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Recent experiments performed by Karecki et al. show that an expression for the conductivity

of superconductors containing impurities, developed by the author but never published,

describes well the behavior of stong-coupling superconductors. %e present here a derivation of
that expression.

In this paper we present the derivation of a general
expression for the conductivity of a superconductor
in terms of its normal-state conductivity. The reason
for presenting this unpublished work' now is the re-
cent publication of an article by Karecki et al. on the
far-infrared transmission by a strong-coupling super-
conducting NbN film. In that article the authors
show that their experimental results are best fitted by
our theory, and that in general this formulation is the
only one to describe simply the optical properties of
superconductors with strong coupling and finite mean
free path.

It is also interesting to notice that the theory
describes well strong-coupling superconductors,
although it has been developed in the framework of
the Sardeen-Cooper-Schrieffer (13CS) theory3 which

is usually thought to be limited to weak-coupling sys-
tems. An expression for the conductivity o'(co, q, l )
of a superconductor containing impurities is obtained
by studying the response of the superconductor to an
imposed vector potential

In general the conductivity is complex:

teraction Hamiltonian

H'= —-A ~ V
mc

we get

IV =
2 XlM„ol Sl (E„Eo t—co)—

h

where

m„, = e„Xa„,„c„,c,e,
k,k

and

8„, =
~ p„iH'pkdr

(4)

(6)

Here 4o represents the ground state of the supercon-
ductor, @„anexcited state, Eo and E„ the corre-
sponding energies, whereas the pl, 's are the elec-
trons' eigenstates and the Ck and Ck the correspond-
ing creation and annihilation operators.

If we take into account the relation Bk'k 8-k-k
Eq. (6) becomes

~no= ~„„(~'nI &k ck c-k&—, I q'o)

(8)

o'(co, q, I) = o.', (co,q, i) +i o 2(co, q, l) (2)

where I is the mean free path.
In this paper we derive a formula for o ~(a&, q, /).

cr2(eu, q, l) can then be obtained from o f by using
Kramer-Kronig relations~ [see Eqs. (21) and (22)].
To obtain oi we compare two different expressions
for the power lost by the electromagnetic field to the
electrons of the system:

where
1 t

1 ~k 2 2
Uk =—1 — and Vk+ Uk =1

2 Ek

In this expression ek is the energy of an electron
measured relative to the Fermi surface,

g2k2 g2k 2

2m 2m

and

(9)

(10)

2'P = —o )(a),q, l) lA ol2 =to) W
c

(3)

where Wis the transition rate of the system from the
ground state. Using perturbation theory with the in-

I

Ek =&k+~' ~

5 being the energy gap. Note that ~k is positive if
k ) kq and negative if k & k~.

Using Eqs. (3), (5), (6), (8), and (9), we obtain

c2 EkE r
—ok~„r —52

taoof(coql) =, , , , X l8„, l

k, k

5 (Ek +E„i tee)— (12)
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with use of the fact that E„—E0=Ek+ E,.
If we let d, 0 in Ecl. (12), and assume that the 8„, are the same in the normal state as in the superconduct-

ing state, we obtain the normal-state conductivity

t~~i'(~, q, I)= — ', X I&„„l'&(l~kl+I~„ I
—t~) .

2 kk
k, k

(13)

Let us now perform the summations in (12) and (13) in two steps. First we sum over the angles of k and k',
and then over their absolute values. Only the 8, are affected by the summations over the angles. Equation

(12) can then be written as follows:

EkE r
—~km, —6

tcdo i(cd, q, /) =
4k, c r

k
k

where

F (dk, e I) s(Ek+E„,—tcd) (i4)

F(ek e c) = ' IB-„-„Is2i n8 dpdq

where 8 and g are the angles of k' relative to a system of reference for which the z axis is taken along the direc-
tion of k. Let us replace the sums in (14) by integrals in e, d' and then change to the variables E and E':

tcdo'i(cd, q, l ) =
&

fO I I

dE dE', F(e, k')8(E+E' tcd)—
The integration in E' can be performed, and remembering that in the superconducting state ee' can be both

positive and negative, we obtain

t~~*,(~,q, t) = Jt dE[[t(E)+I]F(l~l, ld'I)+ [t(E) —1]F(—lal, la'I)] . (16)

where

and

(E)
EE'h2

I

to be a function of the difference e' —d = Ia'I+ Ial.
This follows from the invariance of the physical prop-
erties of the system with respect to small changes in
the Fermi sea. As in the normal state

E'=ho) —E, e' =E'—
It is possible to obtain a similar expression for 0 y.

tcdcri (cd, q, l) =2
~

dE F(I&I, lk'I)

Now we use the property of the function F(I&I, le'I)

F(la, ld'I) =-,'oF(l~'I+
I l,alq) .

This expression for F can be substituted in (16):

(19)

I
a'I + I ~ I

=t~,
F'(

I el, I
d'I) can be taken outside the integral, to give

ptco- h

~i(~ q, l) =
J~ dE I[t(E) +1]~i (ld'I+ ldl, &) + [t(E)—i]~i (ld'I —lal, l)], (20)

which is the expression for o i(cd, q, I ) we were looking for.
o 2(cd, q, l ) can be obtained using the Kramer-Kronig relations":

2A (q, l ) 2cd crt(cd .q I )
02(M, g, l j =

VT OJ 0 Q) —QJ
(21)

A (q, l) = oNi(cd, q, l)dcd — ' o. ( i, cdlq)dcd (22)
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