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Static quantum-size effects in thin crystalline, simple-metal films
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Surface-energy and work-function quantum-size fluctuations are predicted for thin

Al(111) and Mg(0001) films. The work-function results follow the jellium behavior found

by Schulte. For Al(111), a 0.3-eV drop in work function occurs between a two- and three-

layer film. For Mg(0001), predicted work-function changes versus layer number are slight

because the interlayer spacing is close to A,+/2 where A,+ is the Fermi wavelength. The sur-

face energy for Al(111) is also found to vary significantly with layer thickness. This result

can be expected to affect the way in which Al grows epitaxially. Generally, one expects

static quantum-size effects to be smaller in the transition metals, because the Fermi wave-

length is strongly anisotropic.

I. INTRODUCTION

In 1976, Schulte reported that self-consistent cal-
culations of the electronic structure of thin jellium
slabs result in static quantum size effects (QSE), and
most importantly, oscillations in the work function

P as a function of slab thickness. ' It is generally of
interest to know how surface electronic properties
depend on atomic geometry —for example, if the lo-
cal work function of a thin-filin electrode is dif-
ferent depending on the film thickness, its perfor-
mance could be greatly affected. So, it is surprising
that there has been no follow-up to Schulte's paper.
Here I remedy that situation, presenting calculated
work functions and surface energies for few-layer,
crystalline Al(111) and Mg(0001) slabs.

There are several reasons why one needs to go
beyond jellium-model calculations to predict static
QSE with confidence. The most obvious is that the
thickness of a crystalline film cannot be varied in-
finitesiinally. One can control the crystal orienta-
tion (the Miller indices of the surface) and the num-
ber of atomic layers, but the thickness of the film is
specified uniquely by minimizing the total energy.
In the jellium calculations, the wavelength of the os-
cillations in surface properties is roughly A,r/2,
where A,F is the Fermi wavelength Therefo. re, one
would expect to see virtually no oscillations with
layer number for a crystal oriented such that the
layer spacing d equals nA, F/2, and maximal oscilla-
tions for d =(2n —1)AF/4, where n is a positive in-
teger. An immediate question posed by this predic-
tion is whether A,F calculated for the jellium density
appropriate to the metal in question adequately
represents the behavior of the crystalline metal. In a
crystal the electron density is anisotropic, and it is
not a priori obvious what average or "effective" A,F

one should use to predict the static QSE. A reason-
able guess might be to use the jellium value that cor-
responds to the interstitial electron density in an
augmented-plane-wave (APW) calculation (which,
according to the results of Moruzzi et al. , can be
either greater or less than the average valence-
electron density}. The interstitial wave functions
control phase changes from layer to layer and thus
should play a role in determining QSE. This guess
is apparently approximately right for Al, for which
I find, by comparison to Schulte's results for the
electron-gas radius r, =2, that the effective Fermi
wavelength A~ =1.05K'g'""; while using the results
of Moruzzi et al. the interstitial Fermi wavelength
A,r"'——1.03K,'g

'" . For Mg, I have not confirmed this
result, because Schulte has not published work func-
tions for r, =2.65 jellium films, and because hcp
APW calculations for Mp have not been published
(for fcc Mg, A&"'——0.99K,'g"", according to Ref. 2}.

A second question left open by Schulte's work
.concerns surface relaxation. As I review in the next
section, the source of the oscillations he found with
slab thickness is changes in the electron-density pro-
file in the region where it drops off to zero. One
cannot, of course, change this profile without incur-
ring a cost in energy. In the jellium model one does
not vary the spatial distribution of the positive back-
ground charge in an attempt to determine a total-
energy minimum —such a calculation would be
dooined to failure. For a crystalline slab, however,
one can allow the nuclear positions to relax, and it is
of interest to see whether in doing so they counteract
the electronically induced QSE.

Quite apart from the question of whether outer-
layer relaxation affects the QSE in a crystal calcula-
tion, the result of minimizing the total film energy
with regard to layer spacings is a calculation of the
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surface energy per exposed atom Es. This thermo-
dynamic parameter is important in predicting, for
example, how epitaxial layers will grow. In the usu-
al macroscopic picture, the surface energy is as-
sumed to have a certain value for each crystal plane,
related roughly to the bond breakage energy neces-
sary to expose it. However, the present calculations
show that surface energies, like work functions,
manifest quantum size effects—Es for a two-layer
Al(111) film, for example, turns out to be about —,

that for the three layer case. This result is of obvi-
ous significance in determining the geometry of
Al(111) films in the earlier stages of growth.

A final reason for interest in calculating QSE for
crystalline films concerns the convergence of slab
calculations with film thickness. In a recent publi-
cation, for example, Mednick and Kleinman report
"perfect agreement" between Es calculated for a
six-layer Al(111) film and experiment. Although
Schulte's QSE are quite small for a film this thick,
variations of as much as 0.2 eV in P are still possi-
ble. Thus only by accounting for QSE and by mak-

ing a proper extrapolation to a semi-infinite crystal
is it possible to claim perfect agreement with single-
crystal measurements.

II. THE PHYSICS OF STATIC QSE

(2)

That QSE are measurable in thin metal films was
first shown by Jaklevic and Lambe, who found res-
onances in the I- V curves for tunneling through thin

Mg, Pb, Ag, and Au films which correspond to the
resonances predicted for a particle traversing a
square-well potential of an appropriate thickness.
Schulte's static QSE, of course, concern the nature
of ground- rather than excited-state properties of a
film. They are due to the effects on the Fermi sea
of the quantization of the electron states normal to
the thin-film surfaces, in much the same way as
de Haas —van Alphen oscillations are brought about
by the imposition of a magnetic field.

Schulte's oscillations in the work function have a
period of close to A,z/2 as a function of film thick-
ness, where A,F is the Fermi wavelength of the bulk
jellium metal. This result can be understood if it is
assumed that the Fermi wave vector of a film rapid-
ly approaches its bulk value, which is determined
only by the electron density. In this case the Fermi
energy (in a.u.) is given by

ep ——2m /Ap . (1)

Let us now neglect the details of the surface poten-
tial barrier and consider the spectrum of levels ap-
propriate to a film bounded by infinite square walls
a distance D apart. The spectrum of such a film is

EJ~ k~
~

i [k )( + ( irj /D ) ]j

where the integer j corresponds to the jth level nor-
mal to the surfaces and kt~ is the parallel wave vec-
tor. Schulte's oscillations occur because as D in-

creases, new levels normal to the film become occu-
pied. Comparing Eqs. (1) and (2), one sees that such
a new level falls below E every time D increases by
A,F/2. It remains to understand why the film work
function should oscillate as a result of energy levels

periodically dropping below Ez as D increases.
Schulte's explanation is that when a wave function
is only weakly bound in the film potential, its ex-
ponentially decaying tail in the vacuum region is
long. So when a new level is pulled below EF, elec-
tron charge is thrown out into the vacuum region,
causing an increase in the work function. If D in-

creases a little further, this effect is enhanced be-
cause the parallel Fermi sea built upon the newly oc-
cupied level acquires more electrons. But eventually
this effect is overcome by the fact that all the levels
normal to the film get deeper with increasing film
thickness. As a consequence, their vacuum tails be-
come shorter, the surface dipole shortens, and the
work function decreases. When D has increased by
A,~/2, a new level arrives at EF and the cycle begins
anew.

An important feature of Schulte's work-function
QSE prediction is that the oscillations should be
bigger for higher-electron-derisity metals, because
the normal level spacing is bigger if kF is. This
means that Schulte's effect is easily distinguishable
from a Friedel-oscillation-related phenomenon.
Friedel oscillations diminish in importance as the
electron density increases.

Finally, it should be noted that although the argu-
ments through which the period A,~/2 was derived
for Schulte's QSE was based on non-self-consistent
description of a jellium film and an asymptotic
(bulk) value of kF, this periodicity describes
Schulte's self-consistent calculations very well, as he
demonstrates.

III. CRYSTALLINE-SLAB CALCULATIONS

In order to investigate static QSE for crystalline
films, I have performed self-consistent linear com-
bination of atomic orbitals (LCAO) calculations for
Al(111) and Mg(0001) slabs. The methods used in

the calculation have been described earlier, in de-

tail. For the present results two features of the
method are important. First, the only physical ap-
proximation made is the use of a local potential to
represent the effects of exchange and correlation.
Specifically, I have used the Wigner interpolation
formula to obtain V„,. The same xc potential was
used by Schulte. It is known to predict the structur-
al properties of metals accurately and their work
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functions rather well. Apart from the necessity of
using a finite, and therefore incomplete, LCAO
basis to represent the metal's occupied bands, the
most important numerical approximation in the cal-
culation is the representation of the charge and po-
tential as a linear combination of s-like Gaussian
functions. This representation, originally introduced
by Sambe and Felton, greatly reduces the labor in-
volved in calculating multicenter integrals to obtain
the Hamiltonian matrix. But, if one is to obtain
reasonable values for work functions and surface en-

ergies, one is required to find (generally by trial and
error) a suitable Gaussian basis. For Al(111) I have
succeeded in finding a charge-potential fit basis such
that in the region where the fit is the most difficult,
namely where the density falls off to zero into the
vacuum, Gibbs oscillations do not set in till the den-

1

sity has fallen to about ~ of the average bulk
valence charge density. The appearance of Gibbs
oscillations is, of course, a sign that the charge-
density ftt is fit-basis dependent. ' For Mg(0001) I
found a still better basis. In this case, Gibbs phe-
nomena do not appear in the charge-density contour
plots till the density has fallen to», of the bulk

average electron density. By changing the charge-
potential fit basis, I judge that the accuracy of my
final choices were such that errors induced in the
calculated work functions were no more than 0.1 eV.
No doubt the results will soon be checked via linear
APW (LAPW) calculations, for which there is no
need for a charge-potential fit basis. [Five- and
nine-layer Al(111)-film LAPW results have already
been reported. The work functions found were,
respectively, 4.4 and 4.7 eV, which is evidence in it-
self of QSE in LAPW work functions. Unfor-
tunately, these results were obtained using the
Hedin-Lundqvist rather than the Wigner interpola-
tion formula form of V„„which prevents a mean-

ingful comparison with the present results. General-

ly, the latter potential gives more accurate work
functions. ]

Since a reasonably accurate determination of work
functions is the desired output of the present calcu-
lations, I supplemented the "double-zeta" basis of
atomic orbitals (i.e., two s and two p orbitals per
metal atom) by a set of "floating" s and p orbitals, at
a distance of 1.3 a.u. outside the outer layers of nu-
clei. For each surface metal atom I introduced three
sets of floating orbitals centered, respectively, on the
three symmetry lines of the fcc(111) or hcp(0001)
surface unit cell. (Recall that these two surfaces
have the identical rotation symmetries, and that the
three symmetry axes are normal to the surface, one
through a surface atom and the other two through
the two inequivalent threefold coordination sites in
the surface unit cell. )

In order to carry out the surface Brillouin-zone
integrations necessary to evaluate the charge density
after each iteration of the self-consistent calculations
I used 10 special points, according to the scheme of
Pack and Monkhorst. ' Using 19 points, in a spot
check, made a difference of about 0.03 eV in the cal-
culated work function and about the same difference
in the calculated surface energy.

IV. CALCULATED RESULTS

TABLE I. Calculated work functions and surface ener-

gies for Al(111) films. iI'i'~ ' is the work function comput-
ed when the outer-layer separation is unrelaxed from its
bulk value. Es and P are the surface energy calculated at
the equilibrium outer-layer separation, which is quoted in
the column labeled "percent expansion. "
No. of layers

Al(111} % expansion

6.1%
2.4%
4.3%
3.8%

Es

0.40
0.18
0.39
0.48
0.52

4.2
4.1

3.8
3.8
3.8

unideal

4.2
4.1

3.7
3.8
4.0

Calculated work functions and per-surface-atom
surface energies are presented for Al(111) in Table I.
Work functions for unrelaxed Mg(0001) films are
given in Table II. The surface energies were calcu-
lated for the n-layer Al(111) films via the formula

Es —,[E"'——(n-layer film) —nEb"],
where El',

"is the total energy" per atom of bulk Al,
and E'" (n-layer film) is the total energy per surface

1

unit cell of the film. The factor —, represents the
fact that the film has two surfaces. In the one-layer
case this definition has the consequence that each
atom is treated as boo surface atoms.

For the multilayer films, the total energy was cal-
culated for several different outer layer separations
(e.g., "ideal, " 7.5' expansion and 7.5% contrac-
tion), and the values of Es and P that are quoted in
Table I correspond to the separation which mini-
mizes the surface energy according to a parabolic
fit. Also given are the values of P for the unrelaxed
films.

Several aspects of the results in the tables are in-
teresting. For Al(111) there are significant QSE
which are somewhat diminished by relaxation of the
outer-layer separation. The work function of three-
and four-layer Al(ill) films are calculated to be
0.3—0.4 eV lower than that for one and two layers
and -0.2 eV lower than that for six layers. The
surface energy of the two-layer film is less than half
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No. of layers
Mg(0001) yideal

TABLE II. Work functions calculated for Mg(0001)
films. Outer-layer separation here has been taken to equal
its "ideal" bulk value. 1 layerI 4

'il 5/ } I X/ X/
I \ I \

6 layers

V

Work Function vs Filzn Thickness
Ideal Outer Layer Spacings

3.2
3.2
3.3
3.4
3.3

4 layers3 layers

Schulte, rs=2

I

2
d/PF

Work Function vs Film Thickness
Relaxed Outer Layer Spacings

(a)

that for one, three, four, or six layers. For
Mg(0001), the calculated QSE are slight. In what
follows, I attempt to establish the credibility of these
results, and explain them by comparison to Schulte's
work.

To begin, note that the calculated surface energies
agree roughly with values calculated for Al(111) by
Lang and Kohn' and Sahni et al. ,

' both about 0.3
eV and with the experimental value for liquid Al,
0.44 eV/surface atom. The slight surface expan-
sions found agree with what one would expect on
the basis of (some, though not all ) low-energy-
electron diffraction analyses for single-crystal
Al(111). For example, Jepsen et al. '" determine that
the outer-layer separation relative to its ideal bulk
value is expanded by 2.5%. The work functions for
both Al and Mg seem somewhat low compared to
experiment and other calculations. For Mg(0001),
the experimental /=3. 84 eV according to the ultra-
violet photoemission spectroscopy data of Hayden
et al. ,

' while for single-crystal Al(111), /=4. 26
eV. ' Finally, for a six-layer film, Mednick and
Kleinman obtain /=4. 28 eV, while, as noted above,
Wang et al. , using a different xc potential, find 4.4
and 4.7 eV, respectively, for five- and nine-layer
films. For an ideal six-layer film I find /=4. 0 eV,
which (cf. Fig. 1} represents an excellent extrapola-
tion of the results I obtain for one, two, three, and
four layers, using Schulte's jellium results. Howev-
er, this value of P is 0.26 eV or 6% lower than Med-
nick and Kleinman's. It is difficult to be certain
about what is responsible for this discrepancy.
Their set of charge-potential-fit Gaussians is some-
what more extensive than that which I use, and it is
true that in the vacuum region, when the fit to the
charge begins to fail, it generally occurs that the
electron number density goes (unphysically} nega-
tive. This means that as a consequence of fit inac-
curacies, unphysical positive charge can effectively
be placed in the vacuum, which, of course, would
lower the calculated work function. Mednick and
Kleinman only have published charge-density con-

1
tours out to —„ the average bulk valence electron

2 layers

3,4,6 layers

Schulte, rs=Z

I

d/P F

(b)

density. So it is difficult to say how accurate their
charge fit was. In my calculations I tried many dif-
ferent charge-fit bases, and by comparing better and
worse bases, do not expect that the work functions
given in the tables are inaccurate by more than
about 0.1 eV due to fit errors. Moreover, as shown
below, the values I calculate agree well with the jelli-
um results of Schulte, which lends them same
credence.

Again in the case of Mg, my calculated work
functions are about 0.5 eV lower than experiment.
This fits a trend which appears to be fairly
general —that calculated P's for reactive metals are
several tenths of an eV toa low. '7 Whether this
means that because of their reactivity they are gen-
erally coated with submonolayer quantities of oxy-
gen or some other impurity (F?), or that Gaussian fit
bases are never adequate, will soon be known.

FIG. 1. Schnlte's results for work function P as a func-
tion of jellium positive background thickness d, divided by
the Fermi wavelength, for r, =2. (a) Horizontal lines in-
dicate calculated values cf P for n-layer crystalline films
with ideal outer-layer spacing and n=1, 2, 3, 4, and 6.
Note that the spacing of the intersections at roughly
d/AF-0. 6, 1.2, 1.9, 2.4, and 3.6 corresponds to an ap-
proximately equal increase in the effective jellium-film
thickness each time a new atomic layer is added. (b) Here
the horizontal lines correspond to P for one-, two-, three-,
four-, and six-layer films with equilibrium outer-layer
separations. Intersections with Schulte's curves lie at
d/A, F-0.6, 1.2, 1.9, 2.4, and 3.5.
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LAPW computer codes, in which fit bases are
avoided, should settle the theoretical question.

Let us now compare the results obtained here for
p with Schulte's jellium values. In his calculations,
he introduced, "by hand, " a potential contribution
to represent the image force on an electron well out-
side the film. The image force is not correctly in-
cluded when a strictly local description of exchange
and correlation is used in a surface electronic calcu-
lation. Nevertheless, since the electron density is
very small by the time image force becomes impor-
tant, the fact that Schulte introduced an "image-
potential tail" and I did not should have little effect
on the comparison of results.

In Figs. 1(a) and 1(b), I compare Schulte's results
for the electron-gas radius r, =2 to my calculations
of P for Al(111). Note at the outset that Schulte's
curve for r, =2 intersects the calculated P' "'s for
one-, two-, three-, four-, and six-layer films spaced
at approximately regular intervals, h(d/AF) =0.60.
Moreover, the calculated P' ' for the six-layer film
crosses Schulte's curve at a value of d/iL~ that is
—1.2 greater than for four layers. The results for
films at equilibrium outer-layer separations are only
slightly different. This set of results is necessary if
the crystal and jellium calculations are to corre-
spond: Each time a new layer is added, the film gets
thicker by about one bulk interlayer spacing.

Let us now use the results of Fig. 1(a) to obtain a
value of A,z, the "effective" Fermi wavelength.
Correcting for the fact that the oscillations of
Schulte would be a factor of 2.07/2=1.035 farther
apart for the actual Al electron-gas radius r, =2.07
than for r, =2, the spacing of the intersections of
my calculated p's with the jellium curve is
0.60(1.035)=0.62. The interlayer spacing for
Al(111) is 4.42 a.u. Consequently, A,F ——4.42/0. 62
=7.12 a.u. On the other hand, for r, =2.07 jellium,
one has A,

'""" =6.77 a.u. Thus for Al(111),
A,~ ——1.05K,'g ™.As noted in the Introduction, this
is satisfyingly close to the interstitial A,F of Moruzzi
et al.

For Mg(0001) it is not possible to draw such a de-
finitive conclusion. The results given in Table II
show that variations in P are slight for unrelaxed
films. This is understandable, in that the interlayer

spacing of 4.92 a.u. is only 14% greater than
A'g'" /2=4. 33 a.u. Thus the addition of a layer of
Mg(0001) does not represent a large phase advance
on a SchuIte oscillatory curve. A more detailed in-
terpretation of the Mg results awaits a jellium-film
calculation for r, =2.65.

V. DISCUSSION

The results presented here show persuasively that
static QSE should be observable in simple metal
films cut along crystal planes whose separation is
not the effective AF/2. They should appear as oscil-
lations not only in work function but also in surface
energy as a function of layer number. Although the
appropriate calculations have not been done, there is
no reason to believe that similar results would not be
seen for thin metal overlayers on semiconducting or
insulating substrates, for which experiments might
actually be carried out. The work of Tracy iodicates
that very uniform growth of Al overlayers is possi-
ble under carefully controlled experimental condi-
tions. '

As noted in the Introduction, the predicted QSE
should be important in the performance of elec-
trodes, as well as in determining the geometry of ep-
itaxial layers, and possibly the direction of certain
surface chemical reactions. For this reason it is im-
portant to consider whether QSE will be important
for thin transition-metal films. The answer is that
they are probably not: Since the "wavelength" of
the QSE is one-half the effective Fermi wavelength,
and since d-band metals have complicated Fermi
surfaces, one can anticipate that the QSE will be
smeared out by the greatly increased Fermi-
wavelength anisotropy. It would be of interest to
check this result theoretically.
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