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The equation of motion of the driven damped pendulum is related at low dissipation to a
current-fed Josephson junction and at high dissipation to transport in charge-density-wave
(CDW) systems. We report on an extensive numerical investigation of these equations. At
low dissipation we find broad bands of chaotic solutions as a function of the frequency and
amplitude of the driving force. It is pointed out that periodic solutions may possess a sym-

metry corresponding to the invariance of the equations of motion under a simultaneous
spatial (phase) inversion and a shift in the phase of the driving force by an odd multiple of
~. At low dissipation chaos is usually approached via a sequence of period-doubling bifur-
cations if this symmetry has been broken and directly from period 1 with associated inter-
mittency behavior if the symmetry is not broken. At high dissipation no chaotic behavior
is found but broad bands of symmetry-broken solutions, which may be related to recently
reported hysteresis phenomena in CDW systems, occur. Discussions of properties of the
Poincare maps and of the fractal dimension of the strange attractors associated with the
chaotic solutions have been included.

I. INTRODUCTION

We report on an extensive numerical investiga-
tion of the classical equation of motion of the sim-

ple pendulum with viscous damping driven by a
periodic external force. Our motive for this study is
twofold. First, the equation of the pendulum, with
a change of variables, applies directly to a current-
fed Josephson junction' and, with some caveats, to
one-dimensional charge-density-wave (CDW) struc-
tures such as are found in NbSe& or TaS& in the
presence of a periodic applied electric field. In both
these systems interesting dynamic effects have been
reported. In Josephson parametric amplifiers an in-

crease in the amplitude of the oscillatory driving
signal may lead to broad-band voltage fluctuations.
This noise rise has been ascribed by Huberman
et al. to the appearance of a strange attractor and
associated chaotic behavior for the pendulum equa-
tion. In incommensurate CDW systems such as
NbSe3 one expects that conduction will occur via
the motion of solitons or discommensurations. If
the pinning of the solitons is dominated by the
Peierls potential a direct connection between the
equation of motion of the soliton and the pendulum
equation can be established. If, on the other hand,

impurity pinning dominates it may be necessary to
add a noise term to the equation of motion. The
noise is generated in this case by spatial fluctuations
in the potential seen by the soliton during its
motion. To date, no chaotic or turbulent motion
has been observed in CDW systems. However,
Tessema and Ong have recently reported hysteresis
in NbSe3 subjected to an ac field and these effects
may be connected to the nonlinearity of the equa-
tion of motion.

Our second motivation for studying this problem
originates in the recent advances that have been
achieved in the study of nonlinear dynamical prob-
lems. 6 In many systems, the onset of chaotic or tur-
bulent motion can be explained in terms of the
properties of simple one- or two-dimensional Poin-

care maps. What is not clear yet is whether or not a
differential system can always be converted into a
simple analytic Poincare map without loss of some
basic features, although some striking successes
have been achieved ' in this task. We have made
an extensive investigation of the Poincare map gen-
erated by the differential equation of the pendulum
and find that the initial onset of turbulence with in-

creasing force in this system falls most often into
one of two classes depending on the parameters of
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the system. Over one range of frequencies we find
that chaos is preceded by a Feigenbaum sequence of
period-doubling bifurcations. ' For another range
of frequencies the onset is best described by a
Manneville-Pomeau scenario although the transi-
tion in our case seems to be directly from period 1

to chaos without any intermediate period-3 regime.
However, for some parameters we have observed
transition to chaos via more complicated periodic
sequences such as period 1~period 3)&2"~chaos.

In the chaotic regime we have calculated the frac-
tal dimension of the strange attractor both by direct
bin counting and through a conjectured relation' to
the Lyapunov exponents. We find, for the range of
parameters studied most closely that the fractal di-
mension is near 1, indicating that the strange attrac-
tor is nearly one dimensional. Nevertheless, we
have not succeeded in finding an analytic form for a
one- or two-dimensional map that reproduces all

essential features of the system, either in the chaotic
regime or through the approach to chaos.

The structure of this paper is as follows. . In Sec.
II we connect the pendulum equation with the

physical systems mentioned above. Section III con-

tains the bulk of our numerical results including

some approximate phase diagrams, selected phase

plots, and power spectra of the solution. In Sec. IV
the Poincare map generated by the differential

equation is described for specific parameters and at-

tempts to find corresponding one-dimensional maps
are discussed. Section V contains a discussion of
the strange attractors that occur in the chaotic re-

gime and evaluations of their fractal dimensions.

Finally, Sec. VI contains some concluding remarks
and suggestions for further work.

II. RELATION OF THE PENDULUM
TO OTHER PHYSICAL SYSTEMS

We note the following.

(a) The McCumber model' for a current-fed

Josephson junction has the following equivalent cir-

cuit equation:

hc d2$ 1 dy 2eIp
+ + slQP =I~coscoe t,

2e dg~ RJC dt hc

where P is the phase difference between the super-

conductors, RJ and C are the junction resistance

and capacitance, respectively, Ip is the critical su-

percurrent, and I~ is the amplitude of an external

microwave field of frequency toe. The junction
current and voltage are given in terms of P by

&g=Ipsinf, V=(h/2e)dg/dt . Making a few
changes of variables we obtain the equation in the
standard form which we use below,

with

dP dP+R +sinP+Fpcos2ncor,
dv.

j[/2

2RJ2CeIp

Pp-
Ip

(2)

Md X 1 dX 2m . 2m

dt a g

(3)

which can be transformed into our standard form
(2). Here r is a phenomenological damping coeffi-
cient.

If the CDW is incommensurate (NbSe3) one ex-

pects that conduction will occur via the movement
of solitons or discommensurations. Solitons can be
pinned either by impurities' or by a Peierls poten-
tial due to the periodic background. The Peierls
potential takes the form Vt [1 cos(2nx/a )]—in the.
simplest approximation; the impurity potential
presumably has some spatially fluctuating com-
ponent as we11 as an average periodic component.
If we ignore the fluctuating component we again ar-
rive at an equation of the form (3), this time for the
soliton dynamics. It is difficult to estimate the ef-
fective damping parameter R for such materials but

hC
CO = (Cpd /277 )

2eIp

Typical values' of the dimensionless resistance R
seem to lie in the range 0.03—0.7 indicating that
these systems will be underdamped in the linear re-

gime.
(b) A commensurate CDW such as is found in

TaS3 is pinned to the underlying lattice. " In an ap-
plied electric field the CDW will, to a first approxi-
mation, move as a unit and be subject, in a one-

dimensional system, to a potential of the form

Vp[1 —cos(2n /a )X] plus higher harmonics where a
is the lattice spacing and X a specific point on the
CDW. Associating a mass M with the CDW and
an effective charge e* coupling the CDW to an

external field we may immediately write down the
equation of motion
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existing data' ' indicate that such systems are
overdamped (R & 2) in the linear regime.

III. NUMERICAL RESULTS

We have integrated the differential equations
[Eqs. (2)] for several different values of R and in
each case a large number of F and co values using a
predictor-corrector method. %e present results here

mainly for R =0.5 which is a reasonable value for
Josephson junctions and small enough that a wide
range of interesting results are obtained. Below we
shall also comment on the overdamped case which
is more appropriate for charge-density wave sys-
tems. Figure l(a) displays the phase diagram for
R =0.5 for a specific choice of initial conditions,
i.e., P(0)=0, P(0)=0. The reason for this con-
sistent choice is that in some regions of parameter
space different limit cycles coexist with interwoven
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FIG. 1. (a) Regions of various types of limit cycles in a plane in F,co space at R =0.5. This figure was generated by

examining -2)& 10 points on a regular grid in the region illustrated. If no periodic solution was evident after 200 cycles

of the driving force, the point was assumed to be associated with chaotic behavior. Each point was assumed to be

representative of a small surrounding square in parameter space. As shown by the behavior in (b) this assignment can

misrepresent small regions and, in particular, the approach to chaos may sometimes on closer examination turn out to be

different from what is indicated here. Note in (b) that the period-doubling bifurcation approach to chaos is preceded by a
breaking of symmetry in the period-1 solutions which is discussed below.
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basins of attraction. In particular, the approach to
chaos in this system is sometimes dependent not
only on the externally controllable parameters but
also on the initial conditions. An average over an
ensemble of initial conditions would produce a
slightly expanded region in the F-co plane in which
solutions with periodicity different from that of the
driving force are found. A few general comments
are in order. The region inside the bounding curves
cannot be fully characterized by a numerical study
of the differential equation. Dramatic changes of
behavior occur for very small changes of the
parameters including such transitions as trapped
chaotic ~ propagating chaotic —+ propagating peri-
odic ~ trapped periodic. Our results seem to show
that these is no interval in either F or co in the
chaotic regime which is entirely free of periodic
solutions. This sort of behavior is expected on the
basis of what is known to occur for one-dimensional

maps on the interval. As is shown below for a
specific choice of co, very different limit cycles are
extremely close together in parameter space and it is
expected that much of the smaller scale structure of
the region must be missed in any numerical study.
[Compare Fig. 1(a) and Fig. 1(b).] The largest
periodic section of the enclosed regime seems to be
taken up by states of period 1. States of period 2"

and 3)(2"are also common and some regions where

these types of solutions occur are indicated in Fig.
1. On the upper side of the enclosed region we find
that a narrow strip of period 2" solutions bounds
the chaotic regime for most values of the force. As
the force is increased at constant frequency a se-

quence of period-doubling bifurcations with the
universal Feigenbaum properties precedes chaos.
We emphasize that this region is often very narrow:
at co =0.09 the entire period-doubling cascade oc-
curs over a range of forces F —Fq-0.0085.
Moreover, we find that in some regions on the

upper side chaos can set in in other ways. At
I' =1.4 we find that as the frequency is lowered the
sequence T=l~chaos~ T=25~ T=7 occurs
in the frequency range 0.1270—0.1268. Alterna-
tively, in a region around F=1.6 the sequence
T=1~T=3)&2"~chaos occurs as the frequency
is lowered.

On the low-frequency side of the bounding region
we find that the chaotic states normally adjoin the
period-1 states without a transition region. The
period-1 fixed point simply disappears as a critical
value of the force is reached and intermittent
behavior is seen. Throughout the chaotic regime
confined [i.e., P (t) bounded] and propagating
[P(t~ + ca )~ + oo ] states coexist and it seems to

V(co) =—f dt e'~'P(t)P(0)

(where r is typically of the order of 100 periods of
the driving force) for a number of different values
of F at co =0.09 and R =0.5. For periodic states r
was chosen to be a multiple of the period. For
chaotic states an average over six such intervals has
been calculated with different starting conditions.
For chaotic states V(co) exhibits the usual broad-
band noise. Note that in the period-doubling cas-
cade the amplitude of successive subharmonics is
reduced on average by an amount consistent with
Feigenbaum's universal value of 0.82 dB.

Equation (2) possesses an interesting symmetry
which plays an important role in characterizing the
types of long-time solutions which are possible. To
explore this symmetry we define a two-dimensional
mapping which describes the propagation of the
solution over half a period (T= 1jc0),

P(T(n+ —, )) Gt, (P(nT)), P(nT)

p(p(n+ —,
'

}) G&(P(nT)), P(nT)
(4)

Since Eq. (2) is invariant under the change of vari-
ables P~ —P, r +r+T/2 the Poinc—are mapping
for a full period may be expressed in terms of Gt,
and 6& by

be impossible to segregate them to different regions
of parameter space.

We now exemplify some of this behavior by
displaying in some detail results for co =0.09. The
period-doubling cascade begins at F=0.8835 and
period 32 is reached at F=0.891 38. In this region

P is bounded and a typical phase plot for T=4 is
shown in Fig. 2(a). E=0.8920 corresponds to a
confined chaotic state [Fig. 2(b)]. At F=0.91 the
chaotic state propagates but executes a substantial
number of orbits in a single well before hopping to
the next well [Fig. 2(c)]. AT E=0.95 a periodic
propagating solution of period 4 emerges [Fig. 2(d)].
For F=0.96 the solution has period 10 and is
propagating, for I' =0.97 [Fig. 2(e)] the solution is a
confined period-9 state. After an interlude of pro-
pagating chaotic behavior a confined period-3 state
emerges at F=1.0.

In Figs. 3(a) —3(f) we display the function
ln

~
V(co)

~

with
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FIG. 2. Phase-space trajectories for the limit cycles at various values of F at co =0.09 and R =0.5. The trajectories
plotted all begin after 200 cycles of the driving force with a starting condition $(0),g (0)=0. Solutions covering more
than four wells are illustrated by plotting P modulo 8rr The circles indic. ate points separated by half a cycle of the driving
period along the trajectory. (a) Bounded period-4 solution at F=0.89138. (b) Bounded chaotic solution at F=0.8920
reached after the period-doubling bifurcations are completed. (c) Propagating chaotic solution at F=0.91. The motion of
P here is truly propagating and not diffusive in that the number of "wells" passed increases approximately linearly with
time. (d} Propagating period-4 solution which emerges from the chaos at F=0.95. (e) Confined period-9 solution at
F=0.97 covering three wells.
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FIG. 3. Fourier transform of the phase velocity for various values of F at co =0.09 and R =0.5. The log~o of V(co ) has
been plotted and co is in units of the driving frequency. (a) Period-2 solution at F=0.887. (b) Period-8 solution at
F=0.8915. (c) Period-32 solution at F=0.89179. (d) Chaotic solution at F=0.91. (e) Propagating period-4 solution at
F=0.95 (note the peak at co =0). (f) Trapped period-9 solution at F=0.97. Note the absence of peaks at even multiples
of the basic frequency.
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P(T(n+1))
P{T(n+1)}

—G&( —P(T(n+ —,)), —P(T(n+ —,)))

—G&( P (T(n+ —,)), P (T(n+ —,)))

G~—( —G~(P(nT), P(nT)), —G&($(nT), P(nT)))
—G&( G~—(P(nT},$(nT)), —G {P(nT),$(nT)))

T

&p(P(nT},P(nT) }

P&($(nT},P(nT) )
I

Note that any point in phase space satisfying

G~($,$ }=—P, G&(P,P }=—P will be a fixed point

of the Poincare map. We refer to periodic solutions
corresponding to these fixed points as symmetric
fixed points. Over much of parameter space the
long-time periodic solutions do possess this symme-

try. For example, the confined period-9 solutions
illustrated in Figs. 2(e) and 3(f) have a related sym-

metry except that here the basic period is T=9lro.
This is signaled in Fig. 3(f) by the fact that all even

harmonics of the basic frequency are missing. Note

that there is no corresponding symmetry available

for even-period solutions.
The symmetry possessed by periodic solutions

also has a relation to the nature of the approach to
chaos. It is easy to show that at symmetric fixed

points of the Poincare mapping, the eigenvalues of
the Jacobian matrix are the squares of the corre-

sponding eigenvalues for the half-period mapping.
Since these eigenvalues are real near the chaotic re-

gime, those of the Poincare mapping cannot reach

the value —1, usually associated with the period-

doubling bifurcations of the Fiegenbaum scenario.

We have, in fact, observed that regions of chaotic
solutions can be approached via a sequence of
period-doubling bifurcations only if the symmetry

of the solutions is first broken. For example, at

co =0.07$ where period 1~chaos with associated

intermittent behavior, the solution just outside the

chaotic regime is symmetric. This symmetry is sig-

naled in the Fourier transform (see Fig. 4) by the

absence of a response component at twice the driv-

ing frequency. On the other hand, on the high-

frequency side where period-doubling bifurcations

occur, symmetry breaking takes place before chaos

is approached.
Before discussing the Poincare maps we comment

on the overdamped situation (R )2) which may be
relevant to charge-density-wave transport. In
disagreement with the speculations of Huberman

I

et al. , we find no solutions with periodicity differ-
ing from that of the driving force and, in particular,
no chaotic behavior. We do, however, find that as
in the underdamped case, regions of symmetric and
nonsymmetric solutions exist. Typical results, for
the case R =5.0, have been illustrated in Fig. 5. It
is worth pointing out that it is possible to define an
order parameter,

f=P(nT)+P((n+ —,
'

)T),
and a symmetry-breaking field h [a dc force in Eq.
(2)] in association with these solutions. Both the or-
der parameter f and a susceptibility X=t)g/t}h
behave in a mean-field-like manner at points of
symmetry-breaking "phase transitions. " This as-
pect of the solutions to the driven damped pendu-
lum clearly has a broader significance and will be
discussed in more detail elsewhere. '

0.5
Frequency

FIG. 4. Fourier transform of the phase velocity for
the symmetric period-1 solution on the edge of chaos at
co=0.075, R=0.5. (These results are for F=0.9024.
The solution at F=0.90245 is already chaotic. ) Note
that, unlike the periodic solutions approaching chaos at
co =0.09 [Figs. 3(a) —3(c)], this solution has no peak in
the Fourier transform at even multiples of (in particular
twice) the driving frequency.
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IV. POINCARE MAPS

0.08—

F

FIG. 5. Regions of symmetric (S) and symmetry-

broken (8) solutions in F,co space at R =5.0. All solu-

tions have period 1/co in this highly damped case.

As mentioned earlier Tessema and Ong have re-

cently observed hysteresis in the CDW system
NbSe3 when subject to an ac electric field. It is
clear that whenever a periodic long-time solution to
Eq. (2) does not have the symmetry

P(t+ Ti2) = P(i), —

p(t+ Ti2) =—p(r),

there must be (at least) two different long-time solu-

tions. The solution reached will depend in a corn-

plicated way on the starting conditions. From Fig.
5 it is apparent that for overdamped systems many

separate regions of symmetry-broken solutions ex-

ist. We would like to suggest that the hysteresis in
CDW systems could be related to symmetry-
breaking phenomena, in the above sense. This sug-

gestion could be investigated by correlating the hys-
teresis behavior with the dc response in the presence
of the ac driving force.

0, 86
0.87
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0.79
0.78
77

-0.5
-7r

FIG. 6. Movement of the period-1 fixed point of the
Poincare map corresponding to the driven-damped-

pendulum equation as a function of F for R =0.5 and
co =0.09 and 0.075.

We have examined the behavior of the phase
point X„=(P(nT),P(nT)) as a function of n for a
number of different parameters. Figure 6 shows the
movement of the period-1 fixed point as a function
of F for co =0.09. We have found that in this re-

gion of parameters the point X„very rapidly, in

perhaps three or four iterations, moves to the curve
containing the fixed points and then propagates
along the curve toward the fixed point. For some
values of the force, two different period-1 fixed
points corresponding to the two different solutions
in the symmetry-broken regime may be reached
from different starting points. The first period-
doubling bifurcation occurs at F=0.8835 and the
period-2 fixed points lie along the curve drawn
through the period-1 fixed points. Similarly, the
period-4, -8, . . ., fixed points lie along this curve.
When the strange attractor appears it first begins to
fill out a section of the arc as is shown in Fig. 7(a)
for F=0.90 but at F=0.91 [Fig. 7(b)] it has already

developed a strongly two-dimensional character. Its
fractal dimension is still close to 1 ( —1.19, see

below); nevertheless it is clear that in terms of the
variables (P,P) only a fully two-dimensional map-

ping will provide an adequate representation of the
motion. '

It seems quite probable that for the interval
0 &F(0.9 a one-dimensional mapping of the
Feigenbaum type in terms of a variable that mea-

sures distance along the curve shown in Fig. 6 will

provide a reasonable description. We have not at-
tempted to construct such a mapping, partly be-

cause it cannot be valid [Fig. 7(b)] far beyond the
onset of chaos and partly because at lower frequen-
cies no period-doubling bifurcations occur at all.

For co =0.075 the period-1 fixed point is trapped
along a small segment, such as that labeled A, in

Fig. 6. As the chaotic regime is approached the
phase point X traverses the segment A very slowly
and only reaches its fixed point after typically
several hundred cycles. Chaotic behavior in this
case is attained when a fixed point no longer exists
on this segment. The phase point X then slowly
traverses the segment, jumps out for perhaps one or
two periods, and then repeats the process. The pro-

cess is very reminiscent of the Pomeau-Manneville

scenario for transition to turbulence via intermitten-

cy. Figure 7(c) shows the strange attractor for
F=0.9025 which is a chaotic case (0.9024 is still

period 1). It is evident that the strange attractor al-

ready has a two-dimensional character and that the

phase point is spending nearly all its time along the



27 STUDY OF THE DRIVEN DAMPED PENDULUM: APPLICATION. . . 209

2, 25

2.00—

1.75—

1.50

1.25

1.00
I I 1 I

0.0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7

Angle
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%e have examined several analytic mappings in

an attempt to reproduce the main features of our
numerical solutions. Since the system is dissipative
a two-dimensional mapping must be area contract-
ing with Jacobian J=e " . In the linear regime
(F«1) one can, of course, construct an exact map-

ping which takes the general form

P„+i Fa(R——,co )+b(R,co)$„+c(R,c0)(ti„,

(6)

p„+i Fd(R——,co)+f(R,co)iti„+g(R,co)II'I„,

(7)
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where the coefficients a(R, co) g(R, co) are all
explicitly known. To make this mapping nonlinear
we added a term A, sinIt'I„ to Eq. (6), il sin((i„ to Eq.
(7). Here r/ is not independent of A, as we must
preserve the value of the Jacobian of the transfor-
mation. The resulting mapping is a dissipative gen-
eralization of the standard mapping' and is very
similar to a mapping previously studied by Zaslav-
sky. ' We find that this mapping, at least for rela-
tively simple functional dependences of A, on F, does
not reproduce the rapid transition to turbulence that
we have described above or the shape of the strange
attractor. This type of mapping tends to produce a
strange attractor with parallel bands, rather than
the curved shapes that we observe.

In previous applications of the standard map' '
the variables have been the action-angle variables of
the unforced, undamped nonlinear problem. We
have also produced some Poincare maps in our
chaotic regime in terms of these variables but again
find a very complicated shape for the strange at-
tractor rather than the simple parallel bands pro-
duced by (6) and (7).
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FIG. 7. Representations of the strange attractors asso-
ciated with chaotic solutions to the equations. These rep-
resentations were constructed by starting from
P(0),P(0)=0 and generating 1000 points in the strange
attractor set after eliminating 20 points to remove tran-
sient behavior. (a) co =0.09, F=0.90. (b) co =0.09,
F=0.91. (c) co =0.075, F=0.9025. The phase points are
plotted modulo 2m and the angles are in units of 2n..

%e have calculated the Lyapunov exponents for
the chaotic states over a range of forces for
co=0.09 and 0.075 by a method suggested by
Benettin et al. ' One calculates the mean diver-

gence of two points close together in phase space.
By assuming that the largest Lyapunov experiment
dominates, one obtains an estimate of A,

&
from the

expression'

I(,
&

——lim g ln
n —+ oo Pl7
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where d; is the separation after one period r of the
driving force. The points are initially separated by
a distance d and after each iteration a new pair of
points is obtained by moving one point toward the
other along the straight line joining them until the
separation is once again d. The estimate k& is not
very sensitive to variations in d or n as long as d is
reasonably small, typically less than 2&(10 . For
periodic states A,

&
is negative. For m =0.09,

R=0.5, and F=0.892 (barely chaotic) A, ~
——0.11.

In the center of the first chaotic stretch of F=0.91,
A,

~
——1.3. As periodic states are approached, A,

~
de-

creases again. These numbers are typical for this
value of the resistance.

Using a conjecture of Kaplan and Yorke' one
can extract the fractal dimensional of the corre-
sponding strange attractor. In our notation the
fractal dimension is given by

and we find that dz ——1.019 for F=0.892,
dz 1.189 for——F=0.91, and dz ——l. 16 for F=0.92.
The fractal dimension thus increases as the motion
becomes more chaotic as is to be expected but is al-

ways close to 1. The fractal dimension can also be
calculated by direct-bin counting, ' which is much
more time consuming. We attempted to use an in-
terpolation procedure to represent the Poincare
mapping for this purpose. To test the accuracy of
the interpolation the Jacobian of the mapping was
evaluated at each position of the phase point. For
most points the small value of the Jacobian occurs
despite much larger entries in the Jacobian matrix.
In addition, the mapping is sometimes discontinu-
ous where nearby points in phase space are mapped
to different wells of the "pinning potential" (i.e.,
different wells of sing). For these reasons we were
not able to find an interpolation scheme which
could reliably yield the correct Jacobian over the en-
tire range of interest in phase space. In reverting to
direct integration of the differential equation for the
Poincare mapping, in conjunction with box count-
ing algorithms for the fractal dimension,
computer-time limitations restricted the degree to
which convergences could be checked. Neverthe-
less, our results do seem to bear out the Kaplan-
Yorke conjecture. For example, at R =0.5,
co =0.09, and F=0.91 we obtained d~-1.21 (com-
pared to 1.189 from Lyapunov exponents). It was
found that the fractal dimension of the strange at-
tractors tended to be larger, the smaller the value of
R/co, i.e., the smaller the dissipation per cycle).

The Kaplan-Yorke conjecture was also checked for
these more fractured sets and seemed to hold as
well. For example, at R =0.05, co =0.1, and F=1
the solution is chaotic and the fractal dimension of
the strange attractor was determined to be —1.75

by bincounting compared to the value dF ——1.78 ob-

tained using the relationship to Lyapunov ex-

ponents.

VI. CONCLUSIONS

The results presented above show that the pendu-
lum equation encompasses a wide range of behavior
especially near the chaotic regime. We have ob-
served two of the onset mechanisms predicted by
use of one-dimensional maps, the period-doubling
mechanism of Feigenbaum, and the intermittency
mechanism of Pomeau and Manneville. We have
not, as yet, been able to find a simple analytic form
of the Poincare map which reproduces the phase di-

agram or the varied type of onset behavior.
We are unaware of any studies that have probed

the transition region for Josephson junctions—
systems which we believe would display the features
reported here. It would be of considerable interest
to carry out such a study.

To date, no chaotic behavior has been seen in
charge-density-wave systems. Our results indicate
that if these materials are overdamped, as seems to
be the consensus, no complicated behavior should
be expected if Eq. (2) correctly describes the dynam-
ics of the CDW. However, the bands of
symmetry-broken solutions reported here may be re-
lated to the recently reported hysteresis phenome-
na. This suggestion could be checked by relating
the dc response in the presence of a large ac driving
field to the occurrence of hysteresis.
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