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Electron holography and electron interferometry for magnetic specimens have no close
analogy to counterparts in visible-ray optics, while there are such counterparts for nonmag-
netic specimens. Formulas are presented for the relation between the magnetic structure of
specimens and the phase information that can be determined using such techniques. Some
simulation examples using the formulas are demonstrated including a display of the
Aharonov-Bohm effect in a form of interferometry. In addition, how a magnetic monopole
should appear on an electron hologram and how its strength and sign should be determined
from the hologram are illustrated. The interference fringes on the hologram must look like
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“a dislocation in a set of parallel lines.
strength of the monopole.

I. INTRODUCTION

While interference of electron waves associated
with diffraction phenomena has long been observed,
almost conventionally, with diffraction apparatuses
or electron microscopes, that of the “off-axis” type,
i.e., interference between electron waves propagated
in two separate directions, has been technologically
difficult to observe in practice. Recently, however,
better spatial coherency has been realized through
development of electron sources of the field-
emission type.! As a result, off-axis electron holo-
graphy? has now reached a new, practical stage.

The phase information in an electron wave
transmitted through a specimen can be visualized by
means of optical image reconstruction and optical
interferometry with electron holograms. Phase
changes in the wave during transmission through a
specimen are classified into those of electric or mag-
netic origin. The former, for example, the effect of
electrostatic inner potential within the specimen has
the closest analogy with refraction effect in the
visible-ray optics; however, the phase change due to
magnetism has no analogy outside of charged-
particle optics, so its interpretation may be more dif-
ficult in some cases.

Nevertheless, “magnetic” phase changes give us
information related to magnetic structure. There-
fore, properly designed electron holography can pro-
vide a unique method of observing magnetic speci-
mens which are beyond the capability of other
methods for their size or thickness. Furthermore, it
is expected that this technique will complement
Lorentz microscopy,’ a conventional method mak-
ing use of the effect of Lorentz force on defocused
images in electron microscopy.
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The number of extra lines corresponds to the

The purposes of this paper are, first, to clarify the
relation between the magnetization within specimens
and the resulting electron phase, second, to illustrate
several simulations, including a display of the
Aharonov-Bohm effect from an interferogram, and,
finally, to describe how a magnetic monopole should
appear in a similar interferogram.

II. MAGNETIC PHASE

Let us suppose a plane wave of electrons is being
propagated onto a plane of observation. The phase
distribution on this plane changes when a magnetic
specimen is set in the middle of the path. This
change is recorded on a hologram by making the
wave (object wave) interfere with another wave
(reference wave) split from the same source by a
biprism and propagated in a different direction.
This is the well-known principle of holography and
can now be realized in a properly equipped electron
microscope. Reconstruction of the object wave in
optical form is performed by illuminating such a
hologram, or strictly speaking a magnified holo-
gram, with the coherent wave from a laser.

The phase of the object electron wave is also
reproduced and can be visualized by means of the
interference between this wave and another optical
wave (comparison wave). Visualization is in the
form of a set of equal-phase lines, i.e., a contour
map of the “phase changes” when the comparison
wave is adjusted to be the same as the object wave
for an empty specimen. When the comparison wave
is tilted we have an interferogram consisting of
fringes. This is the experimental situation that has
been attained so far. Although the interferogram is
another contour map corresponding to a tilted level
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of the phase change, we will discriminate in this pa-
per between contour maps and interferograms in the
above sense for clarity.

Deflection of an electron beam is so small in ex-
periments with a thin magnetic specimen in an elec-
tron microscope operated at conventional voltages
(50—200 kV) that the estimate of magnetic phase
change A® in the WKB approximation is sufficient-
ly accurate:

A®, =(27e/h) [, A-ds, (1

where the integral is taken along a straight line L
corresponding to the classical electron trajectory, e
and h are the electron charge and Planck constant,
respectively, and A is the vector potential originat-
ing from the magnetic specimen. Arbitrariness in A
within the Coulomb gauge is assumed to be elim-
inated here as

divA4=0, (2)

and 4 =0 at infinity from the specimen. The quan-
tity A®; is the two-dimensional distribution of the
magnetic phase on a plane (observation plane) per-
pendicular to the electron path. The integration on
the right-hand side of Eq. (1) will be carried out over
(— 0,4 o) along L. This is justified provided that
the value of A vanishes, in effect, on the plane
where the reference beam is superposed.

The difference of the phase change between two
classical trajectories, L; and L,, can be expressed by
Stokes’s theorem as

AD, —AD; =(2me/h) fslandS . 3)

Since B, is the component of magnetic-flux density
B normal to surface S, enclosed by L and L,, the
integral stands for the magnetic flux passing
through S,. This simple expression shows that the
lines on the phase-contour map are parallel to the
flux density integrated along L and projected onto a
plane perpendicular to L and that two adjacent lines
enclose a  magnetic-flux  quantum, h/e
(=4.1x10~!° Wb), irrespective of the electron ener-
gy- N

The vector potential A(P) at point P is expressed
in terms of the magnetization M(Q) at Q in the
specimen and the vacuum permeability pq:

A(P)=[po/(4m)] [ dVoIM(Q)XRppl/(Rpp)

4)

provided that the region where M is not zero does
not extend to infinity. Rpg is a distance vector from
P to Q (Fig. 1). After integration along L in Eq. (1)
we have

AD(p)=(poe/h) [ dVoIMIQ)X Tpg 11 /(rpg)? ,
(5)

where p and q are, respectively, projections of P and
Q onto a plane perpendicular to L, T, is the dis-
tance vector from p to g, and subscript L means the
component parallel to L. Starting with Eq. (5) we
can obtain different expressions of A®(p) under par-
ticular assumptions about M, or for convenience in
numerical estimation.

In an actual experiment the specimen may be
composed of domains in such a way that the mag-
netization is not continuous across boundaries but is
differentiable within each domain. In such a case

A®(p)= (e /h) S, | P dSol T XM(Q)],1nr,g

+ [ dVol VXMl lnr,, | ,
(6)

where the summation is over all domains, and 1 is
the outward normal to each domain surface.

Magnetic closure structures provide special condi-
tions. For example, if M is mathematically diver-
gence free and its normal component is continuous
across boundaries including the outer surface, B
equals HoM inside and vanishes outside of the speci-
men so that

VI[AD(p)]=(pee/h) [, [MXds]y . @)

The integral here is along t the trajectory line L pass-
ing through point p, and V% is the two-dimensional
gradient operator. In this particular case we can
read magnetization distribution more directly from
the contour map. The photograph shown by Fig.
3(b) in Ref. 2 roughly corresponds to such a case.

electrons

FIG. 1. Geometric relations among electron trajectory
L, the specimen, and its projection.
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III. SIMULATIONS OF PHASE-CONTOUR
MAPS
If the specimen has a constant thickness ¢ and M
can be assumed to be independent of the coordinate
parallel to L, then the contributions from the top
and bottom faces of the specimen are canceled out
and

AD(p)=(pge /h) S, [ ¢ dl,[7x M(g)],Inr,
+ [ dn [T xM(g)],
X1nry, ] . (®)

The first integral is along the outline of each pro-
jected domain with the outward normal ¥ and the
second one is over the projected domain. Equation
(8) can be used for numerical simulations of phase-
contour maps from presumed flux distributions. A
few simulation examples using Eq. (8) are illustrated
here in Fig. 2. .

Discussions so far have assumed M to simulate
the phase distributions for comparison with experi-
mental data. One may be tempted to reverse the
procedure, i.e., to derive magnetization distributions
of modest accuracy from experimental phase con-
tours. However, this is not possible. As is proved
by a standard technique of vector analysis, the gra-

@

FIG. 2. Simulated phase-contour maps. All sample
sizes: 1 pumX4 umX50 nm; saturated magnetization: 1
T/po. M is parallel to the longer edge except in the
domain-wall regions. The wall, 0.5-um wide, is along the
longer center line of each rectangle. (a) Rectangular sin-
gle domain. (b) Rectangle with a Bloch wall. (c) Rectan-
gle with a Néel wall. Direction of M in the wall rotates
counterclockwise within the paper plane from top to bot-
tom.

dient field for any potential function which is zero
on the specimen surface can be added to M without
resulting in any change in A®. This means that
there can be no unique M distribution for a given
A®. Clearly we need more information than A®
distributions to restrict and eventually determine M
distributions.

Another simulated example is shown here con-
cerning a demonstration of the Aharonov-Bohm ef-
fect. In quantum mechanics the wave function of a
charged particle is affected by a magnetic vector po-
tential in an observable way even where no magnetic
flux exists. This Aharonov-Bohm effect* reveals it-
self as a difference in phase between two waves after
having traveled in different directions around a
magnetic sample leaking no magnetic flux. Pioneer-
ing experiments on this effect have been published
by several authors,’ including the work by Mollen-
stedt et al. with tiny solenoids. However, some peo-
ple still doubt its existence or the validity of the ex-
periments.® Discussions of works purporting to
show its nonexistence are not convincing to the au-
thors of the present paper.

The holographic method of phase measurement
described in previous sections can be applied to con-
firm the Aharonov-Bohm effect in a new way. Let
us suppose a ferromagnetic sample is in a doubly
connected or toroidal form with a magnetic closure
structure such that there is no magnetic-flux leak-
age, as is shown schematically in Fig. 3(a). Green-
berger'? has suggested the usage of such a ferromag-
netic doughnut and Kuper!® has proposed the idea
of flux confinement by a hollow superconductive
torus.

An electron hologram taken of such a specimen is
set in an optical reconstruction system and the ob-

(a)

FIG. 3. Holographic display of Aharonov-Bohm ef-
fect. (a) Doubly connected shape with a magnetic closure
structure. (b) Phase-contour map without flux leakage.
(b') Phase-contour map with flux leakage. (c) Interfero-
gram showing Aharonov-Bohm effect. (d) Interferogram
for null magnetization but only refraction effect.
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ject wave field is optically reproduced. This wave
field is overlapped with a parallel comparison wave
and then a tilted comparison wave, and the resulting
interference patterns just on the image plane of the
object wave are observed as a contour map and an
interferogram, respectively. These patterns will ap-
pear schematically like Figs. 3(b) and 3(c).

Since the interference is observed on the image
plane, the outline of the toroid must be seen super-
posed on the pattern so that each location on the
pattern corresponds to a partial object wave having
passed a particular part of the object plane within
the resolution accuracy. We can measure, by tracing
or counting the fringes as shown in Fig. 3(c), the
phase difference AP between the two waves, each of
which has been propagated through outer or inner
space around the toroid magnet but has never passed
the magnetic flux inside it. When the magnetization
and the thickness of the toroid are estimated before-
hand, we can check whether the dependence of the
phase difference on these values is consistent with
Eq. (7). When sample preparation does not form a
complete closure structure, flux leakage will result.
This can also be recognized on a contour map, as
shown in Fig. 3(b’), and evaluated in order to decide
if it will seriously affect the conclusion or not. Ex-
perimental work was done by the same group in
parallel with this paper and its result was reported
separately.’

Furthermore, if the specimen temperature can be
raised above the Curie point in the recording ap-
paratus, another interferogram like Fig. 3(d) can be
obtained. This combined with one below the Curie
|

Ry 0<0<m/248, O<r, Ayg——8——
¢ <@ <m/ot < 4e 47 sinf
Ry: m/2—8<0<m, O<r, Ag———5
oi T/ <v=T <r $™ 4rrsind

S'=S8p, =exp(—iged /h) .

Since S should be single valued, we obtain Dirac’s
quantization

ge/h=D, (10)

an integer. The above result, (9), is applied to derive
the phase relation between the objective and refer-
ence electron wave and, eventually, to give the inten-
sity distribution in the hologram. A schematic ar-
rangement for hologram recording is illustrated in
Fig. 4(a). It should be noted that the wave function
of the reference wave continues from region R, to
region R, at ¢ =0. Assuming that the object beam
is vertically incident to the recording plane and that
the amplitudes of both waves are equal, we obtain

point, will quite convincingly show the Aharonov-
Bohm effect.

IV. HOW A MAGNETIC MONOPOLE LOOKS
IN A HOLOGRAM

Magnetic monopoles have been widely researched
in both artificial production and exploration in na-
ture since Dirac’s hypothetical proposition® about
their existence and quantization of their strength g.
It was reported quite recently that a moving mono-
polc; was recorded by using a superconductive detec-
tor. .

The sign and the strength of a monopole can be
determined also from a hologram provided that it is
stably fixed on a proper substrate as an electron-
microscope specimen. The hologram is formed in
the same way as in our previous example.

While the magnetic flux around a monopole is
unique, the singularity of corresponding vector po-
tential A can never be restricted only to the mono-
pole location. Thus difficulty arises in defining the
phase factor of the electron wave function propagat-
ed around it. Wu and Yang'® suggested the follow-
ing.

The whole space except the monopole point is di-
vided into two partially overlapping regions, in each
of which A is defined to be regular in form. In the
overlap of the two regions the two discrete forms of
A are related by a gauge transformation, which
creates multipling phase factor S between the two
corresponding wave functions.

One possible choice given by Wu and Yang is

(1—cosf), A,=Ag=0,

(14cosf), 4,=A44=0, 9

@ (b D=+1 () D=-2

FIG. 4. Holographic observation of a magnetic mono-
pole. (a) Arrangement for hologram recording. M is a
monopole and P(r,0,4) is the point for estimating vector
potential A. (b) Hologram for D= +1. D is an integer
defining the monopole strength. (c) Hologram for
D=-2.
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the intensity I of interference pattern in terms of x
and ¢,

I(x,¢)=14cos(kx sina — D¢ +8) , (11)

where k is the wave number of electrons and 8 is a
constant corresponding to the optical-path differ-
ence between the two waves.

Since the WKB approximation is adopted here
again, this expression is not correct in the vicinity of
the exact shadow point of the monopole. However,
it is accurate enough for the following conclusion.
Examples of the interference patterns are shown in
Figs. 4(b) and 4(c). The patterns look like crystal-
lattice planes around and edge dislocation and thus
one can count the number of extra lattice planes and
decide on which side they extend. It should be
remembered that such a dislocationlike pattern
should never appear for any divergence-free flux
field.

More precisely, any pair of dark lines [4-4' and
B-B’ in Figs. 2(b) and 4(c)] enclosing the projection
of the monopole confines a different number of dark
lines between them on opposite sides of the projec-
tion. Subtraction of the number on the right from
that on the left gives integer D, provided that right
or left is viewed from the direction of the tilted
reference beam. This determination of D is indepen-
dent of 8, although 8, does affect the entire pattern
especially near the shadow point of the monopole.
Finally, it should be noted that Dirac’s quantization
condition (10) for g is indispensable to defining any
hologram pattern.

V. CONCLUDING REMARKS

It has been derived that a two-dimensional vector
distribution of magnetic flux integrated and project-

ed along the incident electron trajectory is what we
observe as a contour map or equal-phase fringes pro-
duced from the electron hologram of a magnetic
specimen. This should be the basis of interpretation
when the technique is applied to investigation of
magnetic materials.!! The phase increment attribut-
ed to magnetism is also expressed as an integral of
the magnetic vector potential along the trajectory, in
a fairly good approximation. This phase has no
counterpart in visible-ray optics.

When the sample has a magnetic closure structure
in a doubly connected shape, there is a space free of
magnetic flux with a nonvanishing vector potential
around the sample.!*!® This type of sample, com-
bined with the holographic phase determination of
electron waves, provides a clear-cut test of the
Aharonov-Bohm effect as was shown in a recent ex-
perimental work.’

It has also been shown that a magnetic monopole
appears as a particular pattern, similar to “a disloca-
tion in a set of parallel lines” on a hologram. No
magnetic-flux distribution can produce this type of
pattern as long as the distribution is divergence free.
Thus electron-holographic interferometry affords a
decisive method of recognizing a monopole, provid-
ed that it can be fixed properly as a sample.
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