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Two-dimensional XY ferromagnets with random Dzyaloshinskii-Moriya interactions are

studied. Such systems can be mapped onto a Coulomb gas with a quenched random array

of dipoles. For large amounts of randomness, the low-temperature phase of the XY model is

destroyed entirely. For small amounts of randomness, the behavior with decreasing tem-

peratures is first paramagnetic, then ferromagnetic, and finally becomes paramagnetic again

via a second, reentrant phase transition. These phase transitions are driven by an unbinding

of vortices, just as in pure XY models. In contrast to pure XY models, the exponent g and

the spin-wave stiffness are nonuniversal at T,. The reentrant phase transitions appear to
persist when the model is continued to 2+@ dimensions. Similar results should apply to
spin-glass models with a small concentration of bonds with the wrong sign.

I. INTRODUCTION

A number of recent theoretical papers' have
focused on two-dimensional XF spin models with
quenched, random disorder. Pure systems of this
kind are now well understood via a vortex unbinding
picture proposed by Kosterlitz and Thouless. ' In
contrast to random-spin systems in higher dimen-
sions, one can easily determine the effects of disor-
der over a whole range of temperatures, from the
critical point down to T=O. Here we study XF
models with a quenched random Dzyaloshinskii-
Moriya interaction. Our starting point is the Ham-
iltonian

H= —J g S, SJ —g Jjz.(S;XSJ),
{ij& {ij)

where the sums run over nearest-neighbor classical
spins S; on a square lattice, and the uniform ex-
change coupling J is, for example, ferromagnetic
(J& 0). The spin vectors are of unit length and con-
fined to the xy plane. The Dzyaloshinskii-Moriya
interaction JJ varies randomly in sign and magni-
tude from bond to bond.

Recently, Pert and Levy' have shown that sizable
random Dzyaloshinskii-Moriya interactions can
occur in bulk spin-glasses, between transition-metal
impurity spins in a (nonmagnetic) metallic host,
mediated by additional nonmagnetic impurities. An
analogous random interaction [like that displayed in
Eq. (1.1)] would presumably occur between XFspins
in the corresponding two-dimensional system. If the
magnetic impurity spins are randomly distributed in
space, one also expects an exchange coupling J
which varies in sign, due to the usual oscillatory
Ruderman-Kittel-Kasuya- Yosida (RKKY) interac-
tion. " To obtain the Hamiltonian (1.1), we imagine

H/kttT= zE f d r
~

VH(r) —q(r)
~

where K is an effective exchange coupling divided

by k&T, and 8(r) is the orientation of a spin at site
r with respect to some reference axis. The quenched
vector field q(r) describes the twist between neigh-
boring spin directions induced by the random
Dzyaloshinskii-Moriya interactions. We assume
that the q(r) at different sites are uncorrelated, and
that a given complexion occurs with probability

P(q(r)) ~exp — f d r
~
q(r) ~2

20
(1.3)

Deviations from this Gaussian distribution turn out
to be unimportant at long wavelengths. This formu-
lation of the model is similar to a description of
spin-glasses suggested by Hertz and studied by him
near four dimensions. ' Hertz concluded that the
kind of randomness summarized by Eq. (1.3) was ir-
relevant near the usual Wilson-Fisher fixed point.
As we shall see, the situation is rather different near
d =2.

Just as in nonrandom XY models, ' it is impor-
tant to allow for vortex configurations of spins,

that the spacing between impurity spins is adjusted
to make the RKKY interaction predominantly fer-
romagnetic. Small variations in the magnitude of J
turn out to be irrelevant at long wavelengths. The
long-range nature of the RKKY and
Dzyaloshinskii-Moriya interactions will be ignored.

Our results are conveniently described in terms of
a continuum reformulation of Eq. (1.1), namely (see
Sec. II)
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satisfying

(VO).d 1 =2am, (1.4)

META

T
FIG. 1. Phase diagram for a Coulomb gas with

quenched random dipoles, as a function of temperature T
and vortex density y. The shaded insulating phase is ab-
sent entirely for sufficiently strong random potentials.
The spin system moves along the dashed line as a function
of temperature, and behaves paramagnetically in the re-
gions marked "metal. " There is quasi-long-range fer-
romagnetic order in the shaded region.

where m is an integer. When vortices are inserted in
Eq. (1.2), one finds the usual neutral Coulomb gas of
vortex charges ' coupled to quenched distribution
of dipoles, with moments

(1.5)

The quantity o can be viewed as a kind of frozen-in
"temperature" parametrizing the distribution of di-
pole moments. Screening in this random Coulomb
gas is closely related to the properties of the original
spin system. The different phases we find are
shown as a function of temperature and vortex num-
ber density y in Fig. 1. The behavior is metallic at
high temperatures, and becomes insulating via a
Kosterlitz-Thouless vortex pairing transition over an
intermediate-temperature range at small y. In con-
trast to nonrandom scalar Coulomb gases, we find a
second, reentrant transition to a metallic phase at
low temperatures. The second transition occurs (for
small y) when the thermodynamic temperature T is
of the order of the frozen-in temperature o. charac-
terizing the quenched dipole array. Although the
disordered dipole array does not contribute directly
to the polarizability, it does make it easier for
thermally excited vortex pairs to separate. At low
temperatures, vortex pairs are ripped apart by the
random potential generated by the quenched dipoles.
At intermediate temperatures, there are enough
thermal vortices to screen this potential, and prevent
pairs from unbinding. We find that an intermediate
insulating phase is only possible provided

0(0 (m'/8 .
When o exceeds m. /8, the behavior is metallic at all

corresponding to the dashed locus in Fig. 1. As
temperature decreases on this curve, the behavior is
first paramagnetic, then "ordered, " and finally
paramagnetic again. The ordered phase is only or-
dered in the sense that the spin-spin correlation
function decays algebraically to zero,

C(r)—= (S(r) S(0))-Ilr"' ' '. (I.&)

The exponent g depends both on the temperature
and the strength of the randomness o. Unbound
thermal vortices produce exponential decay of C(r)
in the paramagnetic regions. There is no evidence
for spin-glass behavior at any finite temperature,
consistent with speculations' that the lower critical
dimension for XY spin-glasses is well above d =2.
In contrast to nonrandom XY spin models, we find

1

that g no longer assumes the universal values g =
4

at T, . The universal jump in the spin-wave stiff-
ness' is also destroyed by the randomness, although
this quantity still jumps discontinuously to zero
across the ordered-to-paramagnetic phase boundary.
Just as in pure systems, there are only essential
singularities in thermodynamic functions like the
speeifie heat. The behavior near the high- and low-
temperature phase transitions is qualitatively sirni-
lar.

When vortices are neglected, we find that the ran-
domness causes C(r) to decay algebraically to zero
even at T =0. In this sense, d ='2 is the lower criti-
cal dimension for the destruction of XY long-range
order by random Dzyaloshinskii-Moriya interac-
tions. When the spin problem is continued into 2+ e
dimensions, we find that the randomness is unim-
portant (for small a) both at T =0 and at a finite-
temperature ferromagnetic fixed point with univer-
sal exponents. Reentrant phase transitions are still
possible, however. Similar results apply to random
Coulomb gases in 2 —e dimensions.

It seems worth emphasizing that n-component
ferromagnetic spins with random Dzyaloshinskii-
Moriya interactions and n &.3 may behave rather
differently. A natural generalization of the Hamil-
tonian (1.1) to the case n =3, for example, is

H= —J g S; SJ —g J~co;J'(Sg XSJ),
(ij ) (i j)

(1.9)

where co,j is a unit vector specifying a random rota-
tion axis. In contrast to the XY case, Eq. (1.9) is not
rotationally invariant for a fixed configuration of

finite temperatures.
In the original XY spin model, the vortex charge

density y is related to the core energy E, by

(1.7)
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the I co,z ]. One consequence is that standard
renormalization-group procedures' generate ran-
dom single-site anisotropies at long wavelengths. '

The lower critical dimension for the destruction of
ferromagnetic long-range order by such random
"fields" is believed to be d =4.'

Reentrant phase transitions in two dimensions
have been found previously in XY models with ran-
dom p-fold symmetry-breaking fields. In some
sense, these models'are more complicated than the
Hamiltonian (1.1), box:ause rotational invariance is
broken explicitly. As shown in Appendix B via the
replica trick, the reriormalization-group equations
for random Dzyaloshinskii-Moriya interactions are
a special case of recursion relations obtained by Car-
dy and Ostlund for random symmetry-breaking
fields. The recursion relations needed in this paper
are derived by a more physical technique in the
main text, without recursion to replicas.

Our results are also related to work on ferromag-
netic XY models with a small concentration of anti-
ferromagnetic bonds. ' As discussed by Villain, '

XY models can adjust to an isolated exchange cou-
pling with the wrong sign by trapping half-integer
vortex dipoles or vortices with unit charge (and
asymmetric cores) near an unfavorable cluster of
bonds. At low temperatures the trapped integer vor-
tices are energetically unfavorable, and will presum-
ably be compensated if they occur at all by a nearby
thermal vortex with opposite sign. The half-integer
vortex dipoles form a source of quenched disorder
like that studied in this paper. The concentration of
"wrong" bonds, x, is related to the variance 0 of our
Gaussian distribution of dipole moments where o is
an increasing function of x. Josez finds that algebra-
ic decay of order-parameter correlations is preserved
for small x, with, however, "some evidence" of a
low-temperature instability. For x = —,, he predicts
exponential decay at all temperatures. These results
agree qualitatively with our more detailed con-
clusions for random Dzyaloshinskii-Moriya interac-
tions as a function of cr.

Experiments on Kosterlitz- Thouless transitions in
helium films (which are mathematically quite simi-
lar to XY magnets) are often carried out on disor-
dered substrates like glass or Mylar. Torsional oscil-
lator experiments reveal some residual dissipation
below T, (Ref. 18) which may be attributable to con-
figurations of vortices trapped by the disorder. If
the trapped vortices form localized dipoles with
frozen orientations on the time scale of the experi-
ment, one inight expect deviations from the predict-
ed'4 universal jump in the superfiuid density, and
the destruction of superfluid order at very low tem-
peratures. The degree of substrate disorder is easily
controlled by changing the film thickness. Solids

with quenched random impurities are also
mathematically quite similar to the random magnets
considered here. This analogy will be pursued else-
where. '

In Sec. II we tabulate the properties of the model
in the absence of thermally excited vortices, and
describe how the Hamiltonian (1.1) is related to the
Coulomb gas with a quenched array of random di-
pole moments. The properties of this random
Coulomb gas are discussed in Sec. III.
Renormalization-group recursion relations for this
system, including an extension into 2+@dimensions,
are derived in Sec. IV. Several technical calculations
are summarized in the Appendixes.

II. THE MODEL
A. Spin-wave theory

Just as in treatments of nonrandom two-
dimensional XY models, ' ' it is useful to first
study spin-wave fluctuations, before introducing
vortices. To this end, we write the Hamiltonian
(1.1) as

H = —g [Jcos(8; 81 ) +J—1sin(8; —81 )]
&ij&

= —& J"cos(8.—8 —q")lj l J lJ
&l',j&

(2.1)

where

J [J2+(J& )2]1/2

q,J ——arctan(J&/J) .

(2.2a)

(2.2b)

&S~
, K J d r

i VP(r) —q—(r)
i

2 .
B

(2.4)

Because there is only a weak singularity in the
specific heat of the pure XY model, the Harris cri-
terion ' suggests that the randomness in the overall
exchange constant JJ is unimportant (see Appendix
8). Using the replica method discussed in Appendix
8, one can, in fact, show that the spatial variation in

i~ is irrelevant at long wavelengths for all tempera-
tures up to and including T, . Consequently, we
replace J1 Ikz T by its mean value

~K=[(J +J(J)'~ /AT]g, (2.3)
AT

where the square brackets with subscript d (disorder)
indicate an average over the randomness.

The spin-wave approximation to H is obtained
by expanding the cosine to second order in its argu-
ment, and neglecting higher-order terms. The in-
tegrations over the angle variables 8; are extended to
+ 00. In a convenient continuum notation, one finds
an effective Hamiltonian (neglecting an unimportant
constant),



TWO-DIMENSIONAL XYMAGNETS WITH RANDOM. . . 1S03

We have made the replacements

q,j./a ~q(r),
where a is the lattice constant, and

8;~P(r),

(2.5a)

(2.5b)

vortices satisfying Eq. (1.4), we find that the ex-

tremal solutions 8„„s(r } are given by

8;8„„s(r)=f d r'qz(r ')BJB;G(r—r ')

+2m@;J f d2r'm(r ')BJG(r —r ') .

with the understanding that P(r) is to be integrated
over the range [—co, + ao]. To completely deter-
mine the model, we need to specify the probability
distribution governing the quenched local "wave
vector" q(r). The simplest probability distribution
consistent with Dzyaloshinskii-Moriya interactions
J,z symmetric about zero is the Gaussian distribu-
tion (1.3). For small o, we expect that deviations
from this distribution are unimportant at long wave-

lengths.
It is straightforward to calculate the order-

parameter correlation function

C(r)=[(S(r) S(0))] (2.6)

within the spin-wave approximation. Here the an-
gular brackets indicate a thermodynamic average
weighted by exp( —H,„/ks T) for a fixed configura-
tion of the [q(r ) J, and the square brackets with
subscript d (disorder) mean an average over the
probability distribution (1.3). A simple calculation
sketched in Appendix A gives

(2.10}

Here 8; represents a partial derivative with respect
to the ith component of the unprimed variable r,
G(r) satisfies

V'G(r) =5(r), (2.11)

For large r we have

G(r) = ln(r/a) .1

2' (2.13)

Upon decomposing 8(r) into a singular part and a
smaoth spin-wave part P(r),

8( r ) =8gjgs( r ) +P( r ) (2.14)

and e,j is the antisymmetric 2)& 2 matrix, 6'
y= —e~„=l. The quantity m(r) is a vortex charge

density, related to the charges mk on a set of vor-
tices at positions rk by

(2.12)

C(r) I /r ff(E,n) (2.7a)
we can write the continuum Hamiltonian (1.2) as

where

g(J,o)= (E '+g) .2' (2.7b)

H,„H,
kT kT kT'

where H,„/ks T is given by Eq. (2.4), and

(2.15)

Note fram Eq. (2.3) that K ' is linear in the tem-
perature and that, in contrast to pure spin systems,
ri remains finite even at T =0. One might expect
effects of the randomness to be important at tem-
peratures low enough so that

e, ~E $m;mjln
k~T

rc-' &o- . (2.8) (2.16)

As we shall see, the system is unstable to thermal
vortex pairs outside a finite band of temperatures.
Equation (2.7) is qualitatively incorrect at tempera-
tures outside this range. m;=O. (2.17)

The quenched random vector field p(r ) is related to
q(r ) via Eq. (1.5), and the vortex charges m; satisfy

B. Vortices

Vortices can be added to the spin-wave descrip-
tion in the usual way. ' Starting with the continu-
um Hamiltonian (1.2), we see that, for a fixed con-
figuration I q(r)], extremal complexions of spin an-

gles must satisfy

V 8(r) —V q(r)=0, (2.9)

almost everywhere. Allowing for a set of quantized

Evidently, we must deal with the usual scalar
Coulomb gas perturbed by a set of random dipole
moments p(r).

III. PROPERTIES OF A COULOMB GAS
WITH QUENCHED RANDOM DIPOLES

As shown in the preceding section, the Gaussian
spin-wave excitations decoupi from the vortex de-

grees of freedom. To proceed further one must
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understand the quenched random Coulomb gas
(2.16). In this section we describe screening in this
gas, and then show how the charge-charge correla-
tion function renormalizes due to bound vortex
pairs. In Sec. IV these results are used to derive
renormalization-group recursions similar to those
found by Kosterlitz for the pure system, and to
demonstrate exponential screening of the Coulomb
interaction when the vortices are unbound.

A. Dielectric function

—V'2$,„,(r)—=2n.m,„,(r) . (3.1)

Screening in the Coulomb gas is conveniently
described in terms of a dielectric function. ' We
imagine that a small perturbing potential P,„,(r ) is
added to the system. Associated with this potential
is a perturbing charge density m,„,( r ) determined by

(m(r)) = (m(r))p

2—nK.f d r'P, „,(r ')

&&[(m(r)m(r '))p

—(m(r '})o(m(r))o],

(3.6)

where the angular brackets with subscript 0 mean a
thermal average with no external potential. Upon
averaging over the randomness, and passing to a
Fourier-transform representation, we find

[(m(q))]d ———2mK[(
I
5m(q)

I )o]dP,„,(q)/Qo,

(3.7)

where Qo is the area of the system, and translational
invariance and charge neutrality ensure that

It is easy to see that the change in energy of the sys-
tem is described by

H, /ksT~H, /ksT+2mK f d r m(r)P, „,(r),

[(m(q) &o]d =0

for all q, and

5m( q) =m(q) —(m(q) )p .

(3.8)

(3.9)

(3.2)

—V $(r)=2m [m,„(r)+(m(r))] . (3.3)

The average in Eq. (3.3) means a sum over configu-
rations of thermal vortices

(m(r))—:Im, )

—H /kBTTr'e
Im; I

(3 4)

with the replacement (3.2). The prime on the traces
means that we must respect the constraint (2.17) of
charge neutrality. Upon averaging Eq. (3.3) over the
random dipole distribution, we define a wave-
vector —dependent dielectric function e(q } in terms
of the Fourier transforms P,„,(q) and [P(q)]d..

[0(q)ld =
&(q)

(3 5)

Expanding in the external potential, one finds
from Eq. (3.4) that

where m(r) is the vortex charge density (2.12).
There is also a contribution from the interaction of
the external charges with the random dipole array,
but this drops out of the dielectric function calculat-
ed below. For a given distribution of quenched di-
poles, we can determine a renormalized potential
P(r) in terms of m, „,(r) and the thermodynamic
average of m(r),

Combining Eqs. (3.7) and (3.5) with the average of
Eq. (3.3), we obtain finally

4 E=1——
2 [( I

5m(q)
I )o]d .

e(q) q
(3.10)

This is, of course, just the standard dielectric formu-
la, modified to account for effects of the random
medium.

Physically, e(q) describes. the screening of the po-
tential between two widely separated vortex charges
due to the remaining vortices in the medium of ran-
dom dipoles. In an insulating phase, we expect that
effective potential takes the form

P(q) =2nKz/q. (3.11)

for small q. The "external" potential is just 2mK/q
in this case. Equations (3.5) and (3.10) determine

4m E=1—lim [( I
5m(q)

I )o]d .E p o q2

(3.12)

It is straightforward to evaluate this formula to
leading order in the vortex fugacity

y e e B (3.13)

Since (m(q))o is of O(y ), we have

[( I
5m(q)

I
'&o]d =[&

I m(q) I '&o]d+O(y'} .

(3.14)



TWO-DIMENSIONAI. XFMAGNETS %ITH RANDOM. . . 1805

Upon expanding [( 1m(q ) 1')o]d to second order in

q, and exploiting charging neutrality and isotropy
of [(m(r)m(0))p]~, we obtain

[|'
I
m(q)1'&o)u»o

d f= ——
q r mrmo

a4

mK(1 oK—) )2 . (3.20)

For

(3.21)

only makes sense over a finite range of tempera-
tures, determined by

Collecting everything together, we see that

d p'

K~ ——K+rr K J r [(m(r}m(0))p]~a4

(3.15}
it is impossible to satisfy this inequality at any finite
temperature.

B. Charge-correlation function

+O(y ) . (3.16)

The thermal average (m(r)m(0})p entering Eq.
(3.16) follows immediately from the Coulomb-gas
Hamiltonian (2.16),

' —2nK

(m(r)m(0))p ———2y
a

It is straightforward to convert perturbation ex-
pansions such as (3.19) into renormalization-group
recursions like those derived by Kosterlitz for the
pure Coulomb gas. ' ' Because there are three im-
portant parameters (K, y, and cr) entering the ran-
dom Coulomb gas, we need an additional equation
to proceed further. Here we study the decay and the
charge-correlation function, which we expect to be
of the form

Xcosh[I(r, O)]+O(y ), (3.17a) [( m(r ) m(0) ) o] d-r (3.22)

where

I(ri, r2)=K J d r'p(r')
r' —r1

r' —r2

in the insulating phase. Note from Eq. (3.18) that
the K~ differs from K even to leading order in y .
The method we use is adapted from a technique
used for pure systems in an early study of two-
dimensional melting.

To calculate K~ to the next order in y, we write

=2mK f d r'p(r') V'

X [G(r ' —ri) —G(r ' —r2)] .

[(m(r)m(0) )p]~

y'I', ( r )+y'r4(r )+
1+y Z + e e ~

.d
(3.23)

(3.17b)

where the denominator is the expansion of the parti-
tion function for a fixed dipole configuration. The
coefficient Z1 is

Using the technique sketched in Appendix A, it is
easy to evaluate [cosh(I(r, O))]d and find

[(m (r )m(0) )o)d ———2y2(r/a)

dr I drb rbZ1-
a2 a

' —2mK

+O(y') . (3.18) (3.24)

Our final result for Kz in the insulating phase is ob-
tained by combining Eqs. (3.16) and (3.18), carrying
out an angular average, and imposing the short-
distance cutoff a,

3—2mK(1 —OK)

Kz K 4m. y K

The numerator represents contributions of pairs,
quadrupoles, etc., to the thermal average, just as in
Ref. 24. To 0 (y ), we have

[(m(r)m(0) &p]„=y'[r, (r) ]„+y'[r4(r ) ]~

+O(y') . (3.19)
%e see immediately that this perturbation expansion

—y'[Z, r,(r)], .

From Eq. (3.18) we see immediately that

(3.25)
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' —2mK

[I z(r)]» ——2
a

where

K=K. (1 crK—) .

(3.26a)

(3.26b)

' —2'
[I 4(r)]» ———16m — K ln

a a

3—2mK

Xfr
a a

(3.27}

The second term in Eq. (3.25) may be evaluated
straightforwardly as in Ref 24. , with the result

The third term, which appears because we are carry-
ing out a quenched rather than an annealed average,
is given by

[Z, I (r)] = —2
a

(3.28)

Terms proportional to the area of the system in Eqs. (3.27) and (3.28), and which cancel in Eq. (3.30), have
been suppressed. Evaluating the quenched average by the method of Appendix A, and following the procedure
of Ref. 24, we obtain

' —2m'K 3—2n'K

[ZiI'2(r)]» ———16ir — K o ln —' fa a ~ a a

'
3—2n'K

1 — 8n y(K Ko )f-
a a

Collecting together the different contributions to Eq. (3.25), we have
' —2'

[(m(r)m(0) )0]» =—2y
a

i.

ln(r /a)

(3.29)

(3.30)

To lowest order in y, we see that the charge-
correlation function may be written as in Eq. (322),
with

a new vortex fugacity y(l). The differential recur-
sion relations describing how K(l), K(l}, and y(l)
evolve under this procedure are

KR =KR( oRKR )
'

3—2n.K

= K 4n. y (K —Ko ) f-
a a

= —4n. K (l) (I)
dl

= — y

=—[K(l)—cr(l)K (l))
dl dl

(4.2)

+o(y') . (3.31)

When cr=0, the renormalizations (3.19) and (3.31)
of K and K are identical. These are physically quite
different quantities in the presence of disorder, how-
ever. Note that the same potentially divergent in-
tegral enters both Eqs. (3.19) and (3.31).

and

=[2—irK(l)+irK (l)o(l)]y(1) . (4.4)

= —4ir [K (l) —K (l)o2(l)]y2(I), (4.3)

IV. RENORMALIZATION-GROUP
RECURSION RELATIONS

Comparing Eqs. (4.2) and (4.3), one finds that they
can only be consistent provided that

A. Recursion relations in two dimensions
do (I)

dl
(4.5)

Difficulties in the perturbation expansions (3.19)
and (3.31) can be studied using the method of Jose
et al. The potentially divergent integrations are
split into two parts,

fae dr f~ dra+ -a (4.1)

and the small-r integrals are absorbed into effec-
tive couplings K(l) and K(l). Upon rescaling the
large-r integrations, we obtain a new perturbation
series identical in form to (3.19) and (3.31), but with

Recursion relations equivalent to (4.2), (4.4), and
(4.5) are obtained via the replica trick in Appendix
B. For o =0, we recover the recursion relations of
Kosterlitz. Although cr(1) is unrenormalized to this
order in y, we would expect it to renormalize slightly
when irrelevant variables [parametrizing, say, devia-
tions from the purely Gaussian probability distribu-
tion (1.3)] are taken into account.

The Hamiltonian flows generated by Eqs. (4.2)
and (4.4} in the (K ',y) plane are shown in Fig. 2
for small cr. There are two special points along the
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fixed line y =0 where the eigenvalue of y vanishes,
namely

(4.8)

K+'(o)= —[1+(1 —8cr/m )'~ ] .
4

(4.6)
at these transitions. This exponent decreases (quad-
ratically in 0) froin —, at 0 =0, to

Ep ' (E, ' &E+', (4.7)

there are enough vortex dipoles to screen out this
potential as long wavelengths. When E ' exceeds
E+', there is the usual Kosterlitz-Thouless vortex
unbinding transition. When E ' is below Ep a
combination of the random potential and thermal
effects causes the vortices to unbind. As cr ap-
proaches n/8, K+' .and E ' merge, and the insulat-
ing phase shrinks to zero. The system is always
unstable to vortices when o exceeds n /8.

The dashed line of the initial Hamiltonian corre-
sponding to Eq. (1.7) is also shown in Fig. 2. When
this line crosses the heavy trajectory, transitions
from algebraically decaying order to paramagnetism
occur. The properties at both these transition tem-
peratures are controlled by the Hamiltonian flows
near E+'. The exponent q entering parametrizing
the algebraic decay of G(r) approaches the value

The trajectories are hyperbolic near E+, which
marks the terminus of a locus of transition tempera-
tures. The fiows are elliptical near E '. The heavy
line marks a special trajectory which leaves the fixed
line at a finite temperature Kp

' below K ' and
ends at K+'. The vortex fugacity ultimately decays
to zero in the region bounded by this trajectory. The
random Coulomb gas is insulating in this region,
and there is algebraic decay of correlations in the
corresponding spin system. The initial increase in
y(l) at temperatures less than E ' is caused by the
random dipole potential. For

9 min (4.9)

just before the algebraically ordered phase vanishes
at cr=m/8. The renormalized spin-wave stiffness
constant Ez is given by'

Ka(K, o,y)= lim K(l) .
I~ oo

(4.10)

As is evident from Fig. 2 this quantity approaches
E+ on the boundary of the ordered phase

lim Kx ——K+(0) .
T~ T~

(4.11)

In contrast to pure systems, ' this quantity is not
universal.

In the paramagnetic region of Fig. 2, we expect
that the spin-correlation function decays exponen-
tially to zero,

G(r) e- (4.12)

B. Screening in the metallic phase

Outside the insulating region of Fig. 2, the system
is driven toward high temperatures and large y, and
perturbation theory in the vortex fugacity breaks
down. In this limit, we can show explicitly that the
behavior is metallic. The general formula (3.10) for
the dielectric constant may be written

4 E=1—
I [(

~
m(q)

~
)p]g

Taking over Kosterlitz's analysis of the pure sys-
tem, we find from the properties of the flows near
K+ that g diverges exponentially,

g-exp(const
i
T T, i

'iz) .— (4.13)

This same length controls screening in the metallic
phase of the Coulomb gas. The singular part of the
specific heat behaves like g near the transition.

—[ I
&m(q) &p I

']~] (4 14)

I

K
I

Ko K

FIG. 2. Hamiltonian flows in the (E '(l),y(l)) plane.
There is a line of fixed points at y =0. The heavy trajec-
tory which starts at Eo ' and ends at E+' bounds a region
of insulating behavior. The unstable trajectories outside
this region can be integrated out to the vertical line, where
the high-temperature Debye-Hiickel approximation is ap-
propriate.

When unbound vortices are present, the averages, in
Eq. (4.14) can be evaluated by integrating, rather
than summing, over the vortex degrees of freedom
in H, . This "Debye-Huckel" approximation
should be valid for small q, since many free vortices
are contained in a region of size q

When rewritten in terms of the Fourier-
transformed charge distribution m ( q ), the
Coulomb-gas Hamiltonian becomes
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Im(q) I

IIc i d q 4m E Ec&

k~T ' (2'�)' q' k~T

+2~K q, m q
'p q,

'qd i ( )

(2n. ) q

(4.15)

I: & I
m(q}

I
'&o]d =

4~'Z E,q'
+

q2 k~T

4m K /q+ 2
'2'

lT2+2 Q Ec
+

(4.17)

Inserting these results into Eq. (4.14} we find the
wave-vector —dependent dielectric constant charac-
teristic of a metal:

e(q) =1+ 1

(qg)'

where

(2=E,a2/4rrksTK .

(4.18)

(4.19)

where a is the lattice spacing implicit in Eq. (1.1}.
By treating m( q) as the Fourier transform of a con-
tinuous vector field, it is easy to show that

K2 2

I: I &m(q) &o I'l~=
4rr K +

q2 k~T

(4.16)

dK
dl

= —EL +4%7 p (4.20a)

=(2+ , e m—K+—m.Kcr )y. , (4.20b)

do'

dl
(4.20c)

The same recursion relations apply to a d-
dimensional Coulomb gas with random dipoles in
2—e dimensions. Note that the randomness de-

cays to zero, and is ultimately unimportant at long
wavelengths at all temperatures. The T=o and
finite-temperature fixed points which occur for
o =0 were discussed in Ref. 26.

For fixed o, reentrant phase transitions are still
possible as a function of temperature. Figure 3
shows qualitatively the result of numerically in-

tegrating the recursion relations for o =m /16,
d=2. 1, and a range of initial values in the (K ',y)
plane. The shaded region exhibits long-range fer-
romagnetic order, and corresponds to the set of ini-
tial conditions which are attracted to the T=0 fixed
point. The shaded region is bounded by a line of
ferromagnet-paramagnet phase transitions with
universal critical exponents. The correlation length,
for example, diverges like

lines in three dimensions. Just as in pure systems,
results in 2+a dimensions can be obtained by ac-
counting for the effect of length rescalings on quan-
tities like E, which are dimensionless in d=2.
Terms in the recursion relations proportional to the
vortex fugacity can be evaluated in two dimensions,
to lowest order in e. The resulting re-
normalization-group equations for XY magnets with
random Dzyaloshinskii-Moriya interactions are

The resulting interaction between widely separated
vortices dies off exponentially at large distances.
Using the renormalization group, one can scale onto
this Debye-Hiickel calculation everywhere outside
the insulating region of Fig. 2. The recursion rela-
tions can be integrated until the trajectories intersect
the vertical line in Fig. 2, where the high-
temperature Debye-Huckel theory is a good approxi-
mation. This sort of scaling analysis shows that g
diverges as in Eq. (4.13) near the metal-insulator
transition.

with"

PARAMAGNET

(4.2la)

C. Continuation into 2+& dimensions PARAMAGNET

It is interesting to see if random Dzyaloshinskii-
Moriya interactions cause reentrant phase transi-
tions in 2+@ dimensions. Although the precise
meaning of "vortices" in 2+@ dimensions is debat-
able, one may be able to think of them as @-

dimensional singularities which become singular

FERROMAGNET

FIG. 3. Schematic phase diagram for XY spins with a
random Dzyaloshinskii-Moriya interaction in 2+a dimen-
sions.
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X(1—e'q')

ln(r/a) .
1

(A6)

After applying similar manipulations to I( r „r2) we
find that

I(ri, r2)= f d r'q'(r') V'

APPENDIX A: SPIN-WAVE THEORY X [G(r ' —r~) —G(r ' —r2}], (A7)

C(r)=Re[(e'&''' '&'o')]» .

The thermal average takes the form

(Al)

In this Appendix we determine the decay of
order-parameter correlations in the absence of vor-
tices. The remaining Gaussian excitations are usual-

ly called "spin waves. " Starting with the defini-
tion (2.6), we can write

(&
i1{r—, 0 ))

where

where G(r) is given by (2.13}for large r, and satis-
fies the relation (2.11).

Equations (A2), (A4), and (A6) can be combined
into an expression for C(r), namely

' 'lr
C(r) =

(exp[i8(r) i8—(0)])
~ ~

~exp iP(r} ig(0) K—f d r—'VP q
4

exp K f d r'Vg. q—

(A2)

7/T = 12' (A9)

Since I(r, 0) is a linear functional of the Gaussian
variable q ( r ), we have

[exp( —iI(r, 0})]»——exp j ——,[(I(r,0)) ]» I,

Ho/kgT= ,K f d r
( Vp—~ (A3)

where the angular brackets with subscript 0 mean an
average over an ensemble specified by the Hamil-
ton1an

where

[(I(r,O)} ]» ——o f d r'

X
~

V '[G(r ' —r )—G(r ')]
~

(A10'

(The same symbol is used in a different context in
Sec. III.) Because the average is over a Gaussian en-

semble, the numerator of (A2) may be written,

(exp[i/(r) —ig(0) —K f d r'VP q])e

pI ——,([P( ) —$(0)]'& I

X(exp( —K f d r'Vp q)&0

Xexp[ —iI( r, 0}], (A4)

C(r)-
I'&r+% ' (A12)

where qz was given in Eq. (A9), and

=o/2' . (A13)

(Al 1)

The integral over r ' is readily evaluated by integrat-
ing by parts, and using the relation (2.11). The re-
sulting expression for C(r) is

where

I(r„r2)=K f d r'q(r'). V'

X ([P(rl) —P(rg)]P(r ') )p . (A5)

The first term in Eq. (A4) is easily evaluated for
large r by passing to a Fourier representation,

APPENDIX B: RECURSION RELATIONS
VIA REPLICAS

A useful check on the recursion relations for the
random Coulomb gas derived in Sec. IV is provided

by the replica trick. With a fixed configuration of
dipoles, the free energy associated with the
Coulomb-gas Hamiltonian (2.16) is given by
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—I'lkgT, —FI /kyar'

Im;)
(81)

We can average this free energy over the random-
ness via the relation

(I' le T)g —— lim
1 —Z"

n o n

Assuming that the limit process n —+0 and the ran-
dom average commute, we first integrate over the
randomness, and take the limit n ~0 at the end of
the calculation. Proceeding in this way, we find a
"replicated" Coulomb-gas Hamiltonian, namely

H,
mKi g—gmPmj 1n(r;~la)

kBT

m.K2 g—g m; mz ln(r J la )

ij a+p

5K( r )=5J( r )Iks T

represents a local variation in the coupling strength.
The remaining terms in Eq. (86) are the same as
those in Eq. (1.2), with the contribution proportional
to

I
q(r)

I
suppressed. The variable q(r) has a

quenched probability distribution given by (1.3), and
we assume that the distribution for the quenched
variable 5J(r) is

P'(5J(r)) ~ exp — f d r
I
5J(r) I'1

2A

(88)

Upon applying the replica trick to (86), we find
the replicated Hamiltonian

t' =f d'r —,'K, QIve. I'+ , K, g -pe. pe~
B a a+p

+ ' gg(m )',
i a

——,'~ f d"
I
ve I'I~epI' (89)

where a is a replica index running from 1 to n, and

K~ ——K—OE, E2 ———O.E2 = 2 (84)

Equation (83) is a special case of a more general
Hamiltonian in replica space considered by Cardy
and Ostlund. Although the coupling between repli-
cas I( 2 is not present in their initial Hamiltonian, it
is generated by their random p-fold symmetry-
breaking field. Specializing the Cardy-Ostlund re-
sults to the Hamiltonian (83), we find (via the same
technique used originally by Kosterlitz for nonran-
dom Coulomb gases) the recursion relations

dE) 2

dl
4n. y [Ki+(—n —1)Kz],

dE2 2

dl
= —4m. y [2KiK2+(n —2)Kz],

dJ7 =(2—m.Ki)y .

(85a)

(85b)

(85c)

Taking limit n —+0, we obtain results equivalent to
the recursion relations (4.2), (4.4), and (4.5) derived
without replicas in Sec. IV.

One can also use the replica technique to check
that a small amount of randomness in the coupling
JJ in Eq. (2.2a) is irrelevant along the stable portion
of the xy fixed line. We apply the replica trick to a
long-wavelength version of Eq. (2.1), namely

where a and 13 are replica indices, and Ki and K2
are given by (84). Upon inserting vortices into the
first two terms of (89), we obtain the Coulomb-gas
Hamiltonian (83) considered above. When vortices
can be neglected, the last term in (89) is clearly ir-
relevant along the corresponding Gaussian fixed line
because it involves four powers of the gradient
operator. Since 5 iterates to zero at long wave-
lengths, we are justified in making the replacement
(2.3).

It is interesting to see how the Harris criterion '

leads to the same conclusion. The Harris criterion
is applicable in the following sense: A spatially
varying coupling J(r)—=J+5J(r) causes local varia-
tions in T, relative to a system without this sort of
randomness. What is important is the shift in the
critical temperature 5T, (r) averaged over a coher-
ence area g,

(5T,(r))- f d r5J(r) g . (810)
cob. area

Just above the Kosterlitz-Thouless critical tempera-
ture T„we can calculate the mean-square fiuctua-
tion of this quantity, averaging over the probability
distribution (88). The result is

(811)

These fluctuations must be negligible relative to
(T T, )2 for randomn—ess in J to be unimportant
near the critical point,

where

—K f d rq(r) (Ve),
(812)
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Since (see Ref. 7}g diverges strongly,

g -exp(const
i
T T,—i

'i ), (B13)

this criterion is more than satisfied for two-
dimensional XY models. Equation (B12) reduces to
the usual Harris criterion when g(T} diverges as a

power law(- i
T T,—i
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