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It is shown that some recently proposed iterative approaches to the ground state of quan-

tum systems can be obtained as zero-temperature limits of free-energy-preserving renormali-

zation transformations, if the perturbative expansion is handled in the appropriate way. Be-
sides giving new insight into the ground-state approaches and their mutual relationships,
these results allow us to perform consistent approximate calculations of the free energy at
all temperatures and to get global descriptions of the critical properties. Free-energy and

specific-heat calculations are reported for XF and Heisenberg spin- —chains and for the tri-

angular XF model. It is also demonstrated how this extension into finite temperatures al-

lows us to compute in a consistent way the z exponent, and to obtain substantial improve-
ment in the numerical values for the ground-state energy density of the transverse Ising
model.

I. INTRODUCTION

The study of quantum models is quite important
for the theory of phase transitions. In these systems
thermal fluctuations produce finite-temperature crit-
ical phenomena, just as in the classical systems. In
addition, quantum fluctuations associated with the
noncommutativity of the variables can lead to essen-
tially new features of the thermodynamic behavior,
especially at low temperatures, where thermal fluc-
tuations become less important.

Quantum fluctuations alone can even determine
zero-temperature critical phenomena in the ground
state of a model. ' The quantum critical behavior of
some d-dimensional quantum models at zero tem-
perature also turns out to be the same as that of cor-
responding (d+ I)-dimensional classical systems at
finite temperature; this last feature is, of course,
very important for applications.

This work deals with some recently developed
real-space renormalization-group methods for the
study of quantum systems on lattices. In the litera-
ture on the subject one can trace a clear distinction
between two different main kinds of approaches. In
the first category fall methods more directly in-
spired by analogous work performed on classical sys-
tems. Such approaches were originally proposed

for the study of quantum systems at finite tempera-
ture, and they mostly made use of approximation
schemes expected to be good only at high tempera-
tures. As in the classical case, the basic goal of
these techniques was that of establishing a regular
free-energy —preserving mapping in the space of re-
duced Hamiltonians of a system; this mapping was
obtained by some partial resummation over the de-
grees of freedom of the system. In a second, and far
more numerous, category fall other approaches deal-
ing directly and exclusively with the ground-state
properties of quantum systems. ' ' For these latter
methods the connection with the techniques used in
the classical case is far from clear, in general, and is
only based on some formal analogies. ' '9 Apparent-
ly, there is no explicit link between the approaches
of the first and of the second group.

Our main purpose here is to demonstrate the ex-
istence of such a link in all the most significant
cases. Indeed, we are able to show that all
the above-mentioned ground-state renormalization
transformations can be recovered as zero-
temperature limits of properly defined free-
energy —preserving mappings of the first type, com-
puted in a suitable cumulant approximation.

As a consequence, the zero-temperature ap-
proaches allow natural finite-temperature exten-
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sions. On the basis of such extensions one thus ob-
tains a unified description of the properties of a
quantum system at all temperatures, the description
being based on a unique and consistent approxima-
tion scheme. Particularly appealing in this respect is
the possibility of describing the low-temperature re-
gion where the crossover from classical to quantum
critical behavior possibly takes place.

1
We show in some examples (spin- —, XY and

Heisenberg chains and spin- —, triangular XY model)
that our finite temperature extension of the ground-
state calculations leads to a satisfactory agreement
of the thermodynamic properties with known or ex-
pected results.

From a general point of view, our results also lead
to a better understanding of the different zero-
temperature methods and of the relationship be-
tween them. In the case of the approach of Refs. 10
and 11, such a better understanding also allows us to
compute successfully an additional zero-temperature
exponent (z) and to perform more consistent
ground-state energy calculations. The z exponent
could never be obtained before with the method of
Refs. 10 and 11.

This paper is organized as follows. In Sec. II we
give a first set of results concerning the finite-
temperature extension of ground-state renormaliza-
tion methods for systems without external fields like
the spin- —, XY model. ' ' In the same section we
illustrate applications of these results to Heisenberg
and XY models. In Sec. III we consider the so-
called SLAC renormalization-group ap-
proach, ' ' ' which can be applied to the study of
zero-temperature critical phenomena in systems like
the Ising or XY model with transverse fields. For
the SLAC method we also find appropriate exten-
sions to finite temperatures. We consider some gen-
eral further aspects of the SLAC method and of an
important generalization of it in Sec. IV. Section
V is devoted to the discussion and extension of the
approach of Refs. 10 and 11 and to the comparison
of its results with those of the SLAC method. The
comparison is also based on the new calculations of
the z exponent, the crossover exponent, and of the
ground-state energy for the Ising model with trans-
verse field in one and two dimensions. The last sec-
tion is devoted to general comments on the results
and to a discussion of possible further developments.

II. RESULTS FOR MODELS
%'ITH DEGENERATE CELL

GROUND STATES

The ground-state properties of spin- —, systems,
such as nearest-neighbor antiferromagnetic Heisen-
berg chains or two-dimensional ferromagnetic XY

models, received particular attention in the recent
literature. ' ' ' ' For such models, when there
are no external fields acting on the spins, specific
iteration techniques have been developed for the cal-
culation of the ground-state energy density. These
techniques are based on the possibility of dividing
the lattice into cells with a doubly degenerate

1

ground state (for the case of spin —,), and they have
some formal analogies with the renormalization-
group approaches in real space for classical or
quantum-statistical systems. " Here we will show
that the connection between such iterative methods
and standard real-space renormalization approaches
is much deeper than a purely formal analogy.

Let us consider the specific example of a spin- —,

XY model on a triangular lattice. The Hamiltonian
of such a system can be written in the general form

H( IS[ ) =—Ji g (S;"SJ"+Sf'~)

—J $ (S S"+SfSJ)+ .
(ij )NNN

(2.1)

where S,",S~ are Pauli matrices and J&,J2, . . . are
nearest neighbor (NN), second nearest neighbor
(NNN), . . . exchange interactions, respectively.

The zero-temperature approach consists in divid-
ing the Hamiltonian K into an unperturbed part Ho,
containing the interactions within cells, into which
the system has been partitioned, and a perturbation
V, containing interactions between different
cells. ' ' Choosing, e.g., triangular cells of three
nearest-neighbor spins, the cell lattice is also tri-
angular and rescaled by a factor l =v 3 with respect
to the original lattice. With such a choice of the
cells and in view of the symmetries in spin space,
each cell turns out to have a doubly degenerate
ground state. This Kramers doublet is interpreted in
this approach as the doublet of an effective cell spin.

We have chosen to label the energy eigenstates for
a cell by 0~ and v~. 0~ represents the eigenvalue
+ 1 of the cell operator sign ( g,.

i S,'), and
v~=1,2,3,4 spans the degeneracy of this operator
within each of its two eigenspaces. For each eigen-
state belonging to the space with a~, there is a cor-
responding eigenstate with the same energy and
—0~, which we label by the same ~~. By conven-
tion we assign v =1 to the ground-state doublet. In-
dicating by ~u~, ~~ &~ the above-mentioned cell ener-

gy eigenstates, the unperturbed ground states of the
system are the 2 ~ states (N is the number of lattice
sites in the system):

N/3

(2.2)
a=1
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where the product runs over all cells. o', which
spans the degeneracy of each cell ground state, will
be identified with the eigenvalue of the z component
of the effective cell spin.

Let us denote by J the set of exchange interac-
0 +

tions between the spins, and by Eo( I ) the ground-
I

state energy corresponding to H0. Within the
framework of Rayleigh-Schrodinger perturbation
theory, the determination of the ground-state ener-

gy of the system amounts to the diagonalization of a
2 )(2 matrix, whose elements, up to second or-
der in V, e.g., take the form

Eoo&i&5&&+ I, I~.'*I&+&I~*.l, I&II VI I~.'*I,I&l&+(I+I, I+I ~, - &' I~':I,I&I)+
Eoo( I)—Ho

(2.3)

with

(2.4) R;(l,x2,x3, . . . )

Ri(l, x3,X3, . . . )
' l =2~3~. . .

(2.6a)

(2.6b)

projecting on the excited states of Ho.
Up to a constant term W( J), containing Eo(I)

and higher-order contributions, it is thus natural to
interpret (2.3) as matrix elements of an effective-cell
Hamiltonian of the same form as the original one,
but with different interactions J '. This interpre-
tation is, of course, also suggested by the meaning of
the eigenvalues cr'.

Once this step is made, the calculation of the
ground-state energy E can be performed within an
iterative scheme, formally analogous to that of
renormalization-group calculations of the free ener-

gy.
26 To show how the scheme works, let us first in-

troduce dimensionless parameters x; =J;/J i

(i=2,3, . . .). The recursions implied by the identifi-
cation of (2.3) with an effective-cell spin Hamiltoni-
an can be expressed by

J =R(J), i =1,2, . . . Q.5)

or, more conveniently, by

In terms of dimensionless quantities, defined by

E(x2,X3, . . . ) = lini
W ~ NJ1

8'
w(xi, x3, . . .)= lim

M1

(2.7a)

(2.7b)

)(e'(X2,X3, . . . ) . (2.g)

n is the number of spins in a cell; it is equal to 3 in
our example. If some suitable boundary conditions
are satisfied ' the difference equation (2.8) can be
solved by iteration as

where E is the ground-state energy of the whole sys-
tem, we finally obtain that, in the thermodynamic
limit, the following basic equation must hold:

e (X3,X3 &
~ ~ ~ ) —W (X2yx 3 y ~ ~ ~ )

1+—Ri(l, x3, . . . )
7l

00 i —1

e(xi,x3, . . .)=w(x2, x3, . . .)+ g n ' g R, (l,x' ', . . . ) w(x2', x3', . . .),
i=1 j=0

(2.9)

where xk' is the ith iteration of XI, (=xk ') according to (2.6b).
We will now show that the above algorithm for the ground-state energy can also be obtained as the zero-

temperature limit of a properly defined real-space iteration scheme for the calculation of the free energy at fin-
ite temperature. In the context of the renormalization-group approach to the thermodynamics of quantum-
statistical systems, one can define a free-energy —preserving mapping from the reduced Hamiltonian pH
(p= I/k~T) to an effective cell Hamiltonian p'H' (constant terms included), according to the following basic
equation ':

&I+ I le ' 'I Io'*I &=Tr(..)&I& I Ir-I le ~
I
Io"I l~ I & (2.10)

where the definition of
I I o~ J, [r~ I & is an obvious generalization of (2.2), and, as in the previous case, o~ and

o~* are interpreted on the left-hand side (lhs) as z components of cell spin variables. ' Indeed, Eq. (2.10) impli-
citly defines a mapping in the space of reduced interactions K~ ——pJ~ (i=1,2, . . .). In order to recover the previ-
ous zero-temperature scheine in the limit of p~ Oo, the basic step consists now in expanding the exponential
on the right-hand side (rhs) of Eq. (2.10) in powers of V. To this purpose, we use the Feynman identity
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0++ PHO J s PH0 P'H0
e =e T exp — dp e Vep

where T& is the "time ordering" operator with respect to decreasing values of p.
Expanding up to second order in V both sides of Eq. (2.10), we obtain

&(f0'j f "})—&f+}I&'H'
I f "}&—&f&}I&'Hl If "}&

(2.11)

+ —, X &f& } I&'H'i
I f~.'"j &&f~;"IP'Hi

I f~."j&+

=Tr(, )e
""""5(fr*.},f~a'}}—& fata} fr&} I&v I

f&a'j fr+}&

+ g & f+ j, fr. j I&Vl f~."'},fr."&& f~.'"j,fr."}I&v I f~'},fr. j &

X Q(P[Ep( f r "}) Ep( f 7—})])+ (2.12)

where we used the function Q(x), defined by

Q(x) =—+1 e "—1

X

I

performing the trace with respect to f
cr' },we must

obtain, after taking the logarithms and dividing by
N, for iii going to infinity,

with (2.13) f(&)=g (&)+—f(& '(K)), (2.15)

Q (0)—= lim Q (x)= —, .
x~0

In (2.12} Ep( fr~ j ) indicates the unperturbed energy
levels of Hp, and Ep(fl j)=Ep( J) is the ground-
state energy of Hp. The transformed Hamiltonian
H' was also split into a zeroth-order constant term
Eo, given by

—P'Ep ——ln Tr(, )exp[ PEp( fr })]—, (2.14)

and in first- and second-order terms Hi and Hz,
respectively. The energy eigenvalues of Ho depend,
of course, only on the fr~} configuration, as a
consequence of our labeling of the states

I
o,r &

Equation (2.12} allows us to determine H' and
thus its reduced couplings K' up to second order in
V for all P. Furthermore, taking f

cr"}= f
a' j and

where f is the dimensionless free energy per spin in
the thermodynamic limit, and g comes from an ex-
tensive constant term in H'.

The crucia1 point consists now in showing that
Eqs. (2.10), (2.12), and (2.15) for P~ ao lead to the
equations of the T=D approach described above.
Letting P go to infinity in (2.12) (this means that all

K, "s on the rhs go to infinity with the same rate), the
dominant contributions on the rhs are those propor-
tional to exp[ —PEp(f1})]. The argument x of the
Q function goes to infinity too, except for the degen-
erate cases where Ep(fr })=Ep(f1 }); in these

1

cases x=0 and Q takes on the special value —,. Tak-

ing thus into account on both sides only the dom-
inant contributions for P,P' —+00, we obtain asymp-
totically, order by order in V,

P'Ep -PEp(flj),
& fC } I

&'H'i
I f&."}&=& f& },fl} I&v I f~."},fl}&,

(f&flP'~ill~.'*l&=(f+l, f~l 0& z, ~ 0& f~.'*l, l~l),

(2.16a)

(2.16b)

(2.16c)

where (2.16a), (2.16b), and (2.16c) refer to zeroth,
first, and second order, respectively.

It is immediately clear that Eqs. (2.16) imply
asymptotically for the K s the transformation

E/ =R;(K), i =1,2, 3, . . . (2.17)

where the RJ functions are the same as those in
(2.5). Equations (2.16) also imply that, for P going
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to infinity,

g (K)~Kiw(x2, x3y ~ ~ ~ ) (2.18)

where w is the same function appearing in Eq. (2.8).
Dividing then Eq. (2.15) by Ki and taking the limit
of K going to infinity (x; =K~/K, fixed), we obtain
a recursion formula for the dimensionless ground-
state energy F(xi,x3, . . .). Taking into account
(2.5), (2.6), and (2.16)—(2.18), we finally realize that
(2.15) is converted in this way exactly into the form
(2.8) with xz,x &, . . . given by (2.6b). For this result
we use the fact that the limit of f/Ki, for P going
to infinity, must be equal to e. This shows that the
renormalization approach just described reduces to
the iterative scheme of Refs. 17 and 18 in the limit
of zero temperature.

A natural question concerning the above result is
whether the technique for the finite-temperature re-
normalization mapping is unique or not. The
answer is that there are certainly many different re-
normalization transformations with the same limit
property of reducing to the given ground-state ap-
proach. One could indeed make a somewhat dif-
ferent choice of the states

~

o,r ) in each cell. If
these states are chosen not to coincide with energy
eigenstates, but with orthonormal combinations of
them, one can obtain a different finite-temperature
transformation, having however the same limit for
T approaching zero. The only requirement on the
linear combinations is that they do not mix
cr' = + 1 with o = —1 eigenspaces, and that for a
given r the o' =+ 1 state is obtained from the
e' = —1 state by reversing all the z components of
the spins in the cell.

We now want to show some examples of how this
finite-temperature extension of the ground-state
method allows us to make consistent approximate
calculations of the free energy at all temperatures.
Of course, as we will see, this can be more or less
difficult, according to the degree of complication of
the thermodynamic behavior of the system at finite
temperatures (e.g., presence or absence of critical
singularities). We performed free energy and specif-
ic heat calculations on one-dimensional models for
which exact (spin- —, XF chain) or numerical (spin- —,

Heisenberg chain) results are available for compar-
ison. For such systems the extension of the
ground-state iterative calculations is rather straight-
forward and very successful, already in first-order
schemes.

The agreement of our first-order free-energy cal-
culations on quantum chain systems with exact or
independent numerical results is quite satisfactory
for all temperatures. Indeed, on a percentile basis,
our free energies deviate not more from the expected
values than the corresponding iterative ground-state

C

Nk

0.5

0.

FIG. 1. Specific heat for the antiferromagnetic Heisen-
berg chain vs temperature; the solid curve represents the
results from our iterative calculation, the dotted curve
shows the numerical extrapolation from Ref. 28.

energies. In the case of the ferromagnetic XFchain,
e.g., with a three-spin cell transformation, the max-
imum percentual deviation of our free energy from
the exact one is about 13%, whereas the ground-
state energy deviates by 11%. As an illustration of
our results, we compare in Fig. 1 the specific heat of
the spin- —, antiferromagnetic Heisenberg chain, ob-

tained by our method (three-spin cell first-order
transformation), with the values extrapolated nu-
merically by Bonner and Fischer on the basis of
finite-chain calculations (up to 11 spins). As one
can see, the behavior of our results for specific heat
is particularly satisfactory, especially at low tem-
peratures.

These results show that our finite-temperature ex-
tensions are very meaningful and successful for
one-dimensional systems, which are the object of
most applications of ground-state renormalization.
Here we also want to discuss the relatively more
complicated situation arising when we try to get a
global thermodynamic description of a highly non-
trivial model like the two-dimensional ferromagnetic
XF model, for which series expansions ' and re-
normalization approaches ' give evidence for the
existence of a critical transition at finite tempera-
ture. The presence of a singular behavior in the free
energy at a finite temperature makes it more diffi-
cult to find approximations that are acceptable both
at high and low temperatures.

A first attempt to an iterative computation of the
ground-state energy of the triangular spin- —, XF
model was done by one of the present authors' on
the basis of the T=O method of Ref. 16. In Ref. 17
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the system was divided in three-spin triangular cells,
as described in the beginning of this section, and the
perturbational part of H, V, was initially taken to be
equal to the sum of all interactions among spins of
different cells. In contrast to what happens in
analogous calculations with one-dimensional
models, the standard ground-state calculation
scheme was, however, giving a rather strong devia-
tion of the second-order result, as compared to the
first-order result. ' Furthermore, this second-order
result turned out to disagree, quite sensibly, with the
independent estimates of Refs. 22 and 23.

This suggested' the modification of the perturba-
tion scheme by introducing a different separation of
H into unperturbed and perturbed parts. Indicating
by Ho and V the previous terms, one might replace
them by

Ho ——mo,
V= V+(1—A, )Hp,

(2.19)

(2.20)

with X being a parameter to be determined. The
separation (2.19) and (2.20), which reduces to the
standard one for A, =1, was made in the hope of
"reducing" the relative strength of the perturbation
V. A very simple qualitative argument of topologi-
cal nature would suggest a value of A, around 3 for
specifying a "good" splitting of H. '

The second-order results based on (2.19) and
(2.20) are rather sensitive to the choice of A,. It turns
out that one has to choose A,=2.3 in order to be in
strict agreement with the results of Refs. 22 and 23.

The free energy of the XY model with nearest-
neighbor interaction J~ on the triangular lattice is
rather well known at high temperatures through its
series expansion in Ei ——PJi. By iteration of
(2.15), we can show that our method in a second-
order cumulant expansion agrees exactly with the
series expansion of the free energy up to second or-
der in E„independently from the choice of A,.
Higher-order terms in E~, however, are reproduced

only approximately, and for every value for E& we
can determine an optimal value A,(E, ) such that our
iteration procedure reproduces exactly the free-
energy value obtained by applying the standard Pade
analysis on the series expansion. In Fig. 2 we have
plotted this optimal A,(Ei ) within the confidence re-
gion of the Pade analysis, as a function of
exp( —2%i ), which is the natural expansion parame-
ter for our iteration scheme. We see that this op-
timal value tends to A,=1.5 for high temperatures,
while somewhat smaller values have to be used for
lower temperatures. At lower temperatures, howev-
er, the Pade results start becoming doubtful, due to
the approach of the critical point.

Very little is known about the low-temperature

3.0-'

X

2.0—

/
/

/
/

/
/

/
/

/

1.0—

I I

0 0.1 0.2 0.5 1

e-2K)

FIG. 2. Solid curve shows the optimal values A,(E~ ) for
choosing the perturbational part of the Hamiltonian,
according to (2.20), as a function of exp( —2K)
=exp( —2PJ&). Optimalization is obtained by comparing
the free energy from iterating (2.15) with results from
series expansions, for the XFmodel on the triangular lat-
tice. Dotted line shows the critical points E,(A, ).

4.0

3.0-

2.0—

1.0
1,0 1.5 2.0 2.5 3.0

FIG. 3. Ground-state energy e per lattice site, as de-

fined in (2.7), obtained from our iteration scheme (2.8), as
a function of the parameter A,. Dotted level represents the
numerical estimate obtained for e in Refs. 22 and 23, and
this is reproduced in our scheme with A,=2.3.

thermodynamic properties of the two-dimensional
XY model, except for some numerical estimates of
the ground-state energy e. In applying our iteration
scheme (2.8), our predictions for e are again A,

dependent, as shown in Fig. 3. As we said already,
in order to agree with the estimate e —1.58 for the
triangular lattice, ' we should use A,=2.3. The de-
viation from this expected result is rather limited as
long as A, ) 1.5, but it becomes much stronger for A,

values around 1.0.
Since both the high- and low-temperature thermo-

dynamic behavior are qualitatively well described by
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III. FINITE-TEMPERATURE EXTENSION
OF THE SLAC APPROACH

In this section we will focus our attention on a
particular zero-temperature renormalization meth-
od, which can be used in the interesting case of non-
degenerate cell ground states. This technique, origi-
nally inspired by the Wilson approach to the Kondo
effect, 3s can be seen as an iterative approximate
method for the construction of the ground state of a
system. In the form presented here, the method was
first proposed by Jafarey et al. , and later strongly
developed by Drell et al. for problems of lattice
theory. ' A detailed discussion of this so-called
SLAC method is beyond the purpose of this paper.
Here we will recall very briefly the basic definitions,
using the spin- —, Ising model with transverse field as
an example.

This model is described by a Hamiltonian of the
form

H = —z g s,"s,"—res,',
(ij ) i

(3 1)

where J is an exchange Ising-type interaction and I
is the transverse field. S," and SJ' are Pauli spin
operators. In (3.1} the sum over i and j is restricted
for the moment to couples of nearest-neighbor sites.

a choice of A, in the range 1.5&A, &2.5, it is very
tempting to assume that a fixed choice for A, in this
interval may give, at least qualitatively, a correct
description of the whole temperature range. For
every A, we have a critical point K, (A, } such that for
all Ki &K, the repeated iteration (2.17) on
K=(Ki,0,0, . . . ) leads ultimately to the infinite
temperature fixed point K~=(0,0,0, . . . ), whereas it
tends to infinity (the zero-temperature fixed point)
for Ki & K, . This relation between 3, and the critical
value E, has also been displayed in Fig. 2.

For the specific choice A, = 1.5, we have
K,(1.5) 0.52, and K, decreases slightly with in-
creasing A, . According to high-temperature series
analysis, the transition could tentatively be located
at E,=0.76 when one assumes a power-law singular-
ity in the magnetic susceptibility, but this estimate is
not very reliable and could radically change if an ex-
ponential singularity were assumed.

It is interesting to note that within our approxi-
mation the specific heat turns out to diverge for
E—+E„with an exponent a=0.25, a result which is
rather insensitive to variations of A, in the interval
1.5 & X & 2.5. It is important to stress here that our
approximation is able to give a qualitatively satisfac-
tory description of the system at all temperatures,
even if the location and the nature of critical singu-
larities are probably reproduced rather roughly.

I
re'. ), r 1) &=ff'

I
a'. , I&. , (3.2)

and by making the formal identification

&r+) IH'lr "&=&r&) rl) IHlr ") rl)&

(3.3)

where on the lhs the u~'s are interpreted as cell spin
component eigenvalues. Clearly in (3.3}Ho, the in-
tracell part of the interaction, defines the new mag-
netic field I",according to

=&r~') rl) IHOI r~') fl) & (34)

whereas the intercell part, which is off-diagonal in
the basis (3.2), defines J' according to

ED plays the same role as the quantity 8' that we
met in the preceding section, whose presence allows
an iterative calculation of the ground-state energy.

For obtaining the ground-state mapping based on
Eqs. (3.4) and (3.5) as the P~00 limit of a finite-
temperature renormalization transformation, we
proceed as follows. If the number of spins in our
ath cell is n =l, let us label the remaining 2"—2
energy eigenstates, besides

~
1,1& and

~

—1,1&,by

The construction of the renormalized Hamiltoni-
an with the SLAC method is again based on a
division of the system into cells and on a separation
of H into an intracell and an intercell part. ' Our
discussion, at least for the moment, is general and
does not depend on the space dimensionality or on
the cell division. Owing to the presence of the field
I, the ground state of the single-cell Hamiltonian is
nondegenerate. The idea of the SLAC method is
that of identifying the ground state and the first ex-
cited state of a cell with the eigenstates of the cell
spin component 0', respectively, parallel and anti-
parallel to the direction of the transverse field. Let
us indicate such states of a cell by

~

o', I &, with
cr'N =+1 for the ground state and first excited state,
respectively (I & 0).

The mapping from H to H' is then obtained by
projecting H on the subspace of the Hilbert space
spanned by all the states of the form
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assigning to half of them o' = + 1 and
i. =2,3,4, . . . , 2" ' and to the other half 0 =—1

and the same range of ~ values. For the moment we
do not discuss the specific labeling conventions; we
will come back to this at the end of this section.
Having defined our iver, ~ & states for the cells, we
define a finite-temperature renormalization mapping
for the system, in analogy with what we did in the
preceding section, according to

I

(3 6)

Let us first expand e ~~ on the rhs of (3.6) up to
first order in V (V being the intercell interaction) on
the basis of (2.11). In this way we obtain

where

It "jt
'' ""'l@tCj t~"j)—&t&j tr jl~Vlt&"j t~ j&

XX(pEO(to j, tr j)—pEO({0"j,tr j))], (3.7)

(3.8)

In (3.7) Eo( tv~ j, tv~ j ) represents the eigenvalue of the intracell Hamiltonian Ho, which now depends also on

If we make an analogous expansion on the lhs of (3.6), splitting P'H' into a zeroth-. order part P'Ho diagonal
in the

i tv* j & basis, and in a first-order part P'Hi, we obtain

&tCjl It "j&= ' I&(t&j t "j)—&tCjl&'H' it "j&

XX(p Eo(to j) pEO(to—'' j))], (3.9)

where P'Eo(ter' j) are the eignevalues of P'Ho,
which must have the form

p'Eo(to j)=pEO +p'r Qo' (3.10)

if we compare the zeroth-order terms of (3.7) and
(3.9). Of course Eo and I" in (3.10) do not satisfy
(3.4), but a finite-temperature generalization of this
formula, analogous to (2.14). Equations (3.7), (3.9),
and (3.10}fully determine P'H' up to first order in
V, for all temperatures. We now consider the
P~ ao limit for this finite-temperature mapping.

Since in our construction Eo( to' j, t 1 j } is always
the lowest energy compatible with a given {0'j con-
figuration, in (3.7) only the term with tr~j=tlj
will dominate in the trace over tv j, when P~ on.
So asymptotically for very large P we obtain

J'=R i (J,I'),
r'=R, (J,r)

(3.13a)

(3.13b)

the zero-temperature transformation of the SLAC
approach, as determined by (34) and (3.5), our
finite-temperature renormalization mapping be-
comes, for P~ao,

K i -R i (Ki,K2),

K2 R2(Ki,K2),

with Ki ——pJ, Kz ——pr. In addition, one finds

p'E() ——,[pEO( t+ 1 j, t 1 j )

(3.14a)

(3.14b)

Equations (3.10)—(3.12} show that, if we indicate
by

&'Eo(t& j)=PEO(t& j t 1 j» (3.11)
+&Eo(t —lj t1j}]. (3.14c)

for the zeroth-order terms, and

& tC j I ~™iI
t~"j &

=&t& j tlj IPVI t~a'j tlj& (3»)
for the first-order terms.

As in the previous case of the XY model, we thus
discover that the first-order free-energy transforma-
tion equation consistent with (3.6) reduces exactly to
the SLAC equation for the ground-state energy per
spin in the P—+ ao limit.

A mapping like (3.14) is expected to have a zero-
temperature fixed point for a given value x~ of the
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ratio x =I'/J =E2/Ei when the dimensionless tem-
perature T =E~ ' becomes zero. Asymptotically,
for T approaching zero, we can write for these di-
mensionless parameters on the basis of (3.14)

Rz(l, x)x'=f (x)= (3.1Sa)

T
T

=R i (l,x) . (3.15b)

This shows that, for x =x~ [f(x*)=x~], we have

R i '( l,x ~) is connected to the z exponent' by

Ri(1,x~)=n '~ =l (3.17)

The z exponent obtained in this way is indeed identi-
cal to the one computed in the SLAC approach on
the basis of (3.13a) and (3.13b), if one takes into ac-
count that, for x =x*, the dimensional quantities J
and I' are multiplied by a common factor at each
iteration of (3.13).'

We have just shown that a scheme like that de-
fined by (3.6) is indeed a consistent finite-
temperature extension of the SLAC method in its
standard form. 3 priori there seems to be a great
deal of arbitrariness in the choice of the labeling
(o,r) for the higher excited states of the system.
These states indeed do not enter, to first order, into
the zero-temperature formulas. Of course, this
choice is of importance as soon as one is at finite
temperatures. Some special choices may be more
powerful than others in yielding a realistic picture of
the overall properties of the system in a given ap-
proximation. Our conviction is that in each specific
problem general symmetry considerations should
lead to a natural choice of the labeling of the states.

As an example, we can briefly discuss the case of
the triangular Ising model with transverse field,
which has not only a zero-temperature critical point,
but a whole line of critical points connecting the
T=O point with the classical Ising critical point
(Ei ——0.2744, x=0). In order to have a physically
acceptable picture of the thermodynamic properties
of the system, the classical Ising systems (x=0)
must of course be an invariant set of the transforma-
tion. In other words, if Ei ——0, the symmetry of the
reduced Hamiltonian with respect to inversion of
the z axis in spin space must be preserved. This will
be guaranteed by an appropriate (o,r) labeling, con-
sistent with such a symmetry. Let us, e.g., consider
the case of three-spin cells in a triangular lattice.
The lowest two energy eigenstates for a cell must, of
course, be labeled

~
+,1) and

~

—,1) if one wants to
obtain the SLAC transformation in the limit of zero

1, Bx
v = ln

1 l
=0.63

and

1 T'
z = — ln lim

lnl r o T

ln[R i ( l,x~)]=0.13
1

lnl

(1 =v 3). These exponents are, of course, the same
as those given by the SLAC method.

A similar calculation performed on the d=1 Ising
system in a transverse field shows only the presence
of a zero-temperature fixed point. There is neither a
critical line nor a finite-temperature fixed point on
the pure Ising axis, in accordance with the expected
fact that a quantum one-dimensional system should
display a critical behavior only at T =0.'

Other choices of the phase factors for the energy
eigenstates, different from those mentioned in Ap-
pendix A, can be seen to lead to different and poorer
results for Ei, and A,r. We can thus regard the

temperature. For the higher-energy states one can
proceed as follows. One considers an energy eigen-
state and assigns to it a given cr value, consistent in
sign with the average of g, ~ Sf in that state, and
e.g., v=2. The state

~

—o,2) will be chosen as the
state which, in the x=0 limit, can be obtained from

~
cr,2) by an inversion of the z axis. The same pro-

cedure is followed for the remaining states, until all
of them have been labeled.

It is interesting to note that, proceeding in this
way and choosing appropriate phase factors for
multiplying the eigenstates, one can arrive at a defi-
nition of the transformation which, for the case
x =0, exactly reduces to the first-order cumulant ap-
proximation of the Niemeijer and van Leeuwen ma-
jority rule transformation of the Ising model. The
specific choice that we propose according to these
rules for the three-spin cell are reported in Appendix
A. The renormalization flow in a (T,x) diagram is
then characterized by a fixed point at (O,x~) and
another one at ( T„O), where T, is the
Niemeijer —van Leeuwen fixed point. Ei,
=T, '=0.336 with

AT=
dE) =1.63 .
dEj x=o K& K],

There is a critical line joining these two points, and
all points on this line are attracted by the classical
Ising fixed point (see Fig. 4). The zero-temperature
fixed point at (0~~) is unstable both in the x and T
directions; the relevant exponents, respectively, are
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above type of choice as an optimal one for the global
description of the system. In the next section we
will discuss further aspects of the SLAC method,
especially in connection with its perturbative gen-
eralization of Ref. 20.

IV. PERTURBATIVE GENERALIZATION
OF THE SLAC APPROACH

AND ITS FINITE-TEMPERATURE
EXTENSION

The zero-temperature SLAC approach discussed
in the preceding section also has a systematic pertur-
bative extension in powers of the intercell interac-
tions. Such an extension was recently obtained with
a zero-temperature technique, inspired by analogous
methods for the renormalization group in critical
dynamics.

A detailed discussion of the results of Ref. 20 is
beyond the purpose of the present work. We only
recall that in this paper the mapping in Hamiltonian
space is constructed on the basis of the "dynamical"
requirement of preserving the low-lying excited state
energies of the system besides the ground-state ener-

gy. This requirement still allows a large freedom in
the specification of the mapping. In Ref. 20 the
zero-temperature mapping was completely deter-
mined by further imposing an a priori unnecessary
Hermiticity condition.

In that way, the second-order correction
& Io' I ~02

~

Io"I & to the SLAC matrix eleinents
of H' takes in our notations the relatively simple
form

0 I

2.5 5.0 7.5
X

FIG. 4. Renormalization flow obtained for the two-
dimensional transverse Ising model. On the axes are
x =I /J and T=K '. The unstable fixed point is at
(x =5.25, T =0) and the Ising fixed point at
(x =0, T*=2.98.).

&I~'I IH2 I
I&"I&=-, g & tCI, III I

I'I I~'"I Ir "I && t~"*I*I'")
I
I'I I~") Ii)&

1

Eo( t
~'

l I I I l —&o(t~.'"I, (r."I l

1

Eo(IO'"I I II' —&o(Io''"l Ir "I l

which, e.g., applies to the Ising model with trans-
verse field of the preceding section.

In view of the results obtained until now, our
zero-temperature —limit procedure applied to free-
energy —preserving mappings should provide a very
natural way of defining and computing perturbative
generalizations of the SLAC method. In other
words, we hope to convert our finite-temperature
perturbative expansion into a zero-temperature one,

I

by taking the limit P~~ in an appropriate way,
just as we did for the pure XF model. This turns
out to be possible, ultimately, but the situation is
more complicated now, in comparison with the case
of Sec. II.

The simple definition (3.6) of the finite-
temperature transformation in terms of unperturbed
energy eigenstates does not allow us to obtain con-
sistently an expansion in powers of V for the limit
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mapping. The results obtained by using the @~00
limit on a second-order approximation of (3.6) are
not compatible with the SLAC transformation,
which was obtained in first order.

Let us analyze in more detail the situation in
second order. For computing the asymptotic
behavior of the matrix elements

({o'1
I
exp( P'H—')

I
{o"1)

in (3.6), we must first determine which exponential
function of unperturbed energies dominates in the
limit P~ao for the given {cr*

1 and {cr"j A. nice
feature of the first-order case was that, for every
choice of {o'

1 and {o'*1, the dominant exponential
was either

exp[ PEo({c—r* 1,{11}]

or

exp[ PE—p( {cr,"j,{11)],
according to whether Ep({cr' 1,{11)or Eo({cr'*j,{1 1)
was the lower energy. In second order this property
drastically disappears and, regardless of {a~1 and
{o~ 1, the doniinant exponential is that of the un-
perturbed ground-state energy Eo( {o1,{1 1) whenev-
er this ground state appears as an intermediate state
in the second-order perturbative term ({o1

= { + 11
with I &0}.

In Appendix B we report the full expressions for a
second-order approximation to Eq. (3.6). On the
basis of these expressions. one gets the following
equations for the matrix elements of H'
(=Hp+HI + } in the limit P—+oo:

[Eo({oj}—Eo({o 1)l[Eo({oj }—Eo({o'"j}l

jl I'
I { 1 {11&&{ 1 {1 1 I

I'
I { "1 { .1&

(4.2)

when neither {cr~j nor {o~ 1 equals {o1, and

&{ 1IH' I{ ."1& +, , „-+
Ep({o'j)—Ep({o'' 1) Ep({o'j)—Ep({o'' 1)

( } Ep({Vj)—Ep({o"*1)Ep({Vj) Ep({o'' 1)—
Eo ( I

o'"zI )~ED ( I cr I )

&{ 1 {11lI'I{ "1 {11&

Eo({W {11&—Eo({&"j&{11&

& { 1 {11I
~

I { '"1 { "1&&{ '"1 { "1
I
I'I { "1 {11&+

[Eo({W {11}—Ep({&'"j {r"j)][Ep({&j{11}—Eo({~"j{11}]
Eo(I~~ I I'a I '

~E.((-I.(~I ~

when {e'
1
= {o1, {o "1&{o1, and

(4.3)

—,O'1 &{~1IHi I {~j&I'= zP'I &{~j {ljl I'{~j {11&I' (4.4)

when {o~ 1
= {o~*={V j . The equation for the case

{cr' j~{oj={o "1 is, of course, analogous to (4.3).
One can easily check that the first-order SLAC re-
sult for ( {o' 1 I

H~'
I
{o"1) is not compatible with

(4.2), for example. In this sense the second-order
P~ oo limit derivation cannot be seen as a perturba-
tive extension of the limit in Sec. III.

The reason for this is simple: If we denote by

I0) and E the perturbative ground state and its
energy [ I0)=

I
{o'1,{11)+' ' '; E=Ep({o'1,{11&

], we have that, asymptotically for P~ oo,

e »-e ~EI0)(-o,
l

. (4.5)

Consequently, in order to avoid the appearance of
the exponential exp[ —PEo( {o 1, {1 1 )] [=exp( PE)]-
in (3.6), {o~ 1 and o''*j must satisfy the condition
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T (..}&{&j { j l»&01{ "j {

(4.6)

With the first-order ground state, this condition is
satisfied as soon as both {cr* j and {cr' 'j are dif-
ferent from {oj. In second order instead, ~0) has a
structure such that (4.6) can never be satisfied. This
essentially makes the determination of H' so dif-
ferent in the two cases.

The solution of the above difficulty is to modify
the choice of the states

~
{o j, {r j ) that enter in

the definition of the transformation (3.6). One can
actually proceed in two different ways.

The first procedure consists of trying to make the
algorithm in first order look similar to the second-
order one by a generic choice of

~

{o' j,{r j ) that
does not satisfy (4.6) even in first order. One thus
makes the whole situation analogous to that dis-
cussed in Sec. II, where we did not have such prob-

I

lems of consistency. In this way, however, one loses
the limit result obtained in Sec. III. On the other
hand, the SLAC transformation can, of course, be
replaced by very efficient substitutes, as we will
show in the next section.

The second possibility consists of performing a
modification of the states that does not infiuence the
first-order SLAC results. In this case one must try
to make the second-order calculation as similar as
possible to that of Sec. III, avoiding there also the
appearance of exponentials more dominant than

exp[ —PEp ( {a~ j, {1 j )]

or

exp[ —PEp({o"j,{lj)].

In order to apply this technique, we can modify the
definition of our free-energy —preserving mapping
(3.6) in the following way:

&{o j fe ~
f
{o"j)=Tr(,}&{o.j {r j I

U 'e ~~UI {o'"j {r j& (4.7)

U=1+ U)+ Ug+ U3+ (4.8}

with the U; being a correction of ith order in the in-
tercell interaction V. There is, of course, still enor-
mous freedom a priori in the choice of U. Our
further requirement on U will be that, at least
asymptotically in the limit P~ ao, in a second-order
expansion of (4.7}, the new terms introduced by the
presence of U itself should cancel exactly the
unwanted terms with exponentials of energies below
the minimum of Ep( {o j,{1 j ) and Ep( {o"j,{1 j ).
Imposing such a requirement on U does not yet
determine it completely, and the remaining freedom
can be considered as pertaining to the definition of
the renormalization transformation.

The construction of a U satisfying the above-
mentioned requirements can be performed, in princi-
ple, up to any order in the intercell couplirig. In Ap-
pendix B we work out a particular choice of U in
second order, such that (4.7), in the P~ 00 limit, ex-
actly implies the transformation of Ref. 20, which is
characterized by (4.1) for the renormalized H2 ma-
trix elements. With this choice it turns out that the
transformed Hamiltonian P'H' has a spectrum in

where U is a unitary operator that has the effect of
rotating the states

~

{o*j, ,{r j ). The unitary char-
acter of U of course guarantees the invariance of the
free energy under the transformation.

Since our aim is that of maintaining the validity
of the first-order results of Sec. III in the limit

P—+ ao, we will try to use a U of the form

perturbation theory that coincides with the low-

lying part of the spectrum of PH for P going to in-

finity. The preservation of the low-lying part of the
spectrum was the basic requirement for the defini-
tion of the transformation in Ref. 20. The basic re-
quirement in finite-temperature renormalization cal-
culations is the preservation of the free energy. In
principle, this implies the preservation of the whole
energy spectrum, since the canonical partition func-
tion is the Laplace transform of the energy density.

V. RECURSION METHOD
OF FRIEDMAN AND SUBBARAO

AND ITS FINITE-TEMPERATURE EXTENSION

In the preceding section we mentioned the possi-
bility of drastically modifying the states

~

{o' j, {r j ), used in the derivation of the SLAC
mapping, in order to avoid the problems encoun-
tered when passing from the limit of a first-order
transformation to that of a second-order one. Here
we will consider a particularly interesting and effi-
cient alternative to the SLAC choice of states; this
alternative choice forms the basis of the zero-
temperature renormalization method first intro-
duced by Friedman' and later improved and
developed by Subbarao. "

To be specific, let us focus our attention again on
the example of the Ising model in a transverse field,
with a Hamiltonian of the form (3.1). Taking into
account that the zero-temperature critical phe-
nomenon in the model is due to long-range fluctua-
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tions in the S"components of the spins, it was sug-
gested in Ref. 10 to define a renormalization
transformation in which the eigenvalues of the cell
spin components 0~ are made equal to those of the
operator sign (g,.~ S;") for cells with an odd num-

ber of spins. Since this operator does not commute
I

with the Hamiltonian (3.1), its eigenvectors clearly
cannot also be cell energy eigenstates.

As was already noted by Friedman and Subbarao,
their ground-state transformation must correspond
to the zero-temperature limit of a general mapping
defined by the equation

&Io"1e IIo'"I& =Tr(..)&to"I Ir. lie IIo'"I Ir l& (5.1)

where now the states
l
[o"J, [r J ) are direct prod-

ucts of cell states
l
o",r ), given by

l
1,1&.= l+++&. ,

l

—1,1&.= l
———&„,

1,».=l ++
l

—1,2&.= l+ ——&. ,

l
1,3&.= l+ —+&. ,

l

—1,3).= l
—+ —). ,

l1,4).= l++ —). ,

l

—1,4&.= l

——+&. .

(5.2)

Here
l
e,e2e3)„with e; =+1 represents the cell spin

state that is composed of the eigenvectors of S,* be-
longing to the eigenvalues e;. Equations (5.2) define
what is called a "majority rule" for the cell spin
component 0.".

It may be noted that (5.2) can be seen as a special
realization of (4.7), where the unitary operator re-
places the Io~ I states by the Io~ j states; according
to (5.1) we have applied an analogous unitary opera-
tor to the lhs of (4.7). Such an operator is not of the
perturbative type (4.8), but it corresponds to the first
procedure for modifying the states

l
to' I, fr I ), as

mentioned in the preceding section.
In Refs. 10 and 11 no attempt was made to com-

pute (5.1) for finite temperature, and only the zero-
temperature realization of the transformation was
carried out, making use of the asymptotic property
(4.5) for e~ and e~ . In the previous sections, on
the other hand, we showed that the P~ 00 limit of a
transformation such as (5.1), computed up to a given
order in V with our expansion scheme (2.11), can
lead to the same results as those obtained at zero
temperature by Rayleigh-Schrodinger perturbation
theory in V to the same order. It is thus meaningful
and consistent to extrapolate down to vanishingly
small temperatures the transformation computed in
our finite-temperature approximation. We are able
to show that, for the mapping defined by (5.1), the
P—+ ao limit leads, order by order, to the perturba-

tive results of Refs. 10 and 11. This is shown in de-
tail in Appendix C of this paper.

The finite-temperature extensions of the calcula-
tions of Refs. 10 and 11 obtained in this way are ex-
tremely important and useful, since this approach is
seriously limited as long as one cannot treat the
finite-temperature case. Indeed, in Refs. 10 and 11
the z exponent could not be computed, but had to be
introduced as an external piece of information in the
setting up of the transformation. This impossibility
of computing z is related to the fact that at zero
temperature there is only one basic dimensionless
coupling in the system, namely x =I'/J. Allowing
instead for finite Ps, we immediately introduce
the extra dimensionless temperature parameter
T =(PJ) '. As we have seen in Sec. III, a transfor-
mation acting on these two parameters as represent-
ed by (3.15) allows us also to define the z exponent
at the zero-temperature fixed point.

In the case of the transformation (5.1) up to first
order the expression we obtain is of the same type as
(3.14)—(3.17), with, however, a different R i function
appearing in the definition of z and in the equation
for the ground-state energy. The knowledge of the
function Ri immediately yields the z exponent, ac-
cording to (3.17), and allows a consistent calculation
of the ground-state energy by iteration of an equa-
tion of the form (2.9).

We have performed with our method test calcula-
tions of the z exponent and the ground-state energy
for the linear and triangular Ising models in a trans-
verse field. The values of our z exponents in d =1
and d =2 are reported in Table I, together with the
v and yH exponents, and the fixed-point values x'.
These values are computed from first-order
transformations, involving linear and triangular
three-spin cells for d =1 and d =2, respectively.
These results are compared with the corresponding
SLAC results, based on a three-spin cell in d =1 and
on a four-spin cell in d =2. From this comparison
one can see that the z exponent obtained with our
finite-temperature extension of the approach of
Refs. 10 and 11 is somewhat closer to the expected
value than that in the SLAC case. A similar trend
was already pointed out for the thermal exponent v,
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TABLE I. Results for the critical exponents v, y&, and z, and for the critical value x* of
x =I /J of the transverse Ising model in d =1 and d =2 (triangular lattice). Our results,
based on first-order finite-temperature extensions of the approach of Refs. 10 and 11, are com-
pared with results obtained with the SLAC method (Refs. 14 and 15) and with the exact re-
sults (Ref. 37) or the results obtained from the series expansions on the d =3 classical Ising
model. Our calculations are based on linear and triangular cells of three spins in d =1 and
d =2, respectively. The SLAC results are obtained with the same cells in d =1, and with dif-
ferent four-spin cells in d =2.

yII
z

X

SLAC
method

1.32
1.49
0.63
1.155

d=1
This

paper

1.12
1.37
0.73
1.009

Exact

1

1.875
1

1

SLAC
method

1.54
1.82
0.33
4.118

d=2
This

paper

0.97
1.68
0.63
3.319

Series
expansions

0.63
2.5

1

whereas a better value of the magnetic exponent yH
seems to be reproduced by the SLAC approach.

We also notice that our calculation of z allows one
to determine critical indices such as a, the specific-
heat exponent, in a fully consistent way without as-
suming the knowledge of the exact result for z. In
the above cases it results that the u values obtained
with our approximate z are somewhat better than
those obtained by assuming z =1 (a =0.05 instead
of —0.25 for d =2, and a= —0.55 instead of
—0.95 in d =3; the exact and expected values
should be 0 and 0.125, respectively).

As we already noted, our extension in temperature
is also crucial for consistent calculations of the
ground-state energy. In Ref. 11 the neglect of the
function R& was remedied by replacing it with a
constant, equal to the expected exact fixed-point
value i.e., E.

&

——I '=1/l. In Fig. 5 we have plotted
the exact one-dimensional ground-state energy as a
function of x =I'/J, together with the approximate
values computed with R~ ——l ' (Ref. 11) and with
our self-consistent method in first order (three-spin
cells). The plots show very eloquently the crucial
role played by the introduction of the actual func-
tion R

&
in the determination of a satisfactory overall

behavior of the energy. Particularly remarkable is
the improvement we get in the region of values near
x =0. Our ground-state energy values are essential-

ly comparable in accuracy with the values obtained
by the SLAC approach in similar conditions (three-
spin cells}.

In regard to the comparison between the SLAC
approach and the method of the present section, the
z exponent that we find confirms the tendency of the
other "thermal" quantities (like v and x'} to be
better approximated in this scheme, whereas the
ground-state energy has almost the same accuracy.

The lower accuracy of the SLAC method for
thermal quantities is probably due to the very pecu-
liar choice of states ~{o' J, Ir~j) as unperturbed
energy eigenstates. With such a choice only the
lowest two energy eigenstates of the cells enter in the
determination of the zero-temperature recursion for-
mula, whereas in the transformation of the present
section all cell states are involved.

VI. CONCLUDING REMARKS

In the present paper we have shown the existence
of a deep unity underlying renormalization ap-
proaches at finite temperatures and ground-state
iteration procedures for lattice quantum systems. In

Eo
NJ
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1.0-
~ ~

~ ~
~ ~ ~

~ ~ ~ ~
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y ~ ~ ~ ~ ~ ~ ~

~ ~
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~ ~
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1.0
I

1.5 2.0
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FIG. 5. Dimensionless ground-state energy density of
the transverse Ising model, as a function of x =I /J in
d =1. Curves show the exact results from Ref. 37
( ), the results obtained by setting R ~

——I ' as in Ref.
11 (~ ~ ~ ), and the results of our self-consistent method

(———)
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e, (x —x')=1 'e, ((x —x')1'i"), (6.2)

with the same v and z, and with e, denoting the
singular part of the ground-state energy density e.
Equations (6.1) and (6.2) are of course compatible,
since we should have

(6.3)

all the cases considered, we indeed found that the
ground-state approach can be seen as a zero-
temperature limit of a free-energy —preserving map-

ping, induced by appropriate resummation conven-
tions.

This general result has important conceptual and
practical implications. First of all, contrary to a
sort of widespread prejudice, '9 it reveals that the ap-
proximation schemes used for treating problems at
finite temperature can give rise to meaningful zero-
temperature extrapolations, that treat the ground-
state problem as well as methods especially con-
ceived for that purpose do.

A second important outcome of our derivations is
the possibility of looking from a more unified per-
spective at the different zero-temperature techniques
used in the current literature. In this respect we
especially refer to the SLAC approach with its gen-
eralizations, and to the method of Refs. 10 and 11:
These seemingly very different techniques can now
be seen as corresponding to two alternative (and, to
some extent, complementary) options within the
same general scheme of renormalization at finite
temperatures, as expressed by Eqs. (3.6) and (5.1).

The possibility of obtaining the z exponent in the
SLAC method depends only on the fact that the ap-
proach can be formulated in terms of dimensional
quantities, whereas the technique of Refs. 10 and 11
deals strictly with dimensionless quantities only. In
the SLAC case, however, our extension is necessary
if one wants to connect explicitly the exponent z
with the scaling behavior of the system at extremely
low temperatures. If we denote by e the quantity
f/Ei (f being the dimensionless free-energy densi-

ty), we have that close to the fixed point
(x =x*, T=Ei ' ——0), our transformation implies

e, (x x', T)=1 d '—e,{(x x')I'~", Tl') —(6.1)

for the singular part e, of e. In the SLAC case, the
corresponding scaling equation is merely

In view of the large variety of applications that
have been performed up to now, especially with the
SLAC approach, ' one can easily realize also that
our extensions in temperature have a very wide and
interesting range of potential applicability. With the
few examples treated in the present paper we only
intended to give an idea of some of the most in-
teresting possibilities.

Our results for the triangular spin- —, XY model
show that our renormalization technique is capable
of yielding a consistent and satisfactory evaluation
of the free energy of a system at all temperatures,
from zero to infinity. Similar results had already
been obtained for the one-dimensional case. We are
rather confident that our method could be extremely
useful for a global investigation of the thermo-
dynamics of fermion systems, like, e.g., the Hubbard
model. For this model an appropriate version of the
SLAC method has recently been proposed by
Hirsch. ' This approach seems to be rather
promising, especially for the Hubbard chain. A
sucessful extension of this approach to finite tem-
peratures has been performed; the results are

planned to be published elsewhere.
As mentioned in the Introduction, our results for

the Ising model with transverse field form an exam-
ple of the way in which one can obtain a complete
and consistent description of a system undergoing a
critical phenomenon at zero temperature. In our ap-
proximations we can indeed discuss the critical
behavior of the system at all temperatures (e.g., we
can easily compute the critical temperature T, as a
function of x, for every x); in particular, we have ac-
cess to the crossover region around the zero-
temperature critical fixed point. A very eloquent
confirmation of such possibilities is given, e.g., by
the fact that for the first time we could compute the
z exponent for the approach of Refs. 10 and 11. For
this approach, from the results obtained with the
ground-state energy calculations, we also demon-
strated the extreme importance of having explicit
control on the temperature behavior of the transfor-
mation.
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APPENDIX A

In Sec. III we discussed how to extend the SI-AC ground-state renormalization method to finite tempera-
tures. An example of a system to which this can be applied is the transverse Ising model with Hamiltonian
(3.1) on the triangular lattice. Making the standard choice of triangular cells on this lattice, one can easily cal-
culate the eigenstates of the Hamiltonian Ho, restricted to the interior of a single cell. Our choice for the label-
ing of these states

~
o,r) and for their relative phase factors is as follows:
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&

—,4&= —C( —1,—1)[
I

———&+D( —1,—1)( I+ ~ —&~
I
~ —+ &+ I

—+

(Al)

C(e,cr)=[1+3D (e,cr)]

D(e,o)= 3A(e, cr) ox, —

A (e,cr) =1+crx+2e(1 crx+—x )'r

The energies of these states are given by

Eo(a, 1)= —JA ( l,o ),
EO(1,2) =ED(1,3)=J—I,
Ep( —1,2) =Ep( —1,3)=Ji I

Eo(cr, 4)=—JA( —l, o) .

(A2a)

(A2b)

(A2c)

(A3)

It is tacitly understood that the signs in the spin
I

i+, 1& = i+++&
1

(
i

—++ &.—i++ —&.),I+ 2&-=

where, for @=+1 and 0 =+1, and with x =I /J as
before, we have defined

(
I
+ ~&.+~

I

—~&.)
1

2
(A4)

on the cell spin states and analogous transforma-
tions on the site spin states on the rhs of (Al). In
this way, it can be seen that the choice (Al) is
equivalent (for I =0) to

I

states of (Al) refer to the z components of the cell
spin or site spin operators.

The reason why we have chosen the relative phase
factors of the states in this particular way lies in the
fact that, in the limit I'~0, (Al) corresponds to the
Niemeijer —van Leeuwen majority rule, insofar as
the x components of the spin operators are con-
cerned. In order to check this, we should perform
the transformations

i+ 3&.= (i —++&.—21+ —+&.+I++—&-)
6

~+,4&.= (~ —++&.+ ~+ —+&.+ ~++ —&.),
(A5)

/

—,2&„=

t
—,4&„=

1
(i ——+&.—i+ ——&„),

1
( ~+ ——&- —2I —+ —&-+I ——+ &.)

6

1 (i+ ——&.+ i

—+ —&.+ i

——+&.).
A different choice for the phase factors in (Al) would have led to a situation in which at least some of the
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states with o~ & 0 would not have been built entirely from states with sign g,, S,"& 0. Such a procedure could
not lead to the Niemeijer —van Leeuwen result in the limit 1 —+0.

APPENDIX 8

In this appendix we want to show how a transformation, as defined in Eqs. (4.7) and (4.8), with a suitable
choice of the unitary operator U can lead in the limit p —+ oo to the transformation (4.1). Evaluating the rhs of
(3.6), we get, in second order

2P'X 2 2 &f&1 fr 1I I'I f~'"1 fr."j&&f~.'"j,{r."1 II'I f~."j,{r.j&e

xQ (PEo(f .'"1,{ ."1)—PEo(fu.'j, { .1),PE, (f .'"1,{ ."1)—PEo(f ."1,{ .1» (81)

with

1
Q2(x,y) = 2—(e"+e")2'

+ 7+x( y x)
g —X

(82)

I

tary operator

U =1+U)+ U2+ (84)

in order to compensate for the singular terms that
appear in the expansion. Obviously, we have

U = U '=1—Ui —(U2 —Ui)+ . (85)
—1

=Q( —x) =Q2(x,O), (83a)

Qz(x, x) =limQz(x, y) =e'Q(x),
y~X

(83b)

Q2(0, 0)= lime "Q (x)= —, ,@~0
(83c)

where Q(x) was defined in (2.13).
Expression (81), together with an analogous ex-

pansion on the lhs of (3.6), leads in the p~ oo limit
to the awkward equations (4.2)—(4.4). We will show
how it is possible to determine perturbatively a uni-

I

Note that Q2 is symmetrical [Qq(x,y)=Q2(y, x)]
and had the following limiting values:

Q2(O, x)= limQz(y, x)
y~0

Inserting these operators in (4.7), we obtain in first
order, besides the terms reproduced in (3.7), the fol-
lowing extra terms:

PEo((u—~ j, (r~ j ) PEo ((cr~ j, j r~ j)—~~e —e

«{&1 f 1IU If "1
f 1&

In the limit P~ oo only the matrix element
& fo' 1, {11I

U~
I
{o"1,{11& survives and we must

choose to set this equal to zero in order not to lose
the first-order SLAC limit. Consequently,

{~1,f 1 1 I U,
I {~.'*1,

f 1 1& =0 .

In second order, (4.7) yields the following extra
terms, besides those appearing in (81):

+ X X&{&1,f .1IU If;"j,f 1&&f .'"1,{ IU
I { j, f .1&

j (~ j~ —&soj(~ "aj (~N )))

+ 2 XP&{+1 f 1IU I{ "'1
f

"1 &&f '"1
f "1II'If "1

f 1&

"y( pz({ -1 {."1)+p.(f "1,{..1))

QP&f+1 {r 1I ~l {~"'1 {r"j&&{~'"1fr"1 IUiI {~"1fr 1&

y, o" "'""y(—pE, (f "*1,{ "j)+p&o({ '1 f (88)
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where X(x) was defined in (3.8).
The sum of (Bl} and (B8) corresponds to the full second-order contribution in the rhs of (4.7). This sum

must be equated to the second-order part of the lhs of (4.7), which is of a form similar to (Bl). From this iden-
tification, we can see that we obtain the result (4.1} in the limit P—+ 00 if we make the following choice for U
[in combination with (B7)]:

& [Cj.I..j I
U

I I~."*j.f.."&
& = &t~'j [r jI VII~'"j {~"j&

Ec([0', T ) Ep(—0', 'r )

& [& j I 1 j I
U

I [ "j f I j &
= —-& I& j I 1 j I

U'
I I "j [1j & .

(B9a)

(B9b)

Actually, in order to obtain (4.1), it is not necessary to impose (B9a) for all matrix elements of U&, but only for
those elements for which either Eo( [o~ j, I r~ j ) or Ec( to~"j, Iv~ j ) is lower than or equal to the maximum of
Eo( Io j, I 1 j ) over all possible choices of Io j. The remaining matrix elements could, in principle, be choosen
arbitrarily, since they are irrelevant to the ground-state mapping in second-order perturbation.

APPENDIX C

Here we show the equivalence between the ground-state method proposed by Friedman' and Subbarao" and
the p~ oo limit of a procedure as defined in (S.1). In particular, we have to prove that, perturbatively in V,

lim [ep (Ia'j, Ir j Ie p
I
far'"j, Ir j)]=(to'j, j~ j IP(H)

I
I0''"j, Ir j), (Cl)

(C2)

our aim will be to demonstrate that

where E is the ground-state energy of the system, and P(H) is the ground-state projector. Denoting by X(P)
„

the asymptotically dominating part of any function X(P) when P~ 00, such that

X(P)
p ~ X(P)„

([o"j,fr j Ie IIO''"j, [r j)„=[e (Io'"j, Ir j IP(H)l IO''"j, Ir j)]„. (C3)

This can be shown by expanding both sides perturbatively in V, where we use the Feynman identity (2.11) for
the lhs and Rayleigh-Schrodinger perturbation theory for the rhs.

Since the states
I Io~ j, I r~ j ) are not eigenstates of Ho, we will denote the eigenstates of Ho by

I
n ) and

their energies by Eo. In particular, in this appendix
I
0) and Eo are the ground state of Ho and its energy.

Developing up to second order for the rhs of (C3), we obtain

p@ pzoo~ I (ol V lm)
m E0 E0

Io)(ol+g'(, "„lo)(n I++' ", , ln)(ol
n 0 n

&&()I
& I vl && I vl "&

I()&&„I+M M 0 n 0 m + 0 n 0 m(Eo Ep)(EO Ep )— — (Ep Eo)(Ep Eo )— —

(n I
v IO)(ol vlm)

(EO Elf )(E0 Em )

2

lo&(()l+. . .
EO Em

(C4)

g' indicates a summation over all states, except the ground state. We have assumed that (0
I

V
I
0) =0, which

is not a limitation of the method, since it can always be achieved by adding a constant term to H0.
Every state

I Io~ j, Ir~ j ) can be written as a linear combination of the eigenstates
I

n ) of Ho..

(csa)

with

c, ,=(n
I
[a"j, [~ j ) . (CSb)
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Using (C4) up to, e.g., first order in V, we obtain for the rhs of (C3):

j:e "&I&j I~ jl~(II) II&'"j f~ j&j-
pE—oo . . (O( V)n) . (n

~

V(O)=e Cp Co +g o „Co~Can' + p „Cri Co'
Eo-Eo Eo Eo

+ 0 ~ ~ (C6)

Up to first order in V, the lhs of (C3) becomes with the aid of (2.11)

(Itraj, traj ~e
'

1 —f die, 'Ve '
~

I&ra"j, traj)

n, m 00

r

= +C„'.,C„.~ ' gc„'.,C—...(n ~
V~m)e 'X(PE," PEo)—

nm

where we used definition (3.8). In this form, it is now simple to verify that (C6) and (C7) are equivalent. The
same argument may be repeated for every order in V.
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