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The behavior of the magnetization near the surface of a semi-infinite ferromagnetic supercon-
ductor is investigated theoretically. In contrast to a previous treatment by Kotani et al. [Phys.
Rev. B 23, 5960 (1981)] the surface is not described by means of a topological singularity of the
phase of the superconducting order parameter. The physical meaning of such a surface singulari-
ty is clarified. A mean-field boundary condition 87 (0)/8x = um (0) for the magnetization
m (x) is used which allows for a possible strengthening (u < 0) or weakening (u > 0) of the
exchange coupling constant at the surface. The consequences of a nonzero u for the field

penetration and the magnetic surface ordering are pointed out.

I. INTRODUCTION

The interaction between the competing orderings
of superconductivity and ferromagnetism has been
the subject of a large number of experimental' and
theoretical® investigations in recent years. In many
theoretical treatments an electromagnetic coupling
only is considered and the exchange interaction
between rare-earth spins and conduction electrons is
neglected. By adopting this point of view several in-
teresting phenomena have been predicted and partly
verified. These include formation of a spin-spiral
state>* or a self-induced vortex state® and the oc-
curence of a relatively strong first-order transition at
H, even for high-x superconductors.®’

In a recent paper by Tachiki, Umezawa, and co-
workers® the influence of the surface on the Meissner
state of ferromagnetic superconductors has been in-
vestigated. It was found that field reversal and spon-
taneous magnetic surface ordering may occur at tem-
peratures higher than the critical temperature for the
bulk spin-spiral or ferromagnetic state. In this work?®
the boson method was employed to study the effect
of a finite Ginzburg-Landau parameter x. The boson

theory® describes the electrodynamics of the supercon-

ducting state by means of a linear nonlocal relation
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between supercurrent j,(X) and vector potential
a(X). Here, K®3(X) is the integral kernel of the
boson theory usually denoted by ¢ (X)/A? and f(X)
is half the phase of the superconducting order param-
eter. Normal regions inside the superconductor are
described by means of a non-single-valued phase
function. In Ref. 8 a phase was chosen which
describes the surface as a linear superposition of flux
lines. The paramagnetic response of the medium is
taken into account by adding to Eq. (1) a magnetiza-
tion current

Ta@ =cTox [y x@-T,x7(F) , @

where X(X) is a mean-field susceptibility defined
below. The boundary condition for the magnetiza-
tion M(X) [defined by J »(X)=c ¥V xf(X)] used
in Ref. 8 is 9m/dx =0, at the surface x =0 separat-
ing the superconductor (x > 0) from the vacuum.
In the present work a modification and extension
of the results of Ref. 8 is presented. First, the cir-
cumstances under which the surface may be treated
as a topological singularity are discussed and it is
shown that, at low fields, this description is inap-
propriate. These considerations also refer to a previ-
ous work!® on surface effects in nonmagnetic super-
conductors. Secondly, the treatment of Ref. 8 is ex-
tended to include a variety of possible surface states
of the magnetization. The general boundary condi-
tion'! dm (0)/dx = um (0) is used, where u—in the
absence of a microscopic derivation—is treated as a
phenomenological parameter. In Sec. II the boson
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treatment of the surface is discussed. In Sec. III vari-
ous solutions of the integrodifferential equation of
ferromagnetic superconductors are obtained and the
consequences of a nonzero surface parameter u are
pointed out in Sec. IV. In Sec. V a short summary is
given and some general remarks are made on the sig-
nificance of nonlocality with regard to the elimination
of unphysical features of the London model.

II. TWO POSSIBLE SURFACE
DESCRIPTIONS

Let us consider the London approximation of the
Ginzburg-Landau equations where a local relation
between j,(X) and T(X) is used. The presence of a
flux line is accounted for by introducing a non-
single-valued phase ¢ of the order parameter'? obey-
ing

¥V xTV¢=208?(X)% ,

where 8 @ (X) is the two-dimensional delta function
and € is the unit vector parallel to the applied field.
In what follows such a ¢ —or the corresponding f of
the boson theory—is referred to as a topological
singularity. As is well known, the London model
breaks down near the core where current and field
diverge. Proper use of a nonlocal j,-7 relation (see
the discussion in Sec. V) eliminates these singulari-
ties. At the same time a vanishing of J,(X) at the
flux line center is found, this being a typical conse-
quence of a vanishing order parameter. The boson
method takes advantage of these facts in a most
concise way. The results obtained agree reasonably
well with Ginzburg-Landau calculations, where the
flux line center is defined by a zero of the order
parameter.

The topological singularity characterizing the sur-
face in previous boson treatments® %13 is a linear su-
perposition of vortex singularities. The surface is ac-
tually identified with a dense array of vortices embed-
ded in an infinite superconducting space. Conse-
quently, it is a place where order parameter and su-
percurrent vanish. The latter feature is explicitly
shown by the results of Refs. 8 and 10. Therefore,
the topological singularity will serve as a good
description provided the order parameter at the sur-
face is sufficiently small. This is achieved either by a
proper surface treatment or by application of a suffi-
ciently high (superheating) field. In all other situa-
tions, in particular in the presence of applied fields
lower than the first critical field, it will be a better ap-
proximation to assume a constant order parameter,
corresponding to a regular phase which can be equat-
ed to zero. In this case, the magnetic field and the
penetration depth are immediately obtained by inser-
tion of the boson integral kernel into well-known
results (see, e.g., p. 76 of Ref. 12). It seems that the

representation of the surface by means of a topologi-
cal singularity can, after appropriate modifications, be
used to describe a normal-superconducting boundary.
The distinction between the two mentioned surface
descriptions is, of course, important from a conceptu-
al point of view. It should be added, however, that
both give similar results in the case of both current
reversal near a surface!® !4 and attractive interaction
between flux line and surface.’* The same holds true
for the present situation. The numerical changes im-
plied by a nonzero u are much larger than those
resulting from a different choice of the phase.

III. BASIC EQUATIONS AND
ANALYTICAL RESULTS

The temperatures, measured in units of the Curie
temperature T,,, characterizing the surface are ¢,
where the magnetization gets an oscillatory part, and
t;, where a spontaneous surface magnetization ap-
pears. These are to be compared with ¢,, the critical
temperature for spin-spiral ordering.

Since a situation with a constant modulus of the
superconducting order parameter is considered, one
has to solve Maxwell’s equation

6xs(f>=—4cl[3’,<m+j“m(i)1 , 3)

subject to boundary conditions given below. The
mean-field susceptibility® 1° in the expression for
im(X), Eq. (2), is given by its Fourier transform

x(k)=C/(T—-Tn+4wC +Dk? ,

lsing the notation of Ref. 8. The supercurrent
js(%) is defined by Eq. (1) with ¥ £(X)=0. If &,
b, i are directed along the y axis with components
h(x), b(x), m(x) and the superconductor occupies
the half-space x > 0, Eq. (3) takes the form

%= fdx'K (x—xDa(x')—4xw
, 02 (x —x") ,
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Here the vector potential @(X) =a (x)€, has been
introduced as a new variable, replacing 5 (x)
=—90a(x)/dx. The boundary conditions are

b(0)—4mm(0)=H , (5a)

b(0)=0 , (5b)
1 |om(x)

m) | ax |, © )

According to the Ginzburg-Landau boundary condi-
tion'%16 (5¢c), the surface state is characterized by a
temperature-independent parameter w, which allows
for a possible weakening (u > 0) or strengthening
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(n < 0) of the magnetization at the surface, com-
pared to that in the bulk.!” Since, to the present
author’s knowledge, little is known on the actual
value of u in the rare-earth compounds, a solution
for arbitrary u is required. It can be obtained by a
generalization of the London-limit calculations of
Ref. 8. Before doing this, however, it is illustrative
to consider two simple analytical solutions.

Equation (4), with integrations performed from
— oo to + oo, is only valid in an infinite medium but
can be adapted to a half-space by requiring a (x) to
be either an even or an odd function of x. Let us
first take @ (x) =a ( —x), an assumption commonly
used to describe specular reflection!? of the current
carriers at the surface. Fourier transformation of Eq.
(4) yields

—k2a(k)-2lﬂ] =[K (k) —4mk™x(k)]a (k) ,
ox x=0

from which the following fields are obtained:

_2H (= k sinkx
blx)= w J; dkk2[1—41rx(k)]+K(k) ’ ©
_2H (= kx(k) sinkx
m) =" do R a1+ KB
. _cH [~ K (k) coskx
51(x) 202 Jo T k1 —4ax(k)1+K (k) - ®

Because m (0) =0, Eqs. (6)—(8) constitute a solution
for uw=oco. The temperatures ¢ and ¢, being deter-
mined by the roots of the equation

kM1—-4mx(k)]1+K(k)=0 , )

agree with the results of Ref. 8 [provided the boson
kernel K (k) =c(k)/A} is used]. The critical tem-
perature ¢, differs from Ref. 8 and is equal to ¢, for
all values of «.

Let now a (x) be an odd function of x with a
discontinuity at x =0. The Fourier transform of Eq.
(4) now reads

—k?%a (k) —2ik lim a(x)
x—0+

=[K (k) —4mk*x(k)la (k) . (10)
J

The fields b (x), m(x), and j;(x) obtained from Eq.
(10) agree exactly with those of the boson method
[Egs. (4.8), (4.11), and (4.12) of Ref. 8]. We shall
come back to this coincidence in the last section.
The boson result corresponds to 9m (0)/9x =0, i.e.,
w =0, but in addition contains, as shown in the last
section, the implicit assumption of a vanishing order
parameter at the surface. As a consequence, j;(0) =0.
A solution is needed which avoids this unphysical
feature and at the same time takes into consideration
a variety of possible surface states u. It is obtained
by writing b (x) in the form

b(x)= zb,e”"x ,
i

where k; are the complex roots of Eq. (9). This
method of adaption of Eq. (4) to the half-space is
different from the two preceding ones. Each com-
ponent of b(x) is a solution of Eq. (4) in an infinite
medium. The constants b; are then to be deter-
mined from the boundary conditions (5a)—(5¢). In
the absence of superconductivity this method of solu-
tion gives the mean-field result's: ¢,=1+du? for
u<0,and t,=1for u >0 (d =DA}/T,). For the
integral kernel we choose for simplicity'® the anaytical
approximation® of the boson theory:

K (k)= }\528—0.447(“)2 )

For the temperature range considered here the coher-
ence length £, the London penetration depth A, and
the Ginzburg-Landau parameter k =\ /{ may be
treated as constants. The parameters used are
t=4nC/Ty=2and d =D/\}T,=0.01. For ¢ > t,,
Eq. (9) has purely imaginary roots kq,,= iy,

k3 4= tiy,. In the range to >t > t,, complex roots
appear which are denoted by k;,=1p; tip,,

k3, 4= tp; Fip,. The values of yy, y; and py, p,
enter the analytical expressions for b(x), m(x),
Js(x), and the effective penetration depth

l 0
)\eff=m.r0 dx b(x) , an

calculated by means of the boundary conditions.
For ¢t > ty, one obtains

2 2 _ -
b(x)=Hn[y%('yz+p.)(7%—ekm)e " -7%(71+;L)('y%—ek3yl)e 2, (12)
2 Ryl o Ry X —7%
m(x)=(H/4mw)n(yi—e D (yi—e D (y2+ule " —(yi+ple *1, (13)
2 2 o 2 2 o
Js(x) =—(cH/Ama)nlyi(ya+ ) (yi—e D e ™y (g, 4 p) (yi—e 3D 7277 | (14)
2+ B=e"D =yl +w) A= "D
Aeff=xL Yi\y2Tp)\y2 Y2ly1 T p)\y1 (15)

2 )( 2_ R37%)__ 2( ) ( 2_ R3"%)
yily2+p)(yi—e yilyitu)(yi—e
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where X =x/\r, R3=0.447/«?, and

Ry} Ry} Ryv3 Ry} _
n=lye " y3—e "t puyr) —yie TAyi-e T Huy)IT .

For ¢t < to, one obtains

b(x)=—Hxe "*{e*(p? +p?)picospix + (py+ ) sinpx1 +p1(p? +p? +2up,) cos(pix +B)

—I[p2(p? +p3) —pn(pt —p})1sin(pix +8)} , (16)

m(x)=—(H/4m)xe "% ([p, cospiX + (pa+u) sinpix]

x[e*(pt +p})*+e™+2(p? —p3)cosB—4pp,sinBl} , 17)

JsGe) = (cH/4ma)xe "2 { (0} +p3) [p1(2p2 + ) cos(pix — B) — (pf — p3 — up2) sin(px — B)1

+e *[up,cospiX — (p? +p? +pupy) sinpix1} , (18)

p1(2py+u)(p? +p3) +e [upicosB— (p? +p} + upy) sinBl

19)

Aesr=AL

where a=R;(p? —p?), B=2R3p1p,, and

p1(pE +p2)+e(p(pf +p} +2upy) cosB+N(p} —p?) —pi(p? +p})]1sing)

x=1Ip1(p? —2up,—3p}) cosp+ (p3 —3pipr+pp? —ppi)sin+pe~' .

IV. NUMERICAL RESULTS

Some results of the numerical solution of Eq. (9)
for various x are shown in Fig. 1. The temperatures
to and ¢, are defined by p; =0 and p,=0, respective-
ly. Both of them are related to bulk properties, since
at ¢( an attractive part in the interaction between flux
lines appears.

For u =0 the results (12)—(19) agree with those of
the boson theory only in the London limit. Due to
the smallness of £ the suppression of the order
parameter at the surface does not play any role in this
limit. In contrast to Ref. 8, j;(x) as given by Egs.
(14) and (18) does not vanish at x =0 but adjusts it-
self according to the boundary conditions as shown in
Fig. 2. As a further illustration of the differences
between Ref. 8 and the present treatment, b (x) for
u =0 and two values of « is reported in Fig. 3.

There is a common tendency for b (x) to increase
with decreasing x which is however much stronger
for the boson result. This may be understood by
considering that for x fixed, the suppression of the
order parameter will cause the magnetic field to
penetrate deeper into the interior (see Fig. 4). This
makes the surface more ‘‘normal’’ and reduces the
difference between ¢, and the transition temperature
t=1. For u— oo Egs. (12)—(19) and Eqgs. (6)—(8)
differ in detail but yield identical characteristic tem-
peratures.

The value u =0 will be appropriate if the exchange
constant at the surface is equal to its bulk value.

I

Then the magnetic surface ordering is solely due to
the imperfect diamagnetic response of the supercon-
ductor. If u 7 0 the second mechanism, mentioned
above, of purely magnetic origin is superimposed. A
positive or negative u weakens or strengthens the
fields m (x), b(x) within a magnetic correlation dis-
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FIG. 1. Temperature dependence of vy, y,, py, p, for two
different values of the Ginzburg-Landau parameter, k=5
(solid line) and k=2 (dashed line).
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FIG. 2. Supercurrent j;(x) for reduced temperature ¢ =1,
Ginzburg-Landau parameter « =2, and surface parameter u
=0 and p=10. For comparison with the u =0 curve, j;(x)
according to Ref. 8 for 1 =1, k=2 is plotted as a dashed line.

tance &, =[d/(t—1+¢)]172 from the surface. This
behavior is illustrated in Fig. 3, curve C and Fig. S,
curve C. The « dependence of ¢, ¢, and the
dependence of t, for different u are plotted in Fig. 6.
The critical temperature ¢, approaches ¢, for high
values of u and increases with decreasing u. The

b(x)/H

1 1 1

0.0 0.5 1.0 1.5
X/
FIG. 3. Magnetic induction 5 (x) at reduced temperature
t =1 according to the present treatment (curves A, B, C)
and according to Ref. 8 (curves A’, B').
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FIG. 4. Temperature dependence of the effective penetra-
tion depth Ay for k=2, £ =0, and u'=10. The dashed line
shows the result of Ref. 8 for k=2, u=0. At the left cutoff
the transition to the ferromagnetic surface state occurs.

result of Ref. 8 for ¢ (not shown in Fig. 6) lies
somewhat above the corresponding curve £,(0); this
accounts for the large difference in field amplitudes
shown in Fig. 3. If the exchange constant in the sur-
face layer becomes much larger than in the bulk,
then #; may even exceed #p. The u dependence of ¢
has already been reported in Ref. 8 for the London
limit. For u appreciably smaller than zero, ¢ is

pL=-10
A:k=2,t=200
2 H B:k=2,t=1.45 -1 20
C:k=5,t=250
x e =
N N
e E
~ = 4
= *
£ E
0
-20

0.0 1.0
X/ N 20

FIG. 5. Behavior of magnetization m (x) for different «
and ¢ in the case of strong enhancement of magnetic order
at the surface.
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FIG. 6. Characteristic temperatures tg, #,, t;(u) (for
u=0and u=-10), and ¢'(u) (for u=—10) as a function
of the Ginzburg-Landau parameter x. The critical tempera-
ture £,(10) lies very close to t, and is not shown in the
graph. At the dashed line the effective penetration depth
vanishes for pu=—10.

found to decrease with decreasing « in contrast to its
behavior for u > 0.

As a second consequence of large negative values
of u, a nonmonotonic behavior of b (x) and m (x)
may already occur at temperatures ¢ > ;. It will be
present for those values of u, for which y,+ u [ap-
pearing in the first term within the brackets of Eq.
(12) and (13)] changes its sign with decreasing tem-
perature. The temperature t'(u) where this happens
is plotted in Fig. 6 for uw=—10. Figure 5 shows the
behavior of m (x) in the temperature regions ¢t > ¢’
(curve C, monotonic decrease), ty <t < t' (curve A,
occurrence of a single minimum), and ¢ < ¢y (curve
B, additional occurrence of small oscillations). Since
v, decreases strongly with decreasing «, in low-« su-
perconductors the field reversal at ¢’ may occur for
somewhat less extreme values of u. As is to be ex-
pected from the distribution of b (x), the effective
penetration depth Ay is maximal for u = oo and de-
creases with decreasing u. For u=—10 it already
reaches zero at the dashed line in Fig. 6. Its
enhancement for u =10 as compared to the case
u=0 is shown in Fig. 4.

V. CONCLUDING REMARKS

The present treatment of surface effects in fer-
romagnetic superconductors is based on the linear,
electrodynamical approach of Ref. 8. Its validity is of

course not restricted to a particular integral kernel

K (X). It has been pointed out that—within this
picture—two modifications have to be made in order
to come somewhat closer to a realistic description.
The first of these concerns the difference between a
surface and a linear array of flux lines, the second
the possibility of arbitrary magnetic surface states. In
view of the unknown u and of a possible influence of
fluctuations and exchange coupling, no realistic fit of
the parameters has been attempted. However, some
general features which will be helpful in determining
the actual value of w in the rare-earth compounds
have been pointed out. For an extension of the
present theory to higher fields and in particular for a
calculation of the superheating field, local, or for a
more accurate description, nonlocal Ginzburg-Landau
functionals must be used as a starting point.

Some shortcomings of the boson surface treatment
have recently been pointed out!® by the authors of
Ref. 8. The physical origin of these shortcomings
was, however, not analyzed. This paper!® also con-
tains boundary conditions for m (x), which are slight-
ly more general than those of Ref. 8. The method of
solution employed did not, however, allow calculation
of the temperature ¢;, whose value indicates most
sensitively a possible modification of the exchange
coupling constant near the surface.

In Sec. III the results of the boson method were
rederived by postulating a discontinuity of the vector
potential at the surface. To understand this, one has
to recall that as a result of gauge invariance, a singu-
lar part, say @, of the vector potential may equiva-
lently be introduced instead of a singular phase of the
order parameter. Treating a flux line as a cylindrical
hole with radius zero, @ is uniquely determined by
fluxoid quantization [@;= (¢o/27+ )€, where ¢ is
the quantum of flux] and agrees exactly with the cor-
responding term — (#c/e) ¥ £ of the boson method.
For a surface constructed as a linear distribution of
flux lines, a step function or a discontinuous @ must
be introduced. This explains the above coincidence.
In addition, one concludes that all the results of the
boson theory regarding flux lines?® may be derived
from the Bardeen-Cooper-Schrieffer (BCS) theory as
well provided ¢ (k)/\} is replaced by the BCS kernel.

The most satisfying feature of the boson results is
the vanishing of the supercurrent at the flux line
center revealing the vanishing of the order parameter
there. This feature is due to the nonlocal electro-
dynamics and disappears in the London limit; it will
be present for any K (k) decreasing sufficiently
strong for large k. Nonlocality explains why a theory
linear in 7 is able to describe, at least qualitatively
correctly, a situation with strongly varying order
parameter,?! a fact not accepted by all workers in this
field. A further example for the disappearance of
singularities due to inclusion of nonlocality may be
found in the field of continuum mechanics.?
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