"!”

(3) The failure to conserve the component of the
wave vector normal to the surface is not a unique
feature of the surface photoeffect.

(4) Photoemission from a free-electron metal can
occur only if the incident photon is p polarized.
However, since the free-electron metal also exhibits
a bulk photoeffect, this polarization (or “vectorial”)
effect can only serve to identify a free-electron-like
contribution to the total photoemitted current, and
not the surface effect as such.

(5) For p-polarized photons the photoemitted
current is proportional to the squared magnitude of
the amplitude of the electromagnetic field transmit-
ted into the solid and inversely proportional to the
magnitude of the transverse dielectric response func-
tion.

(6) For p-polarized photons the photoemitted
current is a strong function of the photon angle of
incidence and peaks sharply at the critical angle for
total reflection.

(7) The high-photon-energy limit of the photo-
emitted energy distribution from a free-electron
metal agrees with the corresponding limit for the
atomic photoeffect. This is in contrast with the
classical analysis of photoemission from a free-
electron metal.’

The present analysis of photoemission from a
free-electron metal provides the basis for a new and
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more complete treatment of photoemission from a
semi-infinite periodic solid. In particular, the
directlike bulk contribution to the photoemitted
current can be shown to be a general characteristic
of photoemission from semi-infinite solids. That is,
the wave-vector selection rule for bulk photoemis-
sion, derived in this paper for the FE model, can be
extended to the semi-infinite three-dimensional
periodic potential.?!

The outline of the paper is as follows: The formal
theory of photoemission from a FE model of a met-
al is developed in Sec. II. The Green-function for-
malism is reviewed in Sec. I A. This formalism is
applied in Sec. IIB to calculate the photoemitted
current density for the classical free-electron model.
Our more complete solution, which allows for a spa-
tially varying vector potential is presented in Sec.
IIC. Here, the asymptotic dependence of the EDC
on the photon energy and the vectorial effect are
also discussed. A discussion and numerical analysis
of the results is presented in Sec. III, and the con-
clusions are stated in Sec. IV.

II. THEORY OF PHOTOEMISSION
FROM A FREE METAL

A. Green-function formalism

We shall calculate the photoelectric response in
terms of a Green-function formalism to be described
below. This technique allows photoemission to be
viewed as an inelastic scattering process of the elec-
trons; it has been discussed by others,’~7 and so our
remarks will be brief. While in the following we
consider only single-electron excitations, the treat-
ment can be extended to include other, more com-
plex excitations, such as a single-electron excitation
accompanied by a phonon or a plasmon emission
(absorption).

The unperturbed system is described by the Ham-
iltonian 57 and its eigenstates { ¥},

HWo( T, K )=E¥o(T,K) . (1

Here J7, includes both the electronic operator 5,
and the free-field operator 57,,

#

ﬁ”o=9fe+ﬁ’r=—2—n;

VIHV(T)+ 3 nopfing ,
B

where 5, is written in second quantized notation,
the sum on f is over all occupied states, and the
constant zero-point energy term has been dropped in
x,.
The radiation field induces a perturbation of %,
given by

2
+—2—4%T), (2)

and consequently, the perturbed wave function satis-
fying “outgoing” boundary conditions can be writ-
ten in the form

V(TR ) =W T, K )+ ¥ (T, ) .

Here ¥, represents the “incident” and ¥ the “scat-
tered” component of ¥+) The complete wave
function ¥*)( ¥,k ) must be a solution of

[Ho+F ' —(E +nghing) ¥ H(T,k)=0.
(3)

Noting that ¥‘*) may be expanded in a series of
product states of the individual uncoupled electronic
and radiation Hamiltonians, we approximate the un-
normalized ¥+ by

\I’(+)z\llo+‘l/1= |nﬂ,(l>0)+ I(np——l) ,<D1> .
(4a)

Here @ is an eigenfunction of the unperturbed elec-
tronic problem for an energy E, namely

H,0,=Ed, . (4b)

®, in Eq. (4a) is the perturbed electronic wave func-
tion having an energy E +7#iw. It is determined by
the requirement that Eqgs. (3)—(4b) be consistent.
Substituting Eqgs. (4a) and (4b) into Eq. (3) we have

%'|nB,¢0)—(E+ha)~—9£’e)|(nB—l) ,(D])
+%'I(nﬂ-1))®l>=0’ (40)

where we hereafter replace fiwg by #iw.

Multiplying this equation from the left by
(ng—1|, and projecting out the corresponding
component of the state of the radiation field, the fol-
lowing equation for @, is obtained:

y;‘edq)o_(E +ﬁ(0 _%e )q)l =0 ) (4d)

where in Eq. (4d) we denote by 5,4 the reduced
operator,

Hra={ng—1|"|ng) .

Henceforth we shall simplify our notation and drop
the subscript from the symbol for the reduced
operator; thus the operator 2’ acts only on the elec-
tronic eigenstates and is a ¢ number with respect to
the photon field. In deriving Eq. (4d) we also
dropped the higher-order contributions O(42).

The solution to Eq. (4d) for @, is



2034 B. CRAIG MEYERS AND T. E. FEUCHTWANG 27

= [ Go( T,T;E +#0)# 'Oy 5K, E)AT . (5)

Here G,(T,T';E’) is the Green function of the un-
perturbed electromc system for the energy
E'=E +#iw. In the present separable model G, may
be determined by the Wronskian construction, to be
discussed below.

In order to calculate the photoemitted current, it
is convenient to introduce the correlation functxon
G*(T,F;E'), which for zero temperature is??> as
follows

G+(?—"‘E')=i\l’(+)*( —’I.E ENWH) f"l? E'). (6)
In the presence of a vector potential, the cur-

rent density j (T; K,E’) can be expressed in terms of
GHT, T E"):

— o2 —
T(ERE)= | (T -+ K ()
2m mc
XGH(T,FE") | oz - (7a)

— =

In general, G*(T,T";E’) may be represented by a
perturbation (power) series in the amplitude of the
vector potential,

GH T, TE)=G}) (T,

+G(2)(
where the subscripts indicate corresponding powers
of the vector potential; thus G{f)( T,¥";E’) is linear
in A(T). In calculating the photoemltted current
we are concerned only with terms which involve
even powers of A(TF). To the lowest order we re-
quire terms quadratxc in A(T) which are conse-
quently linear in the number of photons. Of the
several terms contributing to the quadratic response
function, we need to consider only the term

r;E’' )+G(1)( r,7TE')

-—-»—», )
b

ﬁ( V'—V)G(r,r;E")

om R =Jjw@, (7b)

where the perturbed Green function G (2) accounts
only for the perturbation (ie#i/mc)A (T)- V and
does not have to include the effect of the other
second-order term (ed4 /c)?, which does not contri-
bute to the dc photoemitted current.” Thus the
right-hand side of Eq. (7a) reduces to the current
carried by the perturbed wave function ;.

B. Photoemitted current density in simple FE models

1. Introduction

In this section we apply the Green-function tech-
nique to calculate the photoemitted current from a

semi-infinite FE model. (See Fig. 1.) The unper-
turbed electronic Hamiltonian for the problem is

#V?
2m

where O(z) is the unit step function. Following
Mitchell we assume the vector potential in the solid
to be a plane wave of constant amplitude
éy,100 Te' Q"7 and taking the long-wavelength limit
(or electric dipole approximation) we approximate
A (T) by the constant field €,,aoT. Thus we con-
sider the perturbation

Z”:%ﬁ—Tao(ep, V), 9)

FHog=— ~V09(-z), Vo>0 (8)

where a is the incident amplitude of the vector po-
tential, €,, is the polarization' vector of the
transmitted field for p-polarized light, and a(T is
the amplitude of the field transmitted into the solid.
This particular form for 2’ explicitly neglects the
photon momentum as well as any spatial depen-
dence of the vector potential. We emphasize that
these assumptions were made in the original analysis
of the FE model by Mitchell,? as well as in its subse-
quent refinements by others.>~7

The symmetry of the model implies that the com-
ponent of the wave vector of the electron parallel to
the surface is conserved. Therefore, Go( T, T";E')
may be written as a two-dimensional Fourier series

in(p—p’),
Go(T,F"E)=—5 S e' 7

(10)

where p' and p’ are two-dimensional vectors in the
plane parallel to the surface The “normal” energy
E' is defined by E '=E'—#K 2/2m The Fourier
components g(z,z’; ’) in the above series are the
Green functions for a corresponding one-
dimensional problem. This problem is derived from
the full three-dimensional Schrodinger equation by a

Eﬁw
-Ef

5

FIG. 1. Schematic representation of photoemission
from a semi-infinite free-electron metal. The Fermi ener-
gy is denoted by —(Er+ V), the depth of the square well
is ¥y, and the zero of energy is vacuum. The positive z
axis is to the right.
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separation of variables. Because %, is a separable
operator, the unperturbed eigenfunctions ®, of 77,
may be expressed in terms of the eigenfunctions of
the “reduced” one-dimensional problem 57,,

(¥#,—E )p(z,E)

# d* = =
= |~ g o7 V02— E |9z, E)=0
(11a)
@o( T,K,E) = 3/2 KTy F) . (11b)

In particular, the states bound in the semi-infinite
square-well potential are given by

V2sinlkez—8), z<0

$ZE)=1 Vike (122)
Wiz 220
with
~ 2m
K(2,=—2L;l-(E+Vo) ) k(2,=——h—2—E>0 ’
and
. Ko
Sln8=m . (12b)

On the other hand, the solutions for an energy E '
greater than zero are given by

- ixz —ikz
bizEn=]c TAe T, 2<0 (132)
(1+A4)e™ |, z50
and
(1+B)e—”", z<0
¢2(ZE )= ik y Beike 550 (13b)
where

2m , = 2m , =
K2=7(E+ Vo+fiw) , k2='h—2(E+ﬁw) .
Continuity of the logarithmic derivative at the sur-
face determines the coefficients A and B to be
—k

A=-B=X (13¢c)

The perturbed wave function ®;(T,E’) is ob-
tained by substituting Egs. (9), (10), and (11b) in Eq.
(5). That is, retaining only the first-order term in
the vector potential, we find

=, lefiagT iX 7
O(TE )= m( €12 2 )e

X f_: dz'g(z,z;E" )WV, ¢z ,E), (14)

where £ is the unit vector in the z direction.

To evaluate the expression on the right-hand side
of Eq. (14) it is necessary to calculate g(z,z";E’ )
This we shall do using the Wronskian construction®®
described below.

Denoting the two linearly independent eigenfunc-
tions of the reduced Hamiltonian #,, which satisfy
outgoing boundary conditions as z tends to * oo,
respectively, ¢,(z, E')and ¢,(z,E "), we write

2m é1(z>,E"gy(z<,E")

# Wid 1,921 ’
(15a)

with z> (z <) being the greater (lesser) of z and z'.
W(é,0,] is the Wronskian of these solutions and is
given by

W(¢1,¢:]1=01(z,E")

a¢,(zE )
az

Using Eqgs. (13a) and (13b), we find the Wronskian
to be

Wid1,92]1=—2ik(1+4) . (15¢c)
In order to calculate the photoemitted current we

require only the asymptotic value of ®; as z— oo.
Combining Egs. (13) and (15) we obtain

m e y(z')
in  k
Substituting the above into Eq. (14) we find, for

Z— o0,
-3 eap I( /ép,t'é\) iK ‘P
(Dl(r’k).:—ﬁ_c—w 4

X f_: ¢z, E')\V,¢(z',E)dz' .  (16)

g(z25E")=—

a¢2(z E )

daz

$2(z,E") . (15b)

, z>0,z". (15d)

eikz

Here, the wave vector k has components parallel
and perpendicular to the surface which are K, and
k, respectively. The integral on the right-hand side
of Eq. (16) may be (and often is) interpreted as a
“matrix element.”** It is evaluated below.

2. Evaluation of the matrix element for the FE model

We now consider the problem of evaluating the
integral in the last equation; thus, let
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M= [ 4,5E ')-é%qﬁ(z',f )dz'

=L (3 E) | p | $(ED) . (17)

The standard method of evaluating this integral
which has been used in the past has been to invoke a
certain matrix identity which will now be re-
viewed.”> If |i) and |f) are eigenstates of %,
having eigenvalues €; and €y, respectively, then the
matrix element My; satisfies the identity

<fle,,, p|z>~ o <fIV9£’ [i).

(18)

The application of this result to photoemission has
been discussed by Feibelman.® For the problem at
hand,

%"—Va()
aZ -—ro z),

and the quantity My; defined by Eq. (17) reduces to
Vo ~ ~ ,
Mfi=—*ﬁ—w—¢2(z=O,E')¢(z =O,E) . (17)

Equation (17') explicitly indicates that in the present
model, photoemission is strictly a surface effect, or
rather a surface-sensitive effect. This result depends
essentially on the applicability of the transformation
of the matrix element indicated by Eq. (18), i.e., on
the validity of the electric dipole approximation.
Using Eq. (12) for ¢(z=0,E’) in Eq. (16), we ob-

2efi | €do

J(T)=

tain the scattered component of the wave function,

2\/29( é\'p,t'f)aoT VQ Ko

®,(r,E")= —
e fick +K)L*2  #io (k24 k2)172

xe' P Poik (19)
As noted in Sec. IT A, the lowest-order contribution

to the photoemitted current density is just the
current density carried by ®,(7,E’),

2
T2 (?p,,"é\)z

Tee( k) =S8 120 | |0
VR GXI= 03 e | (o | Jer| (ktk)
) R
Kok N Kp
A CARI P2 20
X(K(z)-i—k(z)) ot k ] 20

where carets denote unit vectors, and we have used
Snell’s law to express the z component of the polari-
zation vector of the transmitted field, €, ,°Z, in terms
of the polanzatlon vector for the incident p-
polarized field, &, ;.

The total current density T (T) is obtained by in-
cluding a factor of 2 to account for summation over
spin, and integrating over the wave vectors of those
initial states which cgntﬂbute to the photoemission.
The contribution to J (T') from the terms propor-
tional to the vectors K cancels due to symmetry so
that

J(P)=J(7)E. (21a)

Expressing «, k, and k in terms of kg, we find

(kE—K33(k3+w—vg)7?

2

m fic hm

Vo ler|

(ep,z) |T? ff
@ [(k34+w—vg) 2+ (k3

Ty Ao (21b)

where the several energles have been expressed in terms of quantities with the dimension of wave vector

squared,
2m
w=—+"7%w ,
#
2m
Uoz_ﬁz VO N
2m
klz;' ﬁz EF ’

(21¢c)

where Ep is the Fermi energy, and the lower limit of the integral in Eq. (21b) is defined by

a = max[0,(vo—w)] .

(21d)

In Appendix A we evaluate analytically the integral in Eq. (21). For #w > V, the exact result is
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2 " 2
J(F) 2efi | €do (é},i'z ) |T|2 Vo
r)= —_— B —
mm? | #ic vy ler| | fiw

ki o 32 2

X a—(kp+w) (3w —8vy—2k§)

1
8

2k§(w—vo)+%(3w—80—8k§)

3

{kp(2kE +w)(k}+w)V2—w?In[kp+ (k} +w)'/?]}

+:—:(kbz‘+w—U0)3/2(2k%—3w—vo)+%[k}(Zw——vo)—%(w—vo)(8k§——3w——vo)]
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This result, although exact, is not particularly en-
lightening; it will be examined numerically in the
next section. It is interesting to note, however, that
upon differentiating | €y |J(T)|T | =2 with respect
to the photon energy we find that this expression
has a peak at #w=V,* The quantity
|er| | T | ~%(T) corresponds to the yield in the
absence of refraction effects and its peak at fiwo =V
contradicts previous numerical results.> This point
will be discussed further in Sec. TIL

C. The photoemitted current density for FE Model
in the presence of a spatially varying
vector potential

1. Introduction: The far field

In this section we introduce a reformulation of
photoemission from the FE model. This new theory
imposes the important physical constraint that the
photon flux must vanish at an infinite distance into
the solid, that is,

lim A(T)=0.
Zo>—w
We shall derive from this constraint the wave-vector
selection rule for bulk photoemission from a semi-
infinite free-electron metal. The analysis suggests a
similar selection rule for photoemission from a
semi-infinite periodic potential.?! The expression
for the photoemitted current suggests a reinterpreta-
tion of bulk and surface photoemission.

l
The matrix element M defined by Eq. (17)

diverges. This mathematical difficulty represents
the inconsistency of the classical FE model as a
description of a thick metal with negligible photoab-
sorption. It is well known that in dealing with infin-
ite systems mathematical difficulties may appear as
a manifestation of an improper idealization of the
physical system. An example is the well-known
problem of calculating the Madelung potential in
ionic crystals, which is represented by a conditional-
ly convergent series.

In the present case one usually makes two ideali-
zations:

(i) A large system is described by a semi-infinite
model.

(ii) The near transparency of the solid is approxi-
mated by a vanishing optical absorption. Conse-
quently, the vector potential far from the surface is

represented by a transverse inhomogenous plane
wave.

These two idealizations are not compatible: The
physics of negligible absorption per unit length can-
not be represented by the zero-absorption limit in a
system of infinite extent unless the absorption is al-
lowed to vanish after the calculation, whenever the
dimensions of the system are much larger than the
inverse attenuation length 1/e. This dependence on
the order of (nonuniform) limits is in no way pecu-
liar; the adiabatic switching on of the interaction in
the theory of interacting many-body systems exhi-
bits the same kind of sensitivity. The physically
motivated order of taking the limits of infinite
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thickness and zero bulk absorptivity assures that the
physically irrelevant region infinitely far from the
surface, and the precise boundary conditions at in-
finity, do not unduly affect the calculated results.
Specifically, for a finite value of € only the region
|z | <zp~1/€ contributes significantly to the in-
tegrals defining the matrix elements. The physical
effects are characteristic of a region of width 1/e.
Evidently in the limit € —0 this region includes
the entire solid, provided that the limit is taken at
the end of the calculation. Conversely, when € is set
equal to zero at the beginning, then the calculation
in fact diverges, and a finite result can be extracted
only by a convention such as followed in the conven-
tional FE model. A physical interpretation of this
|

—i( 6,,- P +q72) 2<0
’

N aoTe, e
A= " i( Q, 7 +4z) i(Q P —gz)
A —i . z A~ —i ‘P —qz
ag( €, e PP +RE, e PP
Mathematically, the small optical-absorption

coefficient € is a convergence factor which will be
set to zero at the end of the calculation. Inside the
solid the components of the photon momentum Qr
parallel and perpendicular to the surface are denoted
Q, and g7, respectively. Similarly, in vacuum, the
1nc1dent -photon wave vector is denoted Q—( Qp,q)
The photon-polarization vectors for the transverse,
incident, and reflected fields are, respectively, denot-
ed €,;, €,;, and €,,. In Eq. (22), aoR and a,T are,
respectlvely, the amplitudes of the reflected and
transmitted vector potential. These may be deter-
mined from the classical Fresnel equation presented
below. As shown by Melnyk and Harrison,'*

_ 2% cos
_e=B p_Zfr , (23)
a+p a+pB

where
a=ep(Qr ,fiw)cosf

and

B=(ersin?6)'/2 . 24)

From the boundary condition on the electromag-
netic fields we find that R and T are related by

(14+R)=€l’T .

In Egs. (23)—(25), 0 is the photon angle of in-
cidence measured from the normal, and €,(Q7,%w)
is the transverse dielectric function of the solid.
This dielectric function, which is derived from a
long-wavelength approximation to the Boltzmann
equation, satisfies the dispersion relation

(25)

)
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mathematical procedure is that only strictly surface
photoeffects are totally insensitive to the value of
the bulk absorption, and exhibit a constant yield per
unit area which is independent of the thickness of
the photoemitter. In fact, the FE convention of
evaluating the matrix element “eliminates” all bulk
effects, i.e., both the strict bulk photoeffect and any
possible bulk modification of “bare” surface effects.
Thus, we conclude that a physically consistent
model is obtained by allowing for a small, otherwise
arbitrary optical-absorption constant and consider-
ing the limit of the photocurrent density as this ab-
sorption tends to zero. In this procedure, the vector
potential in the solid is represented by an inhomo-
genous plane wave,

(22)
z>0.
[
2
c — — — —
[; Qr-Qr=er(Qr,0), QT=(Q,,,qT) (26)
as well as the relation,
1 op 1+a® et (@)—1
er=1— , -1,
T 20(w+it"a? arctanta
27
with
— — 2
‘Qrv
a2=____Q.T_QTL . (28)

(@ +ir~1)?
The simultaneous solution of Egs. (26)—(28) deter-
mines both € and the magnitude Qr of the wave
vector Qr of the transverse wave in the solid as a
function of w. The components of Q may then be
determined in terms of the photon angle of in-
cidence.

In Egs. (27) and (28), v is the Fermi velocity, @,
is the (bulk-) plasma frequency, and 7 is the electron
lifetime. Equation (27) corresponds to an explicit
model of the free-electron metal which allows us to
account for the dispersive properties of the medium.
To be consistent with the limit € —0, we shall also
take 7 !=0.

For completeness, we also give the optical
transmittance 7, which is the fraction of incident
energy transmitted into the solid,

4Re(a*B)

T= atp? (29)
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At this point it may be helpful to review the condi-
tions under which the “far field,” i.e., the vector po-
tential far inside the bulk of a FE metal, can be
represented by an inhomogenous transverse plane
wave.

It is well known that above the bulk-plasmon en-
ergy fiw,, metals are essentially transparent to elec-
tromagnetic radiation incident below the critical an-
gle for total reflection.?’~?° Furthermore, in the en-
ergy range for which plasmons are well-defined ele-
mentary excitations, an incident photon excites at
the surface a longitudinal polarization wave which
may propagate, essentially without attenuation, into
the bulk. The dispersion relation of these plasmons
is implicitly defined by the zeroes of the longitudi-
nal dielectric response functions,?®

eL(QL;wp)=o ’ 6L=(6p ,qL) . (261)

As the wavelength decreases, these plasmons become
increasingly more unstable against decay into
particle-hole  (single-particle—type) excitations.>
The plasmon ceases to be a well-defined elementary
excitation above a critical energy, when its disper-
sion relation merges into the particle-hole—exci-
tation continuum, that is, when

(#Q )?
(0] +

(#Q.)? #K
QL)  #KrQr <y (Q1) <
m 2m m

2m

Here Kp=[(2m /#*)Ep]'/? is the Fermi wave vec-

#KrQr

tor3. Evidently, the critical energy is roughly given
by*°

(#0. )P #KpQ;
—+ <

o, =hoy(Qr)=— = <

3Ep .

Thus, when the incident photon has an energy larger
than about 3Ep, the longitudinal polarization fields
excited at the vacuum-metal interface are strictly
“near fields.” Using the Lindhard dielectric func-
tion,’! Mukhopadhyay and Lundqvist showed that
these near fields decay at least as the inverse square
of the distance from the surface.’? In fact, the treat-
ment of the longitudinal dielectric response function
in the long-wavelength limit by Melnyk and Har-
rison'* leads to the prediction of an exponential de-
cay of the longitudinal fields for energies above #iw,.
It remains to note that, as pointed out by ML, the
region of rapid charge variation and consequently
rapid variation of A is even more restricted to the
surface than that in which the longitudinal fields are
significant. Thus, for photon energies #w > 3E and
at distances larger than (Img;)~!~10~7 cm, Eq.
(22) adequately represents the far field propagating
into the solid. However, it does not provide an ade-
quate representation of A (T') in the surface region a
few angstroms wide where the vector potential may
exhibit a significant longitudinal component and a
rapid spatial variation. The recent work of Maniv
and Metiu'>!® further confirms these conclusions by
explicit calculations.

2. The scattered component of the wave function

In order to obtain the perturbed or scattered component of the wave function at the energy E + #w, we sub-
stitute Egs. (10), (11b), and (22) into Eq. (5), and obtain for z > 0,

iefiag (% ,-Q

O TK)=— e

| A0 PO -~
P f_wg(z,z’;E’)f'A(z’)-é%T¢(z',E ¥dz'

)

+ [ ez E8 R4 E Nz

az’
0

+ [ " glz,25E N8 R(z)2-¢(2",E )dz' | , (30)

oz’

where A (T)=e CpP A(z). We shall be interested in the asymptotic values of ®( T; K ) and of the current as
Z—>co. In this limit the third integral tends to zero; therefore, in the following it will be neglected. Here we
also note that the translational invariance in the plane of the surface implies that ®; must be independent of
the transverse component, 4, and 4, of the vector potential. Only the normal (z) component of A can perturb
the electronic state and contribute to the photoemitted current from a free-electron metal.

The evaluation of the above integrals is readily accomplished. The unperturbed Green function g is defined
by Egs. (15), and the unperturbed wave function ¢(z’,E) is given by Eq. (12). Upon evaluating the integrals,
we find
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= €ao (K —~Q )7 ;
d) ( k ) ﬁkcL:;/Z (Gp,i.z )e P p pelkz
2koT e~ N i
Verik+k) | e+ilko—gr—r) = €—ilko+k+qr)
ko(R +B)+i(k —g)(B —R)
+V2kq sind 0 5 q2
ko+(k —q)
ko(BR +1)+i(k+q)BR —1)
k2 k 2 ’ Z>>0 . (31)
o+(k+q)

The phase § is defined by Eq. (12b) and B is defined
"by Eq. (13¢c). Note that gr is purely real when the
photon angle of incidence is below the critical angle,
and the lifetime of the photoexcited electrons is in-
finite.

The several wave vectors in Eq. (31) are obvious
generalizations of the quantities introduced in Egs.
(12) and (13),

x%=—f%(E+Vo)-—K2
ki=— 2mE 2>0,

_2m 3.2
K ﬁz (E+V0+ﬁﬁ)) Kp—Qp) ’

% 2ﬁ—m(E+ha>)—(K —G,7.

3. The photoemitted current density and
derivation of the wave-vector selection rule
Jfor bulk photoemission

The calculation of the current density in the state
@, is analogous to the corresponding classical calcu-
lation for the FE model discussed in Sec. IIB. The
result is rather complicated and therefore we shall
first present a qualitative discussion of its features.

It is evident from Eq. (31) that the current density
can be grouped into two terms which differ in their
properties in the right half of the complex k, plane.
The first term has a pole in the right half of the

complex k; plane above the real axis. The second
term is analytic. Hence we shall write
T(ER) =T FK)+s(FK), (32)
where the singular term is denoted
Ta(TK)= R (33)

Ko—{qr—K—Ii€ ’

and the residue R is a nonsingular function of the
several wave vectors.
The current J (T') is again obtained by integrat-

I
ing the current densities with respect to the wave

vector k,

T(F)= 3 TuP)=F 3 L)
@=B,S a=B,S
=2 3 [juTK)d% (34)
a=B,S
With the use of the relation®*
1 .
=P Findlk—k'), 35
i e knsie Tk T ) (359)
Eq. (33) gives
R,
=P _—
J5(T) fKO E——
+7TifR28(K0-—qT—K)dK0. (35b)

The Dirac 8 function in the second integral assures
conservation of the normal or z component of
momentum in the electronic transition involved in
the photoemission process. P denotes the Cauchy
principal part of the integral.

Equation (35a) essentially represents the selection
rule for the z component of the wave vector in
photoemission from semi-infinite solids. It is to be
noted that quite generally the contributions of in-
tegrals of a principal part and the associated & func-
tion, as indicated in Eq. (35), for example, are of
comparable magnitude.’> However, the physics of
the free-electron model, which precludes single-
photon absorption by a (free) electron, forces the in-
tegral over the 8 function to vanish identically. The
corresponding calculation of photoabsorption in an
infinitely extended solid does not lead to the
principal-part integral and introduces a multiplica-
tive factor of 2 for the integral over the & function,
which corresponds to the familiar wave-vector selec-
tion rule for infinite solids. The principal-part in-
tegral is characteristic of the semi-infinite as op-
posed to the infinite solid. It represents an effect
due to the existence of a surface, but not necessarily
localized within the surface region. However, logi-
cally both terms in Eq. (35) should be interpreted as
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“bulk” effects because in the limit e—0 the entire
solid and not just a finite region of width L ~1/¢
contributes to both photoabsorption and photoemis-
sion processes described by these two terms. When
the electronic collision time 7 is finite, one no longer
has a strictly real g7, and hence the imaginary part
of jp is no longer a 8 function. However, it is sharp-
ly peaked when Re(gy) conforms to the conserva-
tion of the z component of the momentum, i.e.,
Re(qr)=ko—«. Thus the discussion of directlike
transitions in photoemission remains qualitatively
valid and meaningful as long as the collision time is
sufficiently long to discriminate the direct transi-
tions from the background of nondirect transitions.
The preceding discussion can be shown to apply
equally to photoemission from a three-dimensional
semi-infinite periodic solid, subject to the usual re-
placement of wave vectors by the equivalent (modu-J

lo reciprocal-lattice vector) reduced wave vectors.?!

When optical-refraction effects are neglected, that
is, when one follows the conventional FE model in
assuming €r~1, then js(T;k) can be shown to
reduce to an expression proportional to the conven-
tional FE result. Therefore, it may be taken to
represent a surface contribution to the photoemitted
current. In order to facilitate the comparison be-
tween the current carried by the wave function
specified by Eq. (31) and the current density derived
earlier, we shall neglect the photon wave vector Q
compared to the electronic wave vector.

A straightforward though tedious calculation
gives

J (TR ) =Ljs( Tk ) +js( T3k )], (36)

where

js( T;E )=j0{00(2K(2)+w)+2 I €r I z(vo—K%)(Uo-}'w)—zRC(GT)w(Uo——K(Z))

—2Im(er)(vo —K3)[Ko— (kG +w) 2 ][vo —K3—Ko(K3+w) 2]} (37a)

Jjg( T’;E )=jo{w(K(2,——vo)+2 Re(eT)(vo—-K%)m[vo(K%+w)1/2+K0(vo+w)]+21m(eT)w(v0—K(2,)} ,

and

efi

| T | %33 +w—v)2

(37b)

(37¢)

Jo= mL3 #ic

eay r 8(&,,2)?

where Re(er) and Im(er) denote, respectively, the
real and imaginary parts of the transverse dielectric
constant evaluated for the wave vector Qr(w) and
the frequency .

It should be emphasized that this result is ob-
tained only if the limit e—0 is taken at the end of
the calculation. On the other hand, if this limit is
“taken at the beginning of the calculation then, as
discussed above, one obtains the conventional
current density for the FE model, jgg, presented in
Eq. (20). In obtaining Egs. (36) and (37) we have
used Eqi (25) to express the current density in terms
of |T|%

We_already discussed the reason for identifying
jp(T;k ) with the bulk contribution to the photoef-
fect. This contribution, specified by Eq. (35), con-
sists of two terms: One is proportional to a 8 func-
tion which assures conservation of the component of
the momentum normal to the surface. In an infi-
nite translationally invariant system this term is
multiplied by a factor of 2. The corresponding elec-
tronic bulk transitions are called direct.

The second term is the principal part which is al-
ways associated with the particular representation of
the & function presented in Eq. (35a). This term

(Fiw)® | er|vol(kd+w) 2+ (k5 +w—v)' /2P’

—
represents the effect of bulk transitions which do
not conserve the component of the momentum or
rather (reduced) wave vector normal to the surface,
although they conserve the components of the wave
vector parallel to the surface. We shall refer to these
latter transitions as directlike.>

The remaining contribution to the EDC, denoted
by js, is to be identified as an enhanced surface pho-
toeffect. The term ‘“enhanced” is to stress that the
current is not necessarily exclusively due to emission
from the surface region. It may include a contribu-
tion from the interference of bulk and surface com-
ponents of the electronic wave functions. This point
is clearly indicated by the simultaneous limit of a
long photon wavelength and high photon energy
(Q—0,0 — ). In the long-wavelength limit,
2
©p
(0]

€T=l— (38)

Thus in the high-energy limit, e; ~ 1, and we obtain
from Eqgs. (20), (36), and (37),

Jre o T;K )=js(T;K) . (39)

fiw
2 —_—
+V0
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We note that if the matrix element for photoemis-
sion is transformed into a gradient of the potential,
as indicated by Eq. (18), then one obtains jgg ,, and
not jg. Stated differently, if this transformation is
performed then one loses the bulk contribution and
with it the enhancement factor, i.e.,

#iw
24——1.
o
That is, the classical or bare surface effect discussed
by Mitchell? and others>~7 is recovered.

4. Asymptotic dependence of PEED
on the photon energy

In the conventional normalization of the pho-
toemitted energy distribution (PEED) one divides
the current density by the incident photon flux F
where

w*|ag |2 cos
2re(fiw)

It is remarkable that the asymptotic photon-energy
dependence of our expression for the PEED is

j/F~O(#iw)™%"%. 41

(40)

This is in sharp contrast to the corresponding ex-
pression obtained from the conventional treatment
of photoemission from an FE model,

jre /F~O(#iw)~ % (42)

Equation (41), in contrast to Eq. (42), agrees with
the asymptotic photon-energy dependence of the
transition rate for the atomic photoeffect.3’ This re-
sult is expected on physical grounds: As the photon
energy tends to infinity, the difference between the
atomic and square-well potentials should become
unimportant. Thus, it is reasonable to impose on
any model of photoemission the requirement that it
satisfy Eq. (41).

5. Polarization dependence of the PEED

We shall now examine the polarization depen-
dence of the PEED which is given by Eq. (37). We
assume the light to be incident at an angle 6 from
the normal to the solid. Substituting Eq. (40) for the
photon flux into Eq. (37), we have

R 2
JAT,K)  27ce |e | sin’Q
F ~ omL? |c | cos@

XLip(T,K)+js(T,K)], (43)

where we displayed explicitly the angular depen-

dence of the photoemitted current, by writing

2
e#i

eag
mL3

. 20
sin“6, .
JB,S e 'JB,S

In the preceding we have assumed the photon to be
polarized in the plane of incidence (p polarization).
The angular dependence exhibited in Eq. (43) is the
same as that found by Mitchell’> and others.* The
role of the photon polarization and its consequences,
i.e., the vectorial effect, are well known and have
been used to separate the bulk and surface effects in
conventional analyses of photoemission.’® The
separation is based on the identification of a contri-
bution to the photoemitted current which depends
only on 4,; and hence is characteristic of p-polarized
photons. This - polarization dependence has been
previously identified as characteristic of, and pecu-
liar to, the surface photoeffect. This identification
is apparently motivated by the classical analysis of
the FE model which, as discussed in Sec. I, deter-
mined only the surface photoeffect. The analysis of
the FE model in Sec. IIC3 indicates the presence of
a bulk contribution to the photoemitted current
which also depends only on the component of the
vector potential normal to the surface. For models
with a separable potential, and only for those, the
entire photocurrent depends only on 4,. Therefore
we conclude that the vectorial effect allows only the
identification of a free-electron-like contribution to
the photoemitted current. This free-electron-like
contribution includes both surface and bulk contri-
butions, and is characteristic of any separable or ef-
fective mass type model of the semi-infinite solid.

6. Dependence of PEED on the angle of incidence
and critical angle of incidence

The effect of the angle of incidence of the photon
is illustrated in Fig. 2 for a model metal with sur-
face barrier height Vy=10 eV, Fermi energy Ep=5
eV, and plasma energy #iw,=8.36 eV. The photo-
yield, given by the solid curve, is calculated by an
integration of Eq. (36) over the initial wave vector of
the electron, including a factor of 2 for spin. It is to
be noted that the photoyield has a sharp peak at the
critical angle 6, for total reflection from the
vacuum-metal interface. This angle is specified by
the relation

Re(er)— sin%0, =0 . (44)

Physically, the peak in the photoyield arises from
the proportionality of the photoyield to the intensity
of the transmitted electromagnetic field inside the
solid. More precisely, the EDC depends on the
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FIG. 2. Photoyield (in units of electrons/cm? of emit-
ter per transmitted photon) and the intensity of the
transmitted electromagnetic field | T | 2 vs the photon an-
gle of incidence 6 (dashed curve). The photon energy is
15 eV; in plotting the photoyield the factor sin%0/cos6
has been omitted.

squared magnitude of the amplitude transmission
coefficient | T |2, which has a sharp cusp at the
critical angle and decreases rapidly with the angle of
incidence for 6 > 6,. In Fig. 2 this general behavior
of | T |?is clearly illustrated.>

The presence of a peak in the photoyield (at fixed
photon energy) as a function of the angle of in-
cidence is well known and several possible explana-
tions for its existence have been offered in the
past.*>*! More recently, Rowe, in studying the ef-
fect of Cl deposited on a Si(111) surface, has noted
that the photoyield is strongly influenced by |4, | >
at the surface.” Furthermore, with increasing pho-
ton energies the peak shifts to larger angles of in-
cidence. Both of these observations are consistent
with the results presented here. In fact, the presence
of a peak in the photoyield at the critical angle for
total reflection has been noted previously!!® and
has been used to study the dielectric function of the
photoemitter.*®

It should be noted that for angles larger than the
critical angle, the vector potential is an inhomogene-
ous plane wave,

K:aoTé‘p,, expf —i[(~(3p-ﬁ’+ Re(gr)z]
+ Im(qr)z} , z<O
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where Im(qg7) is an increasing function of . Thus
with increasing 6 >0, the penetration of the elec-
tromagnetic field into the solid decreases and hence,
in this sense, the photoelectric effect becomes in-
creasingly surface sensitive.*

III. DISCUSSION AND NUMERICAL
ANALYSIS

In the present section we complement the formal
analysis of the photoemitted current density and
PEED by an explicit numerical analysis of Egs.
(20), (36), and (37) for the typical model parameters
specified in Sec. IIC6. In comparing our results
with those of the conventional FE theory, it is con-
venient to distinguish two regimes of photon energy,

namely %o S V.

In Fig. 3 we compare, at a photon energy less
than ¥, and an angle of incidence equal to 15°, the
PEED’s predicted by the simple FE model and our
theory.*> We also display the bulk confribution in
our theory. The plots of the total PEED and of the
bulk contribution to this energy distribution jp are
generally similar; the importance of jgz( T3k ) is evi-
dent. Specifically, for #iw=9 eV the surface and

Current density (x107'7)

1 1 | J
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Initial Electron Energy (eV)

FIG. 3. Photoemitted current density (electrons/cm? of
emitter per s) as a function of initial electron energy for.a
photon of energy #iw =9 eV incident at 15°. The curves
are labeled by squares (O) for our result [Eq. (36)], trian-
gles (A) denote the bulk contribution to the current densi-
ty [Eq. (37b)], while circles (O) denote the result for the
conventional FE model [Eq. (20)].
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bulk contributions to the PEED are approximately
equal. For this particular photon energy the critical
angle 0, is approximately 22°.

In Fig. 4 we present the same quantities as in Fig.
3 but for #iw > V. Again we note that the contribu-
tion of jz(T;k ) is significant. Figures 2—4 illus-
trate the following general trends:

(i) ‘Both our calculated PEED, Eq. (36), and the
bulk component of the PEED, Eq. (37b), are larger
than the classical FE values.

(ii) For a fixed photon energy both the bulk and
surface contributions to the calculated PEED in-
crease as the initial electron energy approaches the
Fermi energy. This may be interpreted as a conse-
quence of the monotonic increase in the density of
initial states with energy.

(iii) The bulk and surface contributions are ap-
proximately equal. This fact is further illustrated by
the plots of the normalized bulk and surface contri-
butions in Fig. 5.

(iv) The photoemitted current at a given initial en-
ergy decreases rapidly for larger photon energies.
This trend is even more evident in the plot of total
photocurrent versus photon energy, Fig. 6.

(v) For a fixed photon energy and variable angle

18-

o 3
T T

Current Density (xI0™'9)
)
T
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-5 -4 -3 -2 -l [
Initial Electron Energy (eV)

FIG. 4. Photoemitted current density (electrons/cm? of
emitter per s) as a function of initial electron energy for a
photon.energy %o =30 eV incident at 15°. The notation is
the same as that of Fig. 3.

1.0 ~0.0

075 10.25

S=1-B
05
0.75
r
1 1 1 1
-5 -4 -3 -2 -l Er

Initial Electron Energy (eV)

FIG. 5. Comparison of the bulk (B) and enhanced sur-
face (S) contributions to photoemission defined by Egs.
(45) as a function of initial electron energy. The curves
are labeled by the photon energy. The photon angle of in-
cidence is 45° which is below the critical angle.

of incidence the photoyield peaks at the critical an-
gle for total reflection.

It is convenient to introduce the quantities B and
S representing, respectively, the normalized bulk and
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FIG. 6. The photoyield (electrons/cm?® of emitter per
transmitted photon) as a function of incident photon ener-
gy. Our results are denoted by @ and the classical result
by X. For both results the dashed curves indicate the re-
gion for which our theory is not applicable.
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surface contributions to j( ;K ) and defined by
_s(wk)
js( K ) +js(TK)

(45a)

and
S=1-B. (45b)

Plots of B and S for several photon energies are
presented in Fig. 5. Here we note that as the photon
energy increases, the bulk contribution to our calcu-
lated current density decreases particularly for small
initial electron energies. Therefore, the ‘“surface
contribution” to the PEED seems to increase with
increasing photon energy.

A plot of the photoyield versus photon energy for
both our model and the FE model is shown in Fig.
6. The previously discussed difference in the
asymptotic photon-energy dependence of the two
current densities is evident. The yield appears to
peak at 7w =7iw,; however, our model applies only
when #iw > fiw,. For these large energies our model
correctly predicts a monotonic decrease of the yield
with energy and in particular, the asymptotic depen-
dence of Y on #iw. On the other hand, the apparent
peak at fiw, is due to the neglect of the near-field ef-
fects which in fact lead to a minimum at ﬁw,,.w
The quantity |er| |T | ~2J(T) peaks at #iw =V,
and drops rather sharply beyond this point. This
seems to be an unexpected result, since this quantity
might be expected to saturate for #iw > ¥, i.e., when
the photon energy is large enough for the most
tightly bound electrons to be photoemitted. The
physical reason for the maximum is the ultimately
monotonic decrease in the scattering cross section as
the photon energy increases indefinitely. Mathemat-
ically, this decrease in the scattering cross section is

. accounted for by the normalization of the Green
function.*6

IV. CONCLUSION

A new and consistent model was formulated for
photoemission from a free-electron metal with van-
ishingly small optical absorption above the plasmon

energy. The model which applies only above the |

plasma excitation energy eliminates the physical and
mathematical difficulties inherent in the classical
FE model of photoemission. This is achieved by
representing the vector potential in the far-field re-
gion in terms of an attenuated (inhomogenous) plane
wave and correctly taking the nonuniform limit of a
vanishing attenuation for a semi-infinite system.
The selection rule for the wave vector in bulk
photoemission from a semi-infinite solid was de-
rived and associated with a new directlike contribu-
tion to the bulk photoeffect due to electronic transi-

tions that conserve the components of momentum
(wave vector) parallel to the surface, but do not con-
serve the component of momentum normal to the
surface. This contribution was shown to be inti-
mately connected to the conventional direct wave-
vector—conserving (bulk) transitions, which are for-
bidden in FE metals. Both types of transitions con-
tribute to the photoeffect when the periodic (bulk)
potential is included in the model.?! It is demon-
strated that in the FE metal only directlike transi-
tions represent strictly bulk contributions to the
photoeffect. This then associates the remaining
photoemitted current with one of several possible
surface photoeffects. A bulk enhancement of the
classical FE surface photoeffect was identified and
discussed: We define surface contributions to the
photoeffect to be those contributions that are expli-
citly insensitive to the bulk. These are in particular
insensitive to the value € of the optical-absorption
constant in the asymptotic far-field region. Hence
the bare surface photoeffect is obtained by taking
the limit e—0 at the beginning of the calculation.
This leads, for the freg—electron metal, to the classi-
cal FE result jgg ,( T;k ) presented in Eq. (20). The
difference between this expression and our result
Js(T;k) given by Eq. (37) evidently represents a
bulk modification of the surface effect. This con-
clusion is corroborated by the high-photon-energy
limit of jg, given in Eq. (39), which can be rewritten
as

s(BK)= |14 1+iV“’— e TK) . (39b)
0

The term (147w /V,)jFg,, is a measure of the sensi-
tivity of jg to the bulk, and hence it may be inter-
preted as a manifestation of the interaction between
bulk and surface photoemission. In the FE model
this interaction always leads to an increase of j.
Here it is interesting to note the investigation by
Schaich and Ashcroft® (SA) of photoemission from
a one-dimensional model metal with a periodic po-
tential: Using a definition of surface and bulk pho-
toeffects which differs from the one proposed in the
present work, SA find both constructive and des-
tructive interference between the two photoeffects.

In Sec. I we raised two fundamental questions
concerning the surface photoeffect which now can
be answered at least in part: There clearly exists no
unique surface photoeffect in the free-electron met-
al. Our discussion of a surface photoeffect in no
way contradicts the several analyses of the spatial
variation of the vector potential in the surface re-
gion®~!7 and the associated photoemitted current
density. There are several distinct though related
mechanisms of surface photoemission from FE met-
als associated, for example, with the rapid variation
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potential in the surface
the decay of the longitudinal po-

%17 and the spatial
4,10

of the vector
region, 10 11(®) 15,16
larization fields (plasmons),!!®"
variation of the (self-consistent) surface barrier.
The corresponding contributions to the photoemit-
ted current may also be affected in varying degrees
by the bulk.. This was demonstrated by us for the
case of the contribution associated with the spatial
variation of the surface barrier.

It is characteristic of all surface photoeffects that
the corresponding electronic transitions do not con-
serve the component of the wave vector normal to
the surface. However, as we have shown, the direct-
like bulk transitions also are of this type. Hence
nonconservation of k, is necessary but not sufficient
to identify a strictly surface contribution to the pho-
toemitted current.

In the past the vectorial effect has been assumed
to allow an experimental separation of bulk and sur-
face contributions to the photoemitted current. Our
analysis of the polarization dependence of the pho-
toemitted energy distribution indicates that the bulk
contribution to the photoeffect in the FE metal has
the same polarization dependence as the (enhanced)
surface contribution. Thus the vectorial effect
characterizes the FE contribution as a whole, rather
than just the surface contribution, and hence cannot
be used to discriminate between the bulk and surface
contributions.

The preceding clearly does not preclude experi-
mental configurations tending to increase the rela-
tive contribution of electron emission from the sur-
face region. One common technique of reducing the
effective penetration depth of the photons is to
operate at nearly grazing incidence. The reduced
penetration is a direct consequence of the approxi-
mately isotropic optical absorptivity. We have
shown that a similar effect occurs for photons in-
cident at angles larger than the critical angle 6,(w)
for total reflection. Here it is the imaginary part of
qr, the component of the photon wave vector in the
metal which is normal to the surface, which leads to
an exponential spatial decay of the vector potential.
In this case, the exponential decay does not neces-
sarily depend on any optical absorption. Photons in-
cident at angles larger than 0.(w) evidently present
a more practical experimental configuration than
photons at grazing incidence for increasing the sur-
face sensitivity of photoemission.

A strong peak in the photoelectric yield at the
critical angle of incidence was predicted. This is in
agreement with previous observations,* and is ex-
pected to be of practical interest.
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APPENDIX: EXACT INTEGRATION OF MITCHELL’S CURRENT DENSITY

In this appendix the evaluation of the integral which appears in Eq. (21a) is given. We define

_ fkp (kE—K3d (k3 +w—vy) %dk,
=

. (A1)
@ [(kF+w—ve) 2+ (k5 +w) /]
Rationalizing the denominator, we find
J,=—12— f((k,%—xg)x%,(x%+w—v0)1/2{2(x5+w)—v0—2[(x3+w—vo)(x3+w)]1/2})dxo. (A2)
Vo
Expanding this expression, we obtain
_1 6,2 ) 2 4.2 172
Ji= ) 2fK0(Ko+w) dK0+2(w—vo~kp)fKo(K0+w) dikg
0
—2k§(w—vo)fK%(K%+w)l’2dK0—2fKS(K%+w-—v0)‘/2dK0
—(2w—v0-2k§)fK?,(K(z,+w—vo)1/2dxo+(2w-—vo)k§~fx%(x%+w—vo)l’2dxo . (A3)

All of the above integrals may be evaluated rather easily. Using Eq. (21c), we find that when the lower limit
is zero the result is given by Eq. (21e). On the other hand, if #w < V), we obtain the following:



27 THEORY OF BULK AND SURFACE PHOTOEFFECTS IN A FREE-... 2047

2
172

|€er|

2 ~ P
_ 2eti (fp,i 'Z)

 ma?

eag
fic

Vo

J(T) P

v3

k3
SR+ 3w — 800~ 2kP) — &

x 8

2k (w —vg) + —’;i(sw_svo_z;k%)

X {kp(2k}+w)(kE+w)' 2 —w?In[kp+(kE+w)'/?]}

ki
+-ZT(k}+w——vo)3/2(2k}—3w—vo)

8

1

2 w—Vg 2
+§ kF(2w —vg)— (8kfr—3w —uvyg

2 [vo(vo —w) /X200 — 3w — 8KE)

2k}(w—v0)+%[3w—8(v0+k§)]

1
+8

+ 3 (w—vg) In(vg—w)!/?

Vo

2 w
kp(zw—vo)—

{kp(2kE 4w —vo)(kF 4w —v)'/?

—(w—vo)* In[kp+(kE+w—vy)'"?]}

{[vo(vo—w)]"2(2vg—w) —w? In(v v+ Vv —w )}

(8k2E—3w —vyg) ] I (A4)

IR. H. Fowler, Proc. R. Soc. London Ser. A 118, 229
(1928).

2K. Mitchell, Proc. R. Soc. London Ser. A 146, 443
(1934).

3Ig. Tamm and S. Schubin, Z. Phys. 68, 97 (1931).

4R. E. B. Makinson, Proc. R. Soc. London Ser. A 162,
367 (1937); Phys. Rev. 75, 1908 (1949).

5I. Adawi, Phys. Rev. 134, A788 (1964).

6G. D. Mahan, Phys. Rev. B 2, 4334 (1970); M. L.
Glasser and A. Bagchi, Prog. Surf. Sci. 7, 113 (1976).

7C. Caroli, D. Lederer-Rosenblatt, B. Roulet, and D.
Saint-James, Phys. Rev. B 8, 4552 (1973).

8L. I. Schiff and L. H. Thomas, Phys. Rev. 47, 860
(1935).

9J. G. Endriz, Phys. Rev. B 7, 3564 (1973).

10p_ J. Feibelman, Phys. Rev. B 12, 1319 (1975).

1l(a) K. L. Kliewer, Phys. Rev. B 14, 1412 (1976), and
references therein; (b) 15, 3759 (1977); (c) in Photoemis-
sion and Electronic Properties of Surfaces, edited by B.
Feuerbacher, B. Fitton, and R. F. Willis (Wiley, New
York, 1978), p. 45.

12T, Maniv and H. Metiu, Phys. Rev. B 22, 4731 (1980).

BK. L. Kliewer and K.-H. Bennemann, Phys. Rev. B 15,
3731 (1977).

14A, R. Melnyk and M. J. Harrison, Phys. Rev. B 2, 835
(1970).

IST. Maniv and H. Metiu, J. Chem. Phys. 76, 2697
(1982).

16H. J. Levinson and E. W. Plummer, Phys. Rev. B 24,
628 (1981).

17G, Mukhopadhyay and S. Lundgqvist, Phys. Scr. 17, 69
(1978).

18W. P. Dumke, Phys. Rev. 124, 1813 (1961).

19C. N. Berglund and W. B. Spicer, Phys. Rev. 136,
A1030 (1964).

20w, L. Schaich and N. W. Ashcroft, Phys. Rev. B 3,
2452 (1971).

21B. C. Meyers and T. E. Feuchtwang (unpublished).

22Formally, within the framework of many-body theory
W+(T,k,E’) is a field operator; however, for the case
of free electrons the interpretation is equivalent to a
wave function.

23See, for example, P. M. Morse and H. Feshbach,
Methods of Theoretical Physics (McGraw-Hill, New
York, 1953), Vol. 1, p.832; or B. Friedman, Principles
and Techniques of Applied Mathematics (Wiley, New
York, 1956), pp. 164—167.

24In conventional perturbations theory (¢,)* should be the
final state of the electron. Here this is not the case.
The photoemitted electron is in a state that tends
asymptotically (as z— o« ) to ®y, i.e., a simple outgoing
plane-wave state.



2048 B. CRAIG MEYERS AND T. E. FEUCHTWANG 27

25P. J. Feibelman, Surf. Sci. 46, 558 (1974).

26The analytic expression for the derivative
d( | erT—%|J)/d(#iw) had to be obtained with the help
of the computer language FORMAC, and is omitted.

27D. Pines, Elementary Excitations in Solids (Benjamin,
New York, 1963).

28D. Pinés, Elementary Excitations in Solids, Ref. 27, p.
207.

298ee the discussion of the critical angle in Sec. IIC6.

30See D. Pines, Elementary Excitations in Solids, Ref. 27,
Eq. (3.128).

313, Lindhard, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd.
28, 8 (1954).

32§ee G. Mukhopadhyay and S. Lundqvist, Ref. 17, Egs.
(44) and (B.20).

33A typical value of Img; ~10” cm™! was obtained for a
model with V,=10 eV, Er=5 eV and with the use of
the dielectric response function of Melnyk and Har-
rison to solve Eq. (26') for a photon energy of 15 eV, at
which the plasmon-dispersion relation overlaps the
single-particle excitation spectrum.

34See, for example, (a) S. Raimes, Many Electron Theory
(North-Holland, Amsterdam, 1972), pp. 243—244; (b)
H. Bremermann, Distributions, Complex Variables and
Fourier Transforms (Addison Wesley, Reading, Mas-
sachusetts, 1968), pp. 65—66.

35This is a well-known result from the calculus of resi-
dues. See, for instance, E. T. Copson, An Introduction
to the Theory of Functions of a Complex Variable (Ox-
ford University Press, London, 1950); P. M. Morse and
H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), p. 368.

36The preceding does not depend on whether the photon

wave vector q is neglected.

L. 1. Schiff, Quantum Mechanics, 3rd ed. (McGraw-
Hill, New York, 1968), pp. 420-421.

38See, for example, R. M. Broudy, Phys. Rev. B 8, 3641
(1971).

3Strictly speaking, the photoyield is a function of both
the transmission coefficient T and the reflection coeffi-
cient R. In calculating the photoemitted current we
have expressed the result in terms only of T by using
Eq. (25). This equation differs slightly from Eq. (2.23)
of Ref. 14 because we have normalized 4, (z >0) dif-
ferently.

40H. E. Ives and H. B. Briggs, Phys. Rev. 38, 1477
(1931); H. E. Ives, ibid. 38, 1209 (1931).

41D, W. Juenker, J. P. Waldron, and R. J. Jaccodine, J.
Opt. Soc. Am. 54,216 (1964).

423, E. Rowe and S. B. Christman, J. Vac. Sci. Technol.
12, 293 (1975); J. E. Rowe, Phys. Rev. Lett. 34, 398
(1975), and private communication.

43E. T. Arakawa, R. N. Hamm, and M. W. Williams, J.
Opt. Soc. Am. 63, 1131 (1973); S. V. Pepper, ibid. 60,
805 (1970).

4In our numerical calculation of the EDC we have expli-
citly accounted for the fact that for 6> 6., Im(qz) is a
function of the photon angle of incidence.

#5In calculating the current densities displayed in Figs. 3
and 4, it is necessary to have a value of a, [see Eq. (20),
for example]. This was obtained by assuming an in-
cident photon flux of 10° photons/s, from which a,
may be calculated; see Eq. (40).

46The Green function is normalized in the sense that for
fio— 0, g(z,2';E')—0. This follows directly from
Egs. (15a) and (15c¢) and the fact that k o (#iw)/2.



