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Classical statistical mechanics of one-dimensional polykink systems
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The phenomenological ideal-kink-gas theory recently developed by Currie, Krumhansl,

Bishop, and Trullinger for the low-temperature statistical mechanics of one-dimensional,

nonlinear, Klein-Gordon chains is extended and modified to treat systems capable of sup-

porting more than one type of kink excitation. In particular, we consider a general class of
local potentials that are doubly periodic, such as the double-sine-Gordon and doubly-

periodic-quadratic cases, and support two different types of kinks having different creation

energies. By taking into account topological restrictions on the sequencing of these two

types of kinks (and their antikinks) along the chain, we find that the ideal-gas theory pre-

cisely reproduces results obtainable by the transfer-operator method. In addition, we

present formulas for the low-temperature densities of kinks that depend only on quantities

obtainable directly from the local potential and not on explicit knowledge of the waveforms

of the kinks or their small oscillations.

I. INTRODUCTION

The statistical mechanics of one-component,
one-dimensional systems governed by nonlinear on-
site potentials that support kinklike solitary wave
(soliton) solutions has recently been the subject of
intensive study. Since the pioneering work of
Krumhansl and Schrieffer, ' which showed that the
results of an exact transfer-operator treatment of
the low-temperature statistical mechanics for the P
potential could be explained remarkably well by a
phenomenological model in which the kinks (soli-

tons) behaved like an ideal gas, several workers have
examined other soliton-bearing potentials as
well, refining both the transfer-operator9'o and
phenomenological calculations. ' ' As a result of
these investigations, agreement between exact for-
malism and phenomenology (extending not only to
temperature dependence but also to numerical pre-
factors} has been obtained for the double quadratic
(DQ), P, and sine-Gordon (SG) potentials (see Fig.
1).

Encouraging as these results are, they are
nevertheless somewhat limited in their applicability
to real physical systems by the fact that all three of
the potentials above, whether simple double wells

(DQ, P } or periodic (SG), possess only one type of
potential barrier, and therefore can support only one

type of kink solution (a kink being an excitation by
which the relevant field evolves across a barrier
from one minimum to an adjacent minimum). For
wider generality, it is desirable to have a model that
describes a "polykink" system, i.e., one for which
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FIG. 1. Three examples of on-site potentials V(P)
that support one type of kinklike excitation. Note that
all three possess at least two degenerate minima. (a)
(double quadratic) and (b) (P~) are simple double wells.

(c) (sine-Gordon) is periodic; note that all barriers are
identical.

more than one type of solitonic excitation is possi-
ble. One simple potential capable of supporting dif-
ferent solitonic solutions is a doubly periodic one

(Fig. 2), which possesses two qualitatively different
barriers and thus two distinct kink solutions. Such
a doubly periodic potential (in the form of a
double-sine-Gordon system) yields two types of
solutions for magnetic solitons" ' in the 8 phase
of superfluid He. A doubly periodic potential is
also the natural way for generalizing, to a lattice
with diatomic bases, those lattice-dynamical models
that assume simple singly periodic (usually sine-

Gordon) potentials; among these are the model of
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0 0 0 0 0 0
FIG. 3. Doubly periodic potential such as might be

associated with a chain of dimerized atoms (underlying
circles) in a quasi-one-dimensional material.

FIG. 2. Two examples of doubly periodic on-site po-
tentials V(P), which support two types of kinklike exci-
tation. (a) doubly periodic quadratic (DPQ) aud (b) dou-
ble sine Gordon (DSG).

Frenkel and Kontorowa' for the motion of disloca-
tions and that of Bishop' for the stationary sublat-
tice in a quasi-one-dimensional superionic conduc-
tor.

The double-sine-Gordon (DSG) equation has been
a useful model for disolitonic behavior, and analysis
of soliton-soliton"'s and soliton-small-oscillation'2
scattering have been completed for the DSG poten-
tial. Despite this fairly extensive work on the
dynamics of polykink systems, however, relatively
little attention has been paid to their statistical
mechanics. The purpose of this paper is to extend
to potentials of double periodicity both the
transfer-operator and phenomenological methods
developed in Ref. 2 for calculation of the free ener-

gy of a one-dimensional (1D) chain with a singly
periodic on-site potential, and to show, both in gen-
eral and via two examples [DSG and doubly period-
ic quadratic (DPQ)—see Fig. 2], that the ideal-gas
model gives precise agreement with the exact
transfer-operator result at low temperatures. Before
proceeding, we outline the symmetries of the class
of doubly periodic potentials that we treat, and
briefly outline how the methods of Ref. 2 can be ex-
tended to include polykink systems.

A useful lattice-potential analog of a doubly
periodic potential is illustrated schematically by a
chain of dimers in Fig. 3. We then have a simple
generalization of a singly periodic lattice potential
considered by Frenkel and Kontorowa' and by
Bishop. 's The potential V(P) has the period of the
lattice, and is symmetric about the midpoint of each
dimer and about the midpoint between dimers, at

which points it has relative maxima. Thus, if the
origin P =0 is taken at the middle of an intradimer
barrier, and if the periodicity of the dimer chain is

p, then P = —,p is the coordinate of the first max-

imum to the right of P =0 in the potential V((() ),
and the features of V(P) described above can be
listed as follows:

and

V(((+p) =V(P),

V( —P) = V($),

(1.1a)

(1.1b)

V( —,p+(p ——,p)) = V( —,p —(p ——,p)), (1.1c)

1

P=np 0= 2p+np (1.2a)

while (b) local minima of V(P ) are found only at

(() =+Pi+np, n=0, +1,+2, . . . . (1.2b)

Condition 2. The type-II (intradimer) barrier has
greater "quantum-mechanical" strength than the
type-I (intradimer) barrier; i e , if V(P.) .were a po-
tential in a Schrodinger equation with very little ef-
fective mass (or fi very small), the tunneling
through barrier II would be weaker than that
through barrier I. Mathematically,

for periodicity, symmetry about an intradimer bar-
rier, and symmetry about an interdimer barrier,
respectively. The intradimer and interdimer bar-
riers will hereafter be referred to as the type-I and
type-II barriers, respectively; the first minimum to
the right of the type-I barrier centered on the origin
will be denoted by P~, so that the first type-II bar-
rier to the right of /=0 will be centered at P= —,p
and flanked by minima at P i and p —(()i

—=Pz.
In addition to the symmetries (1.1), the class of

doubly periodic potentials V(P) will be assumed to
meet the following conditions:

Condition l. (a) Local maxiina of V(P ) are found
only at
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(1.3)

This relation will be important for the transfer-
operator computation of statistical mechanical
quantities.

Having defined the class of multikink potential to
be dealt with, we briefly describe how the technique
of Currie, Krumhansl, Bishop, and Trullinger
(hereafter referred to as CKBT) can be extended

quite readily to the calculation of both the exact
and phenomenological statistical mechanics of a
disolitonic chain. The fundamental thermodynamic
quantity of interest is the free energy. By a well-

documented transfer-integral technique. * ' ' the
frizx: energy in the low-temperature limit is propor-
tional to the lowest eigenvalue of an effective
Schrodinger equation with very large effective
mass; the potential in this equation is simply the
particular nonlinear soliton-bearing potential V(P)
characterizing the system, and the solitonic contri-
bution to the free energy can be readily associated
with that component of the ground-state eigenvalue
due to tunneling between wells of the potential. It
is here that the second condition (1.3) above on

V(P) is relevant. A method for extending the
transfer-integral formalism from the straightfor-
ward tunnel splitting of a double well to the more
subtle tight-binding band structure of a singly
periodic potential has recently been developed; the
extension to a doubly periodic calculation is then
made quite easily, as it involves nothing more than
a s1ight complication of the band structure.

The basic features of the phenomenology
developed by CKBT can be kept intact in an exten-
sion to systems with two types of solitons. The
CKBT phenomenological model neglects kink-kink
interactions, so that the only input required is the
functional form and energy of each type of indivi-

dual kink solution, along with the allowed forms for
phonons in the presence of such a kink. The
waveform and energy of a kink are determined only

by the particular potential barrier spanned by the
kink, and by no features of the potential outside
this barrier. Moreover, the symmetries of our class
of doubly periodic potentials are such that the cur-
vature of every well is the same, whence there is
only one type of phonon; thus the treatment of the
small-oscillation "dressing" that accompanies a
kink can be carried over from CKBT. A new
feature that enters the phenomenology for a
double-kink system is a topological constraint on

the manner in which the various types of kinks can
be sequentially arranged in the system.

We consider a system consisting of a linear chain
of harmonically coupled point masses, each of
which moves in a doubly periodic potential (Fig. 3).
We treat a general form of such a potential and il-
lustrate the methods and results with the specific
examples of double-sine-Gordon (DSG) and doubly
periodic-quadratic (DPQ) cases. It is found in the
low-temperature limit that the exact and
phenomenological free energies for a general poten-
tial agree exactly. We also consider relevant
"kink-detecting" equal-time correlation functions;
these too can be calculated both phenomenological-
ly and exactly. Here it is also found that the two
methods agree exactly at low temperatures. It thus
appears that the ideal-gas picture for solitonic exci-
tations, well established for single-kink systems, is
also valid for those supporting two types of kink
and, as probable consequence, for more than two
types as well.

The details of the analysis establishing these re-
sults will be presented as follows. In Sec. II we con-
sider a system with a general doubly periodic poten-
tial and discuss both the soliton solutions to the
equation of motion and the small oscillations (pho-
nons) in the presence of these kinks. We discuss the
exact statistical mechanics of a doubly periodic
chain in Sec. III via the transfer-operator technique;
we exhibit the temperature dependence of the free
energy in the low-temperature regime, and give the
formal expressions for computing correlation func-
tions. In Sec. IV we construct the phenomenology
at low temperatures for a (topologically restricted)
combined gas composed of two types of particles,
which correspond to the two types of kinks as
modified by a dressing of the accompanying pho-
non solutions discussed in Sec. II. The low-

temperature free energy is computed and then com-

pared to the exact expressions found in Sec. III. We
also determine an appropriate kink-detecting func-
tion of P, F;(P ), for each type of soliton, and calcu-
late the corresponding equal-time correlation f'unc-

tions (F;(P(0))E;(P(x))) by both exact and
phenomenological methods. At each stage of this
exposition, the general treatment is illustrated for
two specific potentials. In Sec. V we conclude with
a brief summary and suggestion of topics for future
work.

II. EQUATION OF MOTION AND
SOLITARY WAVE SOLUTIONS

In this section we consider the dynamics of a soli-
tary wave-bearing system whose on-site potential
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V(0+2i}}o)=V(P) 0o &2
(2.3a)

(po =2 gives a degenerate, or singly periodic, case
with period Po}, and (2) DSG,

r 2
2

2
cos + —a, 0&a &1

1 —aV(P) =

(2.3b)

[a =0 gives a degenerate (sine-Gordon) case with
period 2n;otherwise t.he period is 4ir.]

We restrict the range of the parameters in (2.1) to
the "displacive" limit, in which the length
d=co/coo satisfies the inequality d » l, thereby
making the coupling between sites strong enough to
ensure that variations of P from site to site are quite

I

has the general doubly periodic form in Fig. 3; we
also examine the two specific examples mentioned
above. We present expressions for the two types of
kink solutions, and discuss the phonon solutions in
the presence of these kinks. The results of this sec-
tion provide the basis for the phenomenological sta-
tistical mechanics discussed in Sec. IV.

The system under consideration consists of a
one-dimensional chain of X harmonically coupled
oscillators governed by the Hamiltonian (in the no-
tation of CKBT)

N 2

H = g lA —P;+—,(P;+i P;) +—oioV(P;)
~

2 l Cp

i=1
4+i—=0i

where P; is the dimensionless "displacement" coor-
dinate of the ith oscillator, I the equilibrium spacing
between nearest neighbors, and V(P) a dimension-
less "on-site" potential of the doubly periodic form
described in Sec. I. In addition to the symmetries
(1.1) and features (1.2), V(P) will also be assumed
for convenience to possess the following properties:

V(np+P i )=0 (2.2a)

and

V"(+Pi+np)=1 (n=O, +1,+2, . . . ). (2.2b)

Equation (2.2a) ensures that V(P) is everywhere
non-negative, with the arbitrary zero of potential
energy chosen so that V(P ) is zero at all its (degen-
erate) minima; (2.2b) normalizes to unity the curva-
ture of V(P ) at all its minima.

Two specific examples of such potentials are (see
Fig. 2) the following: (1) DPQ,

small, at least at low temperatures. It is in this
displacive regime that nonlinear kinks become well-
defined' elementary excitations with long lifetimes
and as such behave' very much like particles. In
this limit the Hamiltonian (2.1) becomes

L=—XlI=& I dx [ —,[p(x, t)]2~ —,co[/„(x,t)]

+oioV(P)I . (2.4)

Both forms (2.1) and (2.4) of the Hamiltonian
will be utilizal in our analysis. The discrete form
(2.1) is used in obtaining exact statistical-
mechanical results via the transfer-operator formal-
ism, whereupon the process of taking the continu-
um limit afterwards becomes explicit. The continu-
um form (2 4) is used to study the nature of the soli-
tary wave (kink) and linear (phonon} excitations of
the system. It is these excitations that are intro-
duced into the statistical mechanics through the
"kink-gas" phenomenology in Sec. IV.

The Euler-Lagrange equation of motion follow-
ing from (2.4) is

0n —cod +oio
2dV

(2.5)

We begin by examining the solitary wave solutions,
first finding static kink waveforms P, (x). (The sub-

script i =I, II distinguishes the two types of kinks
in the system. ) The "Lorentz" covariance of (2.4)
implies a whole family of traveling kinks:

P; (x,t)=—P; (y(x —ut)),

where y:—[1—(u/co) ] ' . We define the nth
type-I (smaller) barrier in V(P) as that barrier span-
ning the range of P defined by Pi+np—&P
& Pi+ np, n =0, +1,+2, . . .; similarly, the nth
type-II (larger} barrier in V(P) spans that region for
which Pi+np P&(&n+1) —p Pi. [Pi is defined
following Eqs. (1.1).] A kink excitation
PI+(y(x ut)) evolves the—system between two mini-
ma flanking a barrier of type i (i =I, II), with the
+ ( —) sign denoting that the excitation is an in-
creasing (decreasing) function of s =x ut, and-
hence a kink (antikink).

The general formalism for obtaining solitonic
solutions to an equation of the type (2.5) is present-
ed in Ref. 2; we give here only those results for the
two specific example potentials which we consider.
By convention, we always take Pi+(x=0)=np,(p)

Pii+(x=O)=(n+ —, )p for some integer n For.
Dpq 2, 5

t'

P',"+(x,t)=2ngo+sgn(x —ut) 1 —exp yix uti—
(2.6)
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(t)rr+(x t)=(2n+1)(I}o+sgn(x u—t}(({)o —1} 1—exp(o) yix —ut [ (2.7)

Por DSG

P(r+)(x, t}=4)rn+4tan ' 1—a
1+a

' 1/2
y(x ut )—

2d
(2.8)

Prr+'(x, t) =(2n +1)(2u )+4 tan

J

' 1/2
y(x ut—}

tanh (2.9}

Sketches of the waveforms (2.6)—(2.9) are given in
Fig. 4. All these waveforms are such that
(t) +'(s) (t)r(+—'(0) possesses odd paritygs =y(x —ut)]:—

y'r+( s) y—'r+(0—)= [yg"+(—s) pi+(o—)].

2A I+"Mr=
c d0

dx V(P+'( x))

(2.12)

E(u) E(o) (E(o)2+ 2 2 )1/2
J' = i Pi CO (2.11}

Here the kink rest energy E ' and momentum p;
are given by E '—=M;cO and p;—=yM;v with

Equation (2.10) is a consequence of the symmetry
properties (1.1), the equation of motion (2.5), and
the convention mentioned just before Eq. (2.6).

Just as the functional form of a general solitonic
excitation reflects the Lorentz covariance of (2.5),
so too does the expression for the kink energy E "),

which is given by ' '

Mi= ~ Mn —— (Po —1)
A A

d

and (ii) for DSG (Refs. 11 and 12),

(2.13a)

Mr ——
2 i/2

—(1—a )+a arcsin(x
&2)i/2

where the M' are defined in (1.3}. For our exam-

ples, the various kink rest masses are (i) for DPQ
(Refs. 2, 3, and 5},

CE

2
(2.13b)

(a)
M„=, —(1—a ) +a arcsrna8 A 2

(1 2)1/2

+1=X/d.

(b)

-2cos 'I- +2= X/d

PIG. 4. Sketches of the four possible kinklike excita-

tions in a doubly periodic system for the (a} doubly-

periodic-quadratic (DPQ) and (b) double-sine-Gordon

(DSG} potentials. In both cases the sequence of excita-

tions, from left to right, is as follows: type-I kink, type-

II kink, type-II antikink, type-I antikink.

+ —a
2

X(x,t}=—f(x)cos(o)t), (2.14}

We now examine the second set of solutions to
(2.5) that concerns us; these are the small-amplitude
oscillations of the system, which are very different
in both form and physical import from the large-
amplitude kink solutions. Moreover, because an
understanding of the kink-phonon interaction is
essential to a correct phenomenology, we must find
the form of the small oscillations in the presence of
(r kink; more precisely, it is the asymptotic form, as

~x
~

~ ao, of these perturbed phonons that enters
the phenomenological calculation. We therefore
consider the effects of a single kink on the small-

amplitude solutions, working for convenience in the
kink rest frame. By assuming the small oscillation
to be of the form
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the standard linearization of (2.5) gives the follow-

ing effective Schrodinger equation for the spatial
factor of X:

co—f"(x)+cooU (x)f(x)=co f(x)
where

U;(x) = V"(P '(x))

(2.15)

(2.16)

is the dimensionless effective potential. [We have

explicitly indicated by the + subscript on PI
' that

U;(x) has the same form whether it results from a
kink or an antikink. ]

The "scattering potentials" U;(x) have certain
basic features in common, the most important of
which are

and

U;(x=0) &0 (2.17)

U( ~x
~

~ oo)~1. (2.18)

Furthermore, the odd parity of the quantity

P +'(x) —PI+'(0), along with the symmetry proper-
ties (1.1) for the potential V(P ), implies that

U;( —x)=U;(x) . (2.19)

Each type of kink thus presents the phonons with a
potential well in one dimension. The explicit forms
of these scattering potentials for both types of DPQ
and DSG kinks are given in Table I.

A few features of these formulas deserve some
comment. The delta functions in U;(x) for the
DPQ case result from the the cusps in V(P) (Ref.
5); also, although the delta function in V"((t ) has a
larger amplitude by a factor of ((0—1 for the type-
II barrier than for the type-I barrier, Eqs. (2.6) and
(2.7) show that /It' (x) is larger than PI

' (x) by the
same factor. Thus, loosely speaking, the increase in
the depth of Un(x) over that of U, (x) is offset by a
corresponding reduction of the width in x of Utt(x);
this leads to the precise equality for the scattering
potentials of the two DPQ kinks that the table
displays.

The expression for either of the DSG scattering
potentials can be obtained from the other by send-

ing a to —a; for all values of a, the two scattering
potentials exhibit a basic qualitative difference, in
that Ut(x) increases monotonically as x increases
from 0 to + oo, while Un(x) possesses "should-
ers"' peaked at points x =+xc(a ) such that
Un(x =+xo(a)) & 1. Figure 5 shows this behavior
for three values of a.

Regardless of the precise form of U;(x), some re-
marks of a general nature can be made concerning
the eigenfunctions f(x) of Eq. (2.15). We can clas-
sify the functions f(x) into two main categories:
bound (localized) modes with co &coo, and scatter-
ing (extended) modes with co &F00. The transla-
tional invariance of the Hamiltonian (2.4) guaran-
tees that P+'(x), the Goldstone mode, satisfies
(2.15) with co =co; t

——0; this zero-frequency solu-
tion is the ground state for the potential U~(x). In
addition to this translation mode, there may be ad-
ditional bound states with frequencies co; „such that
0 (co& + &coo 0 & 2. These are internal oscillations
of the kink that are treated as localized phonons in
the phenomenology.

Expressions for the translational modes fb'I(x)
associated with each of the kinks in the systems
under consideration, normalized according to

I dx[ft", I(x)] =1,
are given in Table II. This is the only localized
mode for the DPQ kinks, since an attractive delta-
function potential has exactly one bound state. We
were unable to determine analytically the presence
or nature of higher bound states for the scattering
potentials associated with the DSG kinks; instead,
we searched for such modes by solving Eq. (2.15)
numerically for all values a =0.05 Xn,
n =1,2, 3,. . ., 19. The results indicate that there are
no higher bound states for the Un(x) DSG poten-
tial, and exactly one higher bound state for Ut(x).
In Fig. 6 we plot this frequency, co~ 2, as a function
of a. In Fig. 5 we plot the scattering potentials and
their bound-state waveforms for DSG kinks for
three values of a, again with the normalization

I dx[fb'„'(x)] =1 .

TABLE I. Forms of the scattering potentials U~(x) = V"(P';+(x) ) (i refers to the type of kink, and can be either I or II)
for each of the two example systems considered. Note that Ut(x) = Un(x) for the doubly-periodic-quadratic (DPQ) case,
and that Uq(x) and U»(x) are related by the transformation a~ —a in the double-sine-Gordon (DSG) case.

DPQ

DSG

Type I

1 —25(x/d )
a 2(1—a')

cosh(x/d)+a [cosh(x/d)+a]

Type II

1 —25(x /d )
3a 2(1—a )

cosh(x /d ) —a [cosh(x /d ) —a]
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FIG. 5. Plots of the perturbing potentials (solid lines)
experienced by phonons in the presence of double-sine-
Gordon kinks for various values of the parameter a.
The corresponding "translation mode" ground states
(dashed lines) and excited bound states (for type I;
dashed-dotted lines) are also shown. The plots on the
left are associated with type-I kinks and those on the
right with type-II kinks.

Only two of the four coefficients aj~+ are indepen-
dent (for a given kink type i), the relationships
among them being expressible by basic scattering
formalism. The wave vector k and the eigenvalue
co =cok are related by the continuum dispersion re-
lation for unperturbed phonons,

Nk =N 0+Cok2 2 2 2 (2.21)

The symmetry (2.19) indicates that the appropriate
set of extended solutions f(x) are those with defin-
ite parity, the even and odd members of which ex-
hibit the following asymptotic behavior, respective-
ly.

fk+(x) ~ cos[kx+ —,5+(k)] (2.22a)

fk (x) ~ sin[kx+ —,5 (k)] .
X~+ ao

(2.22b)

5+(k) and 6 (k) are the k-dependent phase shifts
associated, respectively, with the even and odd
"standing-wave" states of wave vector k. All infor-
mation concerning the scattering states needed for
the phenomenology is contained in 6+—(k). Before
presenting the phenomenological formalism, howev-

Turning now to the scattering (extended) solu-
tions fk'(x) of Eq. (2.15), we note that (2.18) im-

plies the following asymptotic behavior:

fk'(x) —+ a i'+ cos(kx)+a q'+ sin(kx ) . (2.20)
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I.O
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0.2-

er, we next consider the exact transfer-operator
method for obtaining thermodynamic functions.

III. EXACT STATISTICAL MECHANICS

The classical partition function Z for the system
described by the Hamiltonian (2.1) factors into ki-
netic and configurational parts, ~ 3 s

Z —Z Zp o (3.1)

The kinetic factor is given by

Z~ (2nAl——/Ph') i', (3.2)

where h is Planck's constant. Z~ can be evaluated

by a well-documented transfer-integral tech-

nique, ' ' ' and is given in the thermodynamic

limit, for both unbounded and periodic potentials,

by

ZI) =exp( PA too L e—o) (3.3)

where eo is the lowest eigenvalue of a transfer-

integral operator involving the strain and on-site

potential energy terms in the Hamiltonian. In the
displacive regime (I (&d) under study, the transfer-

integral eigenvalues e are those of the effective

Schrodinger equation

+ V(P )g(P ) =(~—Vp)t)(($ ),
2m' dP~

0 O. I 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9 I.O0
FIG. 6. Square of the normalized frequency

(co& z/coo) of the internal oscillation of the type-I
double-sine-Gordon kink is plotted as a function of a.

sionless effective mass m~ is very large, so that the
ground-state eigenvalue ep is given by'

eo ——Vo+ —,m' +a(m' ') —to . (3.6)

+Ao)pa(m ) Ao)p—tp '
2 y-& 2 (3.7)

The sum of the first three terms on the right-
hand side of (3.7), for any V(P), ~' is precisely equal
to the free energy density of a set of one-
dimensional classical harmonic phonons when cal-
culated to the order 0(l/d) of the displacive ap-
proximation by using the discrete-lattice dispersion
relation. ~ The anharmonic a(m' ') term is as yet
unaccounted for by any quantitative phenomenolo-

gy, but the tunneling term Ao)oto, —just as for
those potentials supporting only one type of
kink, ' can be clearly associated with the kinks; it
is therefore on this term that we shall focus our at-
tention. Specifically, the leading term at very low T
in the tunneling component for the free-energy den-
sity of a doubly periodic potential is given by

ft =—Ap) otp
2

where

=—Ao) p(tp+ to )
2 I II (3.g)

] ~ —1/2
—,m' is the lowest (n=0) harmonic level of a
single well of V(P} (recall that all wells have the
same curvature}, a(m' ) represents a shift smaller
in magnitude than a constant times m*, g & 1, due
to the anharmonicity of a single well, ' and tp &0

~ 1/2
is a splitting, exponentially small in m, due to
the very weak tunneling between wells for large m'.
The free energy per unit length is thus

AT
lnZ

AT
lnZp +AQ7 p6p

AT 2 I AT
lnZ~ +Aco p Vp+—

2 d

PE(o)
m'=(Ap)pcoP) =2

2 2J3f
i =I,II .

(3.4)

(3.&) and

1/2

tp ——
kt) T

y, e exp( —PE, )
tr AN pep

(3.9a)

Vp is a temperature-dependent zero of "energy"
that is independent of the form of V(P). We con-
sider the limit in which the thermal energy is much
less than the kink rest energy. Hence, the dimen-

'1/2 '

II 1 k~ T
fp =

Atpoco

Xexp( —pEP)) .

E y ev))
2

(3.9b)
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I

The g; are numerical constants, whose dependence
on the potential is as follows:

gati= f, d4'gi(N» (3.10a)

gi(P )
—=[2V(P )] ' —(P i

—P )

rjii= f deign($), (3.10b)

gii(0)=—)2V(0)) '"—(p —4i —0) '.
All temperature dependence of (3.8) can be obtained

by keeping lowest order terms in a WKB analysis of
(3.4), the emergence of the Boltzmann factors
exp( PE '—) from such a treatment being strongly
foreshadowed by the proportionality of the soliton
rest energies to the expressions W' defined in Eq.
(1.3). The numerical prefactor 1/v ir in to and ton

is the result of a technique whch is a modi6cation
and geneialization ' ' ' of Goldstein's method
for determination of the bandwidths for the charac-
teristic numbers (eigenvalues) of the Mathieu equa-
tion for that range of parameters in which the
Mathieu equation becomes (3.4) with V(P )= 1

+cosP and m ~
&& 1. The same numerical correc-

tion factor for WKB has been found in similar
double-well and singly periodic problems by other
workers. ' ' Especially important in this con-
nection are two papers ' by Harrell, which pro-
vide rigorous mathematical proof for these results.

Below we examine the features of the band struc-
ture, in the limit of very large m~, for the effective
Schrodinger equation (3.4) when V(P) is a doubly
periodic potential. An understanding of these
features is very helpful in motivating the plausibili-

ty and generality of the result (3.8); moreover, de-

tailed knowledge of this structure is essential for the
computation of equal-time site-site correlation func-
tions. ' Below, then, we examine the "tight-
binding band structure" of a general "dimer-based"
potential, by using the analogy with a "one-electron
problem. "

The problem is to approximate with sufficient ac-
curacy the solutions to the Schrodinger equation for
an "electron" moving in the 10 potential due to the
"atoms" of the molecular chain in Fig. 7. Although
the eigenstates of such a potential are Bloch func-
tions, for the tight-binding limit that we consider
the "electron density" will be so highly localized in
the troughs of the potential that the problem is
most conveniently analyzed in terms of the molecu-
lar orbitals of the free diatomic molecules; this is
essentially the same viewpoint as would be applied
to a singly periodic chain, except that here we deal
with molecular instead of atomic orbitals. For a di-

TOP
K= 0)

SECOND BAND (h 2) I

(ANTIBONDING M. O. ) I I BOTTO

I

I

I

I

I TOP

FIRST BAND (n= (K*~&)
I

(BONDING ' '
l

I BOTTOM.
oJ)

FIG. 7. Schematic sketch of tight-binding (high ef-
fective mass} wave functions at the zone center (k =0)
and zone edge (k =n. /p) for the two lowest bands of a
doubly periodic potential with period p. If one considers
the potential to be associated with a chain of dimers like
that in Fig. 3, the states of the lower band are formed
from bonding molecular orbitals, while those of the

upper band are formed from antibonding molecular or-
bitals.

mer, a molecular orbital is of course a linear com-
bination of the atomic orbitals from the individual

atoms comprising the dimer, so that the problem is
only slightly more complicated than that for the
singly periodic case. We focus our attention on the
two lowest bands, which are all that are needed to
compute the relevant kink-detecting correlation
functions. The main points in the ensuing discus-
sion are illustrated by Figs. 7 and 8.

For the regime of very large effective mass m ~ in
which we work, the overlap of the wave function
between molecules will be so small that near each
dimer the moduli of the eigenfunctions of the two
lowest bands will be proportional to the moduli of
the two lowest-lying molecular orbitals; each of
these two mole:ular orbitals is in turn a different
linear combination of the ground-state atomic orbi-
tals. For this "dimer-based" 1D system, these
lowest atomic orbitals are simply the ground-state
harmonic-oscillator functions for a single well of
V(P ); this accounts for the "harmonic" term
—,m~' in Eq. (3.6). The lower band is based on

the molecular orbital which is a symmetric (bond-

ing) combination of the atomic orbitals (Fig. 7, bot-
tom); the upper band arises from the antisymmetric
(antibonding) state (Fig. 7, top). The gap between
these bands is therefore due to tunneling through
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VQ+ + a(m" ')
2 Ill

li

I

(ISQLATEO WELL) 7F'

P

I

I

I

I

I

I-k
C

I

I

I

the smaller (type-I) barrier between atoms of the
same dimer; this band gap gives rise to the t0 term
in (3.8). The to term arises from the width of an
individual band. This can be seen Inost readily
when the states are written in Bloch form in the
reduced-zone scheme,

(3.11)

I

I ka—
~ p

I

he
I, k&kC

h& I, k~Q

FIG. 8. Structure of the two lowest bands of eigen-
values e in Eq. (3 4) for a doubly periodic potential V(t( )

of period p and for very large m*. The deviation he„k
(n is the band index) from the isolated-well eigenvalue is
plotted as a function of wave vector k in the reduced-
zone scheme. Note the symmetries

he~, k ———he2, k, he„, k
——S,e„,I, . The wave vector k, lo-

cates the band center. The band gap is due to tunneling
effects associated with the smaller (type-I) barrier, while
the bandwidths are due to the weaker tunneling effects
associated with the larger (type-II) barrier.

e„k ——, m~ '~ +a(m~ '—)+«„k, (3.12)

where n =1,2 are the band indices used above, we
find that

Here —n/p. &k(m/p, and n & I is an integral
band index.

~
u„k(P)

~

is practically independent
of k in this large-m~ regime, so that the probability
density

~
u„k(tI) )

~

is essentially that of the molecu-
lar orbital from which the nth band is built. The
lowest state within the bonding (n =1) band is sym-
metric with respect to the larger interdimer type-II
barrier and thus has k =0; the highest state within
this bonding band is antisymmetric with respect to
the type-II barrier and therefore has period 2p,
whence k ( =m /p) is at the zone edge. The band-
width is thus determined by the tunneling through
the type-II barrier; as mentioned earlier, this type-II
tunneling is weaker than the type-I tunneling, and
we obtain self-consistently that the bandwidth is
less than the band splitting. The upper antibonding
(n =2) band similarly will have a width proportion-
al to the type-II tunneling, although the k depen-
dence in this band is inverted from that of the lower
band. This is because the lowest state is symmetric
with respect to the type-II barrier, but the antibond-
ing orbital's antisymmetry about the type-I barrier
gives this state a period 2p, so that k =n/p; the.

highest state in the n =2 band is antisymmetric
with respect to both barriers, and therefore has the
periodicity of the potential, so that k =0. Figure 8
displays the qualitative features of the structure of
these two lowest bands.

%hen this structure is analyzed quantitatively
through the generalized method of Ref. 23, one ob-
tains the full k-dependent forms of (3.8) for the
two lowest bands. Defining

AQ)pg&1 k = —AcopkE'2 k
2 — 2

A copCp

d
AT

A copCp

p&e"'exp( PE't ')— —P—i e "exp( —PEii )
2

+4/i —pi exp(gi+gn)exp[ —P(Ei +Eii )]cos ( qpk) '

2

Each bandwidth is given by (kaz—:~/p)

I «, i —«,k=o I
=2&on (3.14) ~~2 k ~~1,k 2tp

I (3.15)

while the splitting between band centers is given by

where BZ denotes the Brillouin-zone boundary, where k, is defined as the wave vector for which
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1«.,k, =-, (~~.,k„+~~.,k =o» (3.16)

so that
' —1

1 1
cos ( —,pk, )=

2
—

4 2
—pi 4i exp(i)i+i)»)

Xexp[ —P(Eii' Ei —')] . (3 17)

[k,=+ , (n—/p) if the thermal energy is much less
than the difference in kink rest energies. ) The
reader is referred to Fig. 8 for an illustration of
these features.

For the two examples under consideration, we
have explicitly, for DPQ,

' 1/2
j Acopcp (p) (P) 2ACOpkE'1 k =—

I [exp( PEi —)—(Pp —1)exp( PE» }—]d Aco pep

+4(gp —1)cos ( —,pk}exp[ P(Ei —'+EP&')] I
'/2, (3.18a)

and for DSG,

2 1/2 1/2
(1 iz ) Acopcp AT (P) (P) 2Acop66'1 k =—

I [exp( PEi ) ——exp( 13E» }]—
V 77 d Aco pep

+4cos ( z pk) exp[ 13(Ei '+E'i—i')]I ' (3.18b)

1
(fi)DPQ

Spo:ializing Eqs. (3.18}to the value k =0, which gives the ground state of the potential, we find the tunneling
free energy densities for the two systems:

1/2
Aa)pcp kg T

[exp( PEi )+(P—o —1}exp( PE» }]—(p) (p) (3.19a)
d Aoioco

and

(1 tt2)1/2 AcopCp
(fi)DSG=-

7T

' 1/2
AT

[exp( PEi )+exp—( PE«)] . —(p) (p)

Acopcp
(3.19b)

These will be compared to the phenomenological results in Sec. IV.
We now give the general expression for the equal-time thermal average of the correlation in the values of

some function F(P} between two different sites on the chain of mass points. Specifically, in the thermo-
dynamic limit I.~ ao the correlation in F(P ) between two sites indexed by j and m is given by

(F(PJ )F'(P ))= g f dk (n'=l, k'=0 IF(P) I
n, k)(n, k IF(P) I

"n=l,k"=0} N
n ='1

1 I(&n, k ~1 0)] (3.20)

f „dk I
u.,k(4») I

'=1
~ . (3.21)

The unnormalized matrix element
(n', k'

I F(P) I n, k j is essentially a Fourier integral
transform, and is given by

where n is a band index and k a wave vector in the
reduced-zone scheme, so that e„k is as given in
(3.12).

I
n, k } denotes a Bloch eigenfunction

u„k(P )e'& of the type defined in (3.11), and is nor-
malized to unity over one period:

while the normalized matrix
(n', k'

I F(P) I n, k }z is defined as

(n, k IF(y) In, k&„
Mp/2= lim u„'k e 'k'&I'I

Xu„,k((() )e'+ .

(3.22)

element

(3.23)

I

(n', k'
I F(P) I n, k )

u„' k
e-'k &F g„k e'k&,
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The normalized matrix element is thus a finite
function of k and k' for any reasonably behaved
function F(P) that does not diverge at /=+ oo,
while the unnormalized matrix element, if F(P) it-
self goes as exp(iqFP), would give a result propor-
tional to 5(qF+k —k ) (Bragg diffraction condition
in one dimension). Below it will be seen that this is
in fact the case for the functions Fi(P) and Fii($ )

sensitive to the type-I and -II kinks, respectively.
The choice of the forms of the Fc($ ) that are kink-
sensitive is in spirit a phenomenological matter, and
is therefore deferred to the end of Sec. IV. Ap-
propriate F~(P) will be defined and substituted into
(3.20); we will then find the same quantity
phenomenologically, and compare the two results.
First, though, we find the phenomenological free
energy and compare it with its exact counterpart
computed above.

IV. PHENOMENOLOGY

Some time ago, Krumhansl and Schrieffer' (KS}
developed a phenomenological means for the com-
putation of the free energy of a soliton-bearing sys-

tem; in their model they attempted to obtain, for a
on-site potential, the phonon plus tunneling

terms in (3.7} by assuming two noninteracting ideal

gases, one composed of relativistic particles (the
kinks), and the other of phonons. Their result for
the free energy of the soliton gas agreed with that
given by the transfer-integral method to within a
slowly varying temperature-dependent factor.

CKBT (Ref. 2) improved on the model of KS by
taking into account the interaction between kinks
and phonons analyzed in Sec. II; our paper follows
their treatment. They compute that part, X, of the
free energy due to the interaction of the phonon gas
with one stationary solitonic excitation [kink or an-

tikink; see remark following Eq. (2.16}]. X is itself
the sum of two terms: (i) ~, which is the change
in free energy of the extended phonons due to the
presence of a kink, and (ii) F;«, which is the total
free energy of any internal modes of oscillation [ex-
cited bound states of V"(P'+'(x)}] the kink may
possess. CKBT assume that the free energy due to
the kink-phonon interaction in the presence of a to-
tal of r noninteracting solitoni4: excitations is simply
rX; the thermodynamics for the system is then com-
puted via a model of an ideal gas of kinks plus their
associated phonons in which the influence of the
kinks on the phonons is incorporated by renormal-
izing the rest energy of each kink particle from E' '

to E' '+X. This renormalized kink-gas model pre-

cisely reproduces the tunneling component in the
transfer-integral free energy for a wide class of sys-
tems supporting one type of soliton '; in all cases
for which calculations have been carried to com-
pletion, the agreement is numerically exact ' at low

temperatures.
Below it is shown that the natural extension to

doubly periodic systems of the CKBT theory meets
with success. In this generalization, we simply re-
normalize the rest energy of the ith type of kink
(i =I,II) by that amount of free energy X; due to
the influence of an isolated kink of that type on the
phonons; the only complication in the analysis is a
combinatorial argument needed to comply with the
topological features of doubly periodic potentials
that restrict the possible sequential arrangements of
the two types of kinks and antikinks. [This same
combinatorial restriction also applies, in simplified
form, to monokink systems; when invoked for those
potentials (given in Refs. 2 and 5) for which low-
temperature exact and phenomenological results can
be explicitly compared, it improves upon earlier re-
sults by giving exact numerical agreement for all
such potentials. ]

The kink self- (free) energy X; has the form

Ng

X;=Ed'i+aT g ln(Pirico;„),
1g =2

(4.1)

where the i ( =v' —1) appearing in the denominator
of the integrand is not to be confused with the
kink-type label. With the use of the analytic prop-
erties of the phase shifts it is possible to perform
the integration over k in Eq. (4.2) without explicit
knowledge of these phase shifts. We obtain the re-
sult

X;= k~ T In(pAcoo)+ g—; (i =I,II), (4.3)

where the temperature-independent quantities g; are

where ~; is the change in the free energy of spa-
tially extended small oscillations due to the presence
of a slowly moving kink of type i, and the second
term is the classical free energy of small oscillations
(if any) localized about the center of the kink [Ns is
the total number of bound states of the scattering
potential (2.16) for the ith type of kink]. The quan-
tities LF; can be expressed, via the change in the
phonon density of states, in terms of the phase
shift functions b,+-;(k} introduced in Sec. II:

kg TNI', In(Pfico p—)

AT +~
J „.[b+(k) 5, (k)], (4.2)
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given by

and

[2
—i/4(~I) —i/2y e&t]

[2
—i/4(~n) —i/2( i

y }e&II]

(4.4a)

(4.4b)

--P
I/2 p

V2P
Z= X/cI

The quantities W' and g; are directly related to the
local potential via Eqs. (1.3}and (3.10), respectively.

We now consider the statistical mechanics of a
topologically restricted ideal gas consisting of two
types of particles (type I and type II kinks) with re-
normalized energies given by the nonrelativistic ap-
proximation valid at low temperatures
(AT((E '):

E;(p)=E'+&—;+
2M;

(4.5)

In contrast to previous work, ' in which kinks and
antikinks were treated as separate particles, we re-

gard a type-i kink and a type-i antikink to be dif-
ferent states of the same particle; kinks and an-

tikinks will be taken to occupy different sectors of
phase space denoted by "plus" and "minus, "respec-
tively. This concept is illustrated in Fig. 9; the dots
represent the locations of kink excitations of the
types denoted by the corresponding numerals (I or
II), and the two ordered sets of plus and minus

signs below the dots give the only two possible ar-
rangements of kinks and antikinks for this particu-
lar configuration of type-I and type-II excitations.
These restrictions follow from the basic form of a
doubly periodic potential given in Fig. 3. Starting
our analysis at the right of the line of dots in Fig. 9,
we have a type-II followed by a type-I excitation as
we move to the left. If the type II is a kink, then
between the type-II and type-I kinks the P field is in

a well centered at np —Pi, so that the type-I excita-

tion must also be a kink; similarly, the type I must

be an antikink if the type II is an antikink. Con-

sideration of other cases gives for doubly periodic

topology the following general rule: Adjacent soli-

tons of the same type occupy opposite sectors of
I

FIG. 9. Topological restrictions of a doubly periodic
local potential. Shown are the two possible configura-
tions compatible with a given sequence of type-I and
type-II excitations. The dots specify the positions of the
excitations; the plus and minus signs denote kinks and
antikinks, respectively.

K X g exp(ppiNi }exp(piMnNn )
O Nn-O

XZ(Ni, Nn), (4.6)

where pi and pn are chemical potentials for the two
types of solitons, and Z(Ni, Nii) is the canonical
partition function for a system of length I that sup-
ports Nq type-I excitations and N&& type-II excita-
tions:

phase space, while adjacent solitons of opposite type
occupy the same sector. The sectors occupied by all

Ni+Nii excitations are therefore determined by (1)
the locations of the Ni points occupied by type-I
solitons, (2) the locations of the Nn points occupied
by type-II solitons, and (3) the sector occupied by
any one of the Ni+Nii solitons. The restrictive

&r+N„
role of the topology is thus to reduce from 2 '

to 2 the possible states in "sector space" corre-
sponding to a given set of Ni sites occupied by the
type-I particles and Ni, by the type-II particles.

All values of Ni and Nii are possible for a doubly
periodic system. We therefore obtain the thermo-
dynamic functions from the grand canonical kink
partition function K, which is given by

2 L qNr "rr I

Z(Ni»n)= i„,+N, i f dqN, f der, i''' fo dqi —fo dq&„ f dq&„—i
''' f

Nr Nrr

X g f dp; g f dp' exp[ —PEi(p;)]exp[ —PEii(p')] . (4.7)
i =1 j=1

The unprimed and primed variables refer to types I and II, respectively, with the q and q denoting the centers
of kink excitations, while p; and pJ denote the particle momenta. The restrictions on the coordinate integrals
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arise because "correct Boltzmann" (i.e., quantum ) counting requires that all solitons of a given type be re-

garded as indistinguishable. We are thus in effect summing over different states, or configurations, just as in

the transfer-integral method; a state is characterized only by the positions of the soliton centers, not by the ar-

bitrary labels attached to these positions. Equation (4.7) also reflects the fact that the energy "state" depends

only on the soliton momenta, not on the coordinates or sectors occupied; the prefactor 2 accounts for the two-

fold degeneracy (kink and antikink) in sector space of each set of momenta and coordinates.
The decoupled momentum integrations are easily carried out to yield

—f dpexp[ PE;(—p)]= —(PE ')' exp( PE —') . (4.8)

The restrictions on the coordinate integrals then give

Z(Ni~Nii) =2, —(PEi ')' 'exp( PEi ')—
pfxl

I
2~

NI

&xxl

~II
'

Nii

(PEIO) )
i/2 ex ( PEI0) )

27K' ~

whence

(4.9)

=x —2exp {e '(PE—p')' exp[ —P(Ei ' —W)]+ e "(PE~ii")' 'exp[ —P«'ii" —Wi)]] (410)
v'2n. d

The form above strongly suggests an alternative derivation of:-z, this other method is worth presenting, be-

cause it deals with the topological restrictions from a more local, kink-by-kink picture, thus providing insight
into the doubly periodic topology from another viewpoint. Moreover, because this method provides a formal-
ism to label explicitly each excitation's sector, it is preferable for handling systems with a net "winding num-
ber" density of kinks over antikinks (or vice versa). ' '

This alternative method is indicated when =x from Eq. (4.10) is reexpressed as

:-x——2 g —{& '(PEi ')'"exp[ —P«i ' —pi)]+e "(PEii")'"exp[—P«ii" —Iiii)II
0 X!v'2n.

1 L, N ' e& t. +& N +"
=2 y „ f dqn g f dq~; g f dp, (exp{—P[Ei(p;)—pi]I

N=O ~ i=1 j=l

+exp{—P[Eii(pj) —Vn]]) . (4.11)

The intuitive motivation for the form (4.11) is as
follows. The Xth term in the sum accounts for all

configurations in which a total of X kinks (plus an-

tikinks), each of which may be either type I or type
II, are present on the chain. The prefactor 2 outside
the sum indicates that, at the left end point x =0,
the field can start off in either of two types of wells.
These are (option 1) a type-A well with minimum at

P =Pi+np, n =0,+1,+2, . . . , or (option 2) a
type-B well with minimum at P =—P i +np,
n =0,+1,+2, . . . . We first consider option 1, and
assume for simplicity that P(x =0)-=Pi', then the
first kink encountered as one moves to the right is

I

identified by the subscript j=1 in Eq. (4.11) and
can be either a type-I antikink (which evolves the
field to the well at —Pi) or a type-II kink (which
evolves the field to the well at p —Pi). This topo-
logically restricted twofold possibility is expressed
by the factor

exp{ —P[Ei(pi) —w] J+exp{P[En(pi) —
V ii] J

in Eq. (4.11), which acts as a "local partition func-
tion" for the site (kink position) indexed by j= l.

If one now moves once more to the right until the
second kink, with subscript j=2, is reached, one
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finds that this second excitation can be either a
type-I kink or a type-II antikink, regardless of the
"choice" made for the j =1 particle, since the wells
at P =—(l}& and at P =p —

P& are both type-8 wells.
As above, this fact is expressed by the "local parti-
tion function"

exp I
—&[Ei(p2 }—(((i]I+ exp t

—P[Eii(p2) (M»] I

where we have made use of Eqs. (3.5) and (4.4).
Because the renormalization of kink energies2'

and all topological restrictions have been accounted
for in the partition function Z(Ni, Nii), the chemi-
cal potentials pI and p» are set equal to zero after
explicit formulas for the average total kink densities
(kinks plus antikinks) ni and n» have been ob-
tained:

and the field will now have been evolved into a
type-A well.

One can continue in this manner, moving from
left to right until all N excitations in the chain have
been accounted for, assigning an integral "site in-
dex" j, increasing from 1 to X, to each point qj at
which a kink (or antikink) is centered. Each site
will supply another factor

exp j
—0[Ei(pj') —(((i]]+exp I (((' [E»(pj ) (M»] I

and

~»=—

1/2

Xexp( —PEi ') . (4.13a)

aP» PII=P

1 ' 1/2
z p 0 i (i» A(pocoII

vied AT

(1Q» ()I((e
' Ace pcp

()(((,i p =p V'ird AT

to the product in Eq. (4.11). All these factors have
identica1 form, because in the present situation,
with the lack of a net winding number density, it is
unnecessary to keep track of the sectors occupied by
the solitons. However, the above method of count-
ing does provide a means of keeping track should
the need arise; specifically, the fact that any kink
evolves the system from a type-A well to a type-8
well (or vice versa) means that, in option 1, all odd-
indexed sites support either a type-I antikink or a
type-II kink, while all even-indexed sites support ei-
ther a type-I kink or a type-II antikink. When corn-
bined with the results of a similar analysis for the
boundary condition of option 2, this treatment thus
provides us with an alternative, local view of the to-
pological restrictions, and especially furnishes a
convenient means for generalization of the
phenomenology to systems with an externally im-
posed winding number density. We plan to consid-
er this case further in a future paper.

With the result (4.10} for "» thus motivated
from two different standpoints, we now use it to ob-
tain some thermodynamic quantities of interest for
doubly periodic systems. The grand canonical kink
potential density Q= (k&T/I. ) ln=» is—given, in
the thermodynamic limit I.—+ ~, by

1/2
Acopcp kg T

no ———
d Acopcp

&(exp( —PEii'} . (4.13b)

Then the free-energy density f» =Q»+(Mini
+p»n» is just

f» Q» —— ki——i T(n—i+n») . (4.14)

' 1/2
ACO pep pE(o}

v~d k, T
(4.15a)

' 1/2fp
—1 A('0 pep pg(&&)

v~d k T, (4.15b)

and for DSG,
1/2

(1 (22) ~2 ANpcp pE~(p&n=
Md k T

e ' /=III

(4.16)

If we compare Eq. (4.14) [using (4.13a) and (4.13b)]
with Eq. (3.8) we see that the tunneling portion of
the exact, low-temperature, free-energy density is
precisely reproduced by the kink contributions cal-
culated in a phenomenological ideal-gas picture.

Equations (4.13) hold for any doubly periodic po-
tential in the general class described in Sec. I, and in
particular we have the following formulas for the
kink densities in our two examples: for DPQ,

&& t Pie"'exp[ —P«i ' —(((i)]

+ ( —,'p —y, )e""

Xexp[ —P«ii' —Vii)]], (4.12)

We note that although we did not know the analytic
expression for the frequency of the internal mode of
the type-I DSG kink (i.e., we only had the numeri-
cal result in Fig. 6), it proved unnecessary to have
this knowledge for the purpose of obtaining the



1&&2 R. M. DCLEONARDIS AND S.E. TRULLINGER

+rtn(E« —24T) ~
(o)

or, more suggestively,

(4.17)

kink density. Likewise, it was unnecessary to have
explicit expressions for the phase-shift functions
b, +-(k). This is a general feature of the ideal-gas
phenomenology and has the practical consequence
that the kink densities can be found via Eqs. (4.13),
which depend only on quantities obtainable directly
from the local potential (E~' ', g; ). Explicit
knowledge of the kink waveforms or their small os-
cillations is not needed. 9

The kink contributions to the other thermo-
dynamic functions follow straightforwardly from
Eqs. (4.13) and (4.14). For example, the internal en-

ergy density is given by

u = l '(kttT)+ng(EP' ——,kgT)

another, every mass point is essentially at some
minimum in the potential. The length over which
displacements are correlated is thus determined by
the kink density, ' the presence of kinks between
two points being the only cause for a significant
difference in the displacements of those points.

We illustrate the behavior of the kink-detecting
functions F&(P) and F«(P) by looking in detail at
the construction of the former of these; for this
function F&(P ), we require that the product
Ft(PJ)Fq(P~) of its values at two lattice sites is
sensitive to type-I kinks between the jth and mth
sites, but totally insensitive to any type-II kinks in
this same region of the chain. A straightforward
means to this end is to construct F&(P) so that it
possesses the following properties:

(4.19a)

a =— ——NbNg —Nb ling kg Tn
L I

+Nt [EP'+ , kg T+ (Ns—1)kgT]—

+ Nn[EIt'+ , ktt T+(Nb—' 1)kgT]—
(4.18)

Together these imply that

Ft(P+p) = Ft(P), —

so that

Ft(0+2p }=Ft(4 } .

(4.19b)

(4.20a)

(4.20b)

N; =n;L is the total number of type-i solitons in the
system. Equation (4.18} shows u to be simply the
internal energy of a system with
L/l NsNq Nt", N—tt class—ical phonon modes, and
two types of nonrelativistic particles. There are ¹

particles of type i; each such particle has rest energy
E ', translational energy —,k~T, and thermal ener-

gy kttT for each of Nb —1 internal oscillation
modes. Equation (4.18) is thus the natural generali-
zation of the results already found for monokink
systems, ~ in that it shows that the type-I and type-II
kinks obtain their necessary degrees of freedom at
the expense of precisely the correct number of de-
grees of freedom in the phonon modes.

We now discuss the construction of kink-sensitive
functions F;(P } whose correlations [Eq. (3.20)] are
characterized by correlation lengths dependent only
on the density of kinks of a given type. We note
that in the very-low-temperature regime under con-
sideration, the mean square displacement of any
mass point due to phonons mill be so small that, to
zeroth order, the following simple situation pre-
vails: Except for the exponentially small number of
lattice sites within those transition regions -d over
which kinks evolve the field from one minimum to

The value of the product F&(PJ )F,(P ) thus
changes sign when a type-I kink or antikink is en-
countered in the segment of chain between sites j
and m, but remains invariant whenever a type-II
kink or antikink is encountered. [Recall that pl, p
are located almost exactly at some minima in V(P ),
and that minima in V(P ) are distributed symmetri-
cally about the centers of barriers I and II; we of
course assume that F&(P}~for these minima. ]

In a similar fashion, F«(P ) should satisfy

Fn( —0)=F«(0} (4.2 la)

Fn + 0 =-Fn-L L
2 2 2 2

(4.21b)

so that the periodicity properties are

Fn(0+p) =—Fn(4)

and

(4.22a)

Fn(0+2p) =Fn(4 } (4.22b)

as before.
The relations (4.19)—(4.22) imply that the most
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general forms possible for F,(P) and Fu($) are
Fourier series given by

F (y) g (2n + 1)7PQ (4.23)

F (~) ~ b
(2n+1)i'

n=1
(4.24)

Fi(P) =sin

Fn(P }=cos —P

(4.25)

»

In the low-temperature limit being dealt with, the
functions Fi(P) will be evaluated only at the
discrete set of P equal to minima in V(P ), so that it
is pointless to retain any higher harmonics in the
expansions (4.23) and (4.24), and we are left simply
with the choices

The correlation in the values of F;(P ) at two dif-
ferent sites j and m, denoted as in Eq. (3.20) by
(,F;(pj }F1(p~ )},can be found both phenomenologi-
cally and by means of the transfer-integral expres-
sion (3.20). This latter result, for which the formal-
ism is more involved, will be evaluated first.

For x—:
~

m —j ~

i &&d, a ready generalization of
the treatment in Ref. 2 shows that the sum in Eq.
(3.20) over all bands n reduces to one term, given by
the smallest value of the band index n for which the
integral over k is nonzero. For the functions given
in Eq. (4.25), these values turn out to be n =2 for
Fi($) and n = 1 for F«(P); this follows upon com-
putation of the unnormalized and normalized ma-
trix elements defined in Eqs. (3.22) and (3.23),
whose forms are obtained below.

The eigenfunctions
~
n, k & —=P„k(((}) appearing

in Eqs. (3.22) and (3.23) are given, over the interval
—p/2 & P &p/2, for n = 1,2, by

' 1/4

Iexp[ —cr(/+Pi) —iv(k)]+( —1)"+'exp[ —o(P —Pi) +iv(k)] J, (4.26)

where

t

For example, in the case of

and

10'—2 pACOOCO

v(k) = —,tan
8 sin(kp)

1+8cos(kp)

(4.27)

(4.2S)

1,0 exp 11 1,k),

one obtains

with

—1 exp(rin —ili)
1

Xexp[ —P(EIi' —Ei ')] &1 . (4.29)

The inequality in Eq. (4.29) follows for reasonably
different kink energies, with the il; defined in Eq.
(3.10}. f„k(P ) can then be found for all (('i from the
Bloch relation

(4.30)

for any integer j.
The normalized and unnormalized matrix ele-

ments involving F,(P) =sin[(m. /p)P] and

Fn(((})=cos[(ir/p)P] are found by considering ex-

pressions of the form

1,0 exp + P e,k),

e,k exp + P 1,0)» .l&

P

le
1,0 exp

r

1,k)

1 lT

exp i v(k )—+

+exp i v(k)+

Since

00

exp imp k+—
m= —~

00

exp imp k ——
18=—00

we have

00

exp imp k+-
m= —co

(4.31)

(4.32)
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1,0 exp 1,k

2~=—5 k ——cos v(k)+ —()}i

2K
5 k ——cos (4.33)

n, k= —F,(k) ),0)n

=——,[1+(—1)"]sin

n, k= —Fn(g) ),0)n

= —,[1—( —1)"]cos

(4.35c)

(4.35d)

where we have used v(k=irlp)=0 from (4.28).
The Bloch relation (4.30} indicates that any matrix
element

1,0 exp + lir .,kl

is zero unless k=rr/Jp, so that the "phase differ-
ence" 2v(k) between "atomic" states on the same
"dimer" is always zero, and therefore never compli-
cates the analysis.

In addition to the fact that

These forinulas clearly exhibit the essential features
required for the kink-detecting functions F~(P)
mentioned earlier, such as (i) the delta function in
the ordinary matrix elements, and (ii) the fact that
Fi($) couples the ground state to the edge of the
n =2 band, while Fn((I}) couples the ground state to
the edge of the lowest (n= 1}band. The final re-
sults in the continuum notation x =

~

m —j ~

i &&d
are thus

(F,((I}(0)}F,((I}(x}}}=sin —(I}i exp
p

l&
n, k exp + 1,0 ~ ——0 (4.36a)

for keir/p, the delta function in the expression
(4.33) for the ordinary matrix element, along with

Eq. (3.20},shows that

n, k= —F;(P) (,Oln

is the only normalized element which enters these
correlation functions. By inspection,

(
n. imp.

1,k= —exp 1,0 &
——cos

p . p.

and

(Fn((tI(0))Fn((I}(x))}=cos —P, exp
JP

where the correlation lengths g; are given by

ki = [P~o(~2, k=~yp F i,k=o)]-
4i=[P~~o«i, k= gp &i,a=o)] '—

(4.36b)

(4.37)

(4.34)

When all relevant matrix elements are evaluated,
one finds, for n=1,2,

The features of the band structure described by Eq.
(3.13), along with the formula (4.13}for the density
n; of the ith type of kink, yield in general

2n;
(4.38)

=—[1+(—1)"]—5 k ——sin
p

(1,0
~
Fn(0 )

I
n, k )

=[1—( —1}"]—5 k ——cos

(4.35a)

(4.35b)

Thus the correlation length for a function sensitive
to the ith type of soliton is essentially the inverse
density of that type of soliton, a very plausible re-
sult suggested by a simple phenomenological argu-
ment which we explain below.

The treatment follows that of Krumhansl and
Schrieffer, ' who point out that the exponentially
small kink densities imply that the probability
P~(n;x) of finding kinks of ith type separated by
distance x, is given by the Poisson distribution:
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—(n;(x))

P;(n,x)=
n!

(4.39)

where n;(x}, the expected number of kinks between
the two points, is just

n;(x)=n;x . (4.40)

(F;($(0))F~(P(x))}= g F; (P&)( —1)"P;(n;x)
n=0

=F,'(0, )e '"", (4.41)

which yields a correlation length

1C.)ph-=
2ni

(4.42)

in praise agreement with the general result (4.36).

The appropriate correlation functions are then
computed by application of the properties
(4.19)—(4.22} characterizing the kink-detecting
functions F;(P). The essential feature of these de-
fining properties is this: They ensure that, if there
are n; type-i kinks or antikinks between the two
points at which F;(P ) is evaluated, then the value of
the product F~(P(0) )F~(P(x)) will be ( —1) 'F~~(P

~ ),
regardless of the number of kinks of different type
which are also present. Thus the correlation func-
tions are given by

pological restrictions in placing kinks and antikinks
of the two types on the one-dimensional chain and
employing the kink self-energy correction due to its
influence on the phonon free energy, we have found
that the phenomenology gives results in precise
agreement with those obtained by the transfer-
operator method at low temperatures. In addition,
we obtained a general kink-density formula (4.13)
for this entire class of models that depends only on
quantities obtainable directly from the local poten-
tial and not on specific details of the kink wave
form or its small oscillations.

Much remains to be done, however, to extend the
above analysis still further. For example, iri experi-
mental situations it is not always possible (or con-
venient) to work at temperatures low enough to en-
sure the validity of the ideal-gas approximation (low
kink density). For this reason it is desirable to ex-
tend the CKBT (Ref. 2} theory to higher tempera-
tures where kink-kink interactions and anharmonic
phonon corrections become important. Another
area of interest is the nonequilibrium transport
properties ' of these models since tw0 types of
kinks can carry physical signatures (e.g., mass,
charge, spin, etc.). A correct quantum theory at
finite temperatures is also needed for k&T(i%59p.
We hope to address these and other questions in the
near future.

ACKNOWLEDGMENTS

V. SUMMARY AND DISCUSSION

In this paper we have modified and generalized
the phenomenological ideal-gas theory of Currie,
Krumhansl, Bishop, and Trullinger to include dou-

bly periodic local potentials bearing two types of
kink solutions. By properly accounting for the to-

We wish to thank Professor Pradeep Kumar for
enjoyable discussions. One of us (R.M.D.}wishes to
acknowledge the support of a Predoctoral Fellow-
ship provided by the IBM Corporation. This work
was also supported by the National Science Founda-
tion under Grants Nos. DMR77-08445 and DMR-
7908920.

iJ. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11,
3535 (1975).

J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E.
Trullinger, Phys. Rev. B 22, 477 (1980).

3A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger,
Physica D 1, 1 (1980).

4J. F. Currie, M. B. Fogel, and F. Palmer, Phys. Rev. A
16, 796 (1977).

S. E. Trullinger and R. M. DeLeonardis, Phys. Rev. A
20, 2225 (1979).

6Neelam Gupta and Bill Sutherland, Phys. Rev. A 14,

1790 (1979).
7R. A. Guyer and M. D. Miller, Phys. Rev. A 17, 1205

(1978).
R. A. Guyer and M. D. Miller, Phys. Rev. A 17, 1771

(1978).
9R. M. DeLeonardis, Ph.D. thesis, University of South-

ern California, 1980 (unpublished); R. M. DeLeonardis
and S. E. Trullinger, Phys. Rev. B 22, 4558 (1980).
R. M. DeLeonardis and S. E. Trullinger, Phys. Rev. A
20, 2603 (1979).

"R.K. Bullough and P. J. Caudrey, in Nonlinear Evolu-



1886 R. M. DeLEONARDIS AND S.E. TRULLINGER 27

tion Equations Soluable by the Inverse Spectral
Transform, edited by F. Calogero (Pitman, London,
1978), pp. 180—224.

2K. Maki and P. Kumar, Phys. Rev. 8 14, 118 (1976).
K. Maki and P. Kumar, Phys. Rev. 8 14, 3920 (1976).
J. Frenkel and T. Kontorowa, J. Phys. {USSR) 1, 137
(1930).

5A. R. Bishop, J. Phys. C 11,L329 (1978).
J. Schiefman and P. Kumar, Phys. Scr. 20, 435 (1979).

~7D. J. Scalapino, M. Sears, and R. A. Ferrell, Phys. Rev.
8 6, 3409 (1972).
J. F. Currie, S. E. Trullinger, A. R. Bishop, and J. A.
Krumhansl, Phys. Rev. 8 15, 5567 {1977).

9M. 8. Fogel, S. E. Trullinger, A. R. Bishop, and J. A.
Krumhansl, Phys. Rev. Lett. 36, 1411 (1976); Phys.
Rev. 8 15, 1578 (1977).

OG. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, in
Aduances in Particle Physics, edited by R. L. Cool and
R. E. Marshak (Wiley, New York, 1968), Vol. 2.

~Evans M. Harrell, Commun. Math. Phys. 60, 73
(1978).

Evans M. Harreu, Ann. Phys. 119,351 (1978).
Sydney Goldstein, Proc. R. Soc. Edinburgh T 49, 210
(1929), See. III, Eq. (2).
W. H. Furry, Phys. Rev. 71, 360 (1947).

25T. Banks, C. M. Bender, and T. T. Wu, Phys. Rev. D 8,
3346 (1973);T. Banks and C. M. Bender, ibid. 8, 3366

(1973).
26R. Dashen, B.Hasslacher, and A. Neveu, Phys. Rev. D

11, 3424 (1975).
H. Neuberger, Phys. Rev. D 17, 498 (1978).
E. Gildener and A. Patrascioiu, Phys. Rev. D 16, 423
{1977).
E. Gildener and A. Patrascioiu, Phys. Rev. D 16, 1802
(1977).

3 A. Patrascioiu, Phys. Rev. D 17, 2764 (1978).
J. L. Gervais and B. Sakita, Phys. Rev. D 16, 3507
(1977).

3 H. J. de Vega, J. L. Gervais, and B. Sakita, Nucl. Phys.
8 139, 20 (1978).

3 H. J. de Vega, J. L. Gervais, and 8. Sakita, Nucl. Phys.
8 143, 125 (1978).
H. J. de Vega, J. L. Gervais, and B. Sakita, Phys. Rev.
D 19, 604 (1979).

5Kerson Huang, Statistical Mechanics (Wiley, New
York, 1963), p. 154.

36S. E. Trullinger, Phys. Rev. 8 22, 418 (1980).
S. E. Trullinger, M. D. Miller, R. A. Guyer, A. R.
Bishop, F. Palmer, and J. A. Krumhansl, Phys. Rev.
Lett. 40, 206 (1978);40, 1603(E) (1978).
M. Biittiker and R. Landauer, Phys. Rev. Lett. 43,
1453 (1979).

3 K. Maki and H. Takayama, Phys. Rev. 8 20, 3223
(1979);20, 5002 (1979);20, 5009 {1979).


