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van der Waals model for the surface tension of liquid He near the A, point
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We develop a phenomenological model of the He liquid-vapor interface. With it we cal-
culate the surface tension of liquid helium near the A, point and compare with the experi-
mental measurements by Magerlein and Sanders. The model is a form of the van der Waals
surface-tension theory, extended to apply to a phase equilibrium in which the simultaneous
variation of two order parameters —here the superfluid order parameter and the total
density —is essential. The properties of the model are derived analytically above the A, point
and numerically below it. Just below the A, point the superfluid order parameter is found to
approach its bulk-superfluid-phase value very slowly with distance on the liquid side of the
interface (the characteristic distance being the superfluid coherence length), and to vanish
rapidly with distance on the vapor side, while the total density approaches its bulk-phase
values rapidly and nearly symmetrically on the two sides. Below the A, point the surface
tension has a

~

e
~

3~ singularity (e-T Tq) arisin—g from the temperature dependence of
the spatially varying superfluid order parameter. This is the mean-field form of the more
general

~

e
~

"singularity predicted by Sobyanin and by Hohenberg, in which p (which is in
reality close to 1.35 at the A, point of helium) is the exponent with which the interfacial ten-
sion between two critical phases vanishes. Above the A, point the surface tension in this
model is analytic in e. A singular term

~

e ~" may in reality be present in the surface tension
above as well as below the A, point, although there should still be a pronounced asymmetry.
The variation with temperature of the model surface tension is overall much like that in ex-
periment.

I. INTRODUCTION

Liquid He in equilibrium with its vapor under-

goes its A, transition at T~ ——2.18 K. Below the A,

point it may be thought of as, and is thermodynami-
cally equivalent to, ' a three-phase system consisting
of two "phases" P and y making up the superfluid
HeII, and their common vapor e, as illustrated in

Fig. 1(a). In contrast to other three-phase systems
there is here only one interface separating both su-
perfluid phases P and y from the gas phase a and
one corresponding surface tension o:

o(e)=o(0') ae+b
~

—e ~t', (1.2)

ture scale this appears to be a discontinuity in slope,
but on a finer scale the kink in o vs T at T~ is seen
to be rounded. Magerlein and Sanders found that
their data could be fitted reasonably well by

0 =OaP ——Oay ~

As shown in Fig. 1(b), the system above T~ consists
of only two phases, the vapor a and the HeI liquid
denoted by Py. The A, point, therefore, is a critical
endpoint of a three-phase equilibrium.

Magerlein and Sanders have measured ' the
liquid-vapor surface tension of "He as a function of
temperature in the neighborhood of the A, point.
The surface tension decreases with increasing tem-
perature and shows a slight but distinct change of
slope at Tt„(Fig. 2). Viewed on a coarse tempera-

He Z He I

FIG. 1. Vapor (a) in equilibrium with. (a) superfluid
He II (phases P and y) at T & Tq, or (b) normal liquid He I
(phase Py) at T & Tq.
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FIG. 2. Surface tension of liquid helium as a function
of e =(T—Tq)/Tq, schematic.

where p =1.35, a and b are positive parameters, and
e is the reduced temperature

T—TA
(1.3)

The form (1.2) of the temperature expansion of 0
had been suggested by Sobyanin on the basis of the
Landau-Ginzburg-Pitaevskii theory and by Hohen-
berg by scaling arguments. They agree that the
singularity in the surface tension is of the form

~

e ~", where p, =2—v —u. Here v is the exponent
that determines the rate of divergence of the coher-
ence length of order-parameter fluctuations and a is
the exponent of the specific-heat divergence. While
Sobyanin predicted the singular term in (1.2) only
for T & Tx, Hohenberg argued that it should appear
on both sides of the critical endpoint.

Here we take up the problem of the surface ten-
sion of liquid helium near its A, point and we also
study the structure (density and order-parameter
profile) of the liquid-vapor interface through the van
der Waals, Cahn-Hilliard theory of fluid inter-
faces. In Sec. II we state the basic formulas of that
theory and introduce the two order parameters x
and y with which we characterize the phases. It was
remarked earlier that one must have at least two or-
der parameters in the van der Waals theory since in
a one-order-parameter theory phase a is always un-
symmetrically related to P and y, and (1.1) does not
hold. The variable y will be related to the total den-
sity and x to the superfluid order parameter. We
treat the latter as though it had only one component,
and thus allow it only the two rea1 values +xo in the
bulk superfluid. In a more realistic model x would
itself have two components, an amplitude, for exam-
ple, and a phase angle, so that there would be a con-
tinuous infinity of superfluid phases, all with the
same ~x

~
=xo, instead of only two. ' That would

II. OUTLINE OF THE THEORY

The state of liquid He in equilibrium with its va-

por is determined by only one thermodynamic field,
which we may take to be the temperature, or the re-
duced temperature e defined by (1;3). At given e the
various He phases are distinguished by the values of
two order parameters x and y (Fig. 3). The super-

/

/
/

/
/Yw(""0 yo) ~~ (xo yo)

X

Py (0,0)
Py (0, y&)

a (O, y )
a (0 ya)

a (0 ya)

(a) e & 0 (b) e = 0 (c) e& 0

FIG. 3. Phases a, p, and y, or u and py, in the plane
of the order parameters x and y, for (a) T (Tq (e ~0), (b)

T = T~ (e =0), and (c) T & Tq (e & 0).

present a more difficult problem, which we have not
attempted to solve. It is an important open question
how the present results would be altered if the su-
perfluid order parameter were taken to have that
more realistic symmetry. It is possible that the in-
terfacial profiles would be significantly affected;
but, since we know that many aspects of the thermo-
dynamics and phase equilibria are realistically repro-
duced in the simpler model, ' we are encouraged to
believe that the surface tension may not be affected
profoundly.

The description of our model is completed in Sec.
III, where we specify the free-energy density as a
function of x and y. In Sec. IV we present the
analytical solution (within this van der Waals
model) for the surface tension and the density pro-
file at T g T~. Below the A, point such a solution is
not possible. In Sec. V we analyze the asymptotic
approach of the order-parameter profiles through
the interface to their bulk superfluid values and
determine the corresponding length scales. With
these investigations as a basis, we construct in Sec.
VI a numerical method suited to the calculation of
the surface tension and of the density profiles in the
critical region. In Sec. VII the numerical results are
discussed, and an approximate expansion of the sur-
face tension in powers of

~

e
~

' (characteristic of a
mean-field theory) is derived and compared with the
experimental findings. The concluding section, Sec.
VIII, gives a brief summary and considers some pos-
sible implications of this work for the interpretation
of the Magerlein-Sanders data.
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fluid order parameter x is 0 in the bulk vapor, 0 in
the bulk liquid when e &0, and +xo (xo &0) in the
liquid phases when e (0:

xp =xp, xr =—xp (xo & 0) . (2.1)

The second order parameter y is, to within a posi-
tive, constant scaling factor c, the number density n

relative to the density nI of the liquid at the A, point:

y=c(n ni ),—c&0.A. (2.2)

(xpfyp ) =(xoyyo)i z~+ Go

(x,y)~
(xo,y~)=(O,yo), z —+ —oo

(2.3)

while for e & 0, i.e., for the cL-Py interface,

(x,y)~ . (xpy, ypr ) = (O,yo ), z~+ oo

(x,y )=(O,y ), z~ —oo .

The excess density co(z) of grand-canonical free
energy 0 (i.e., the excess over its value in a uniform
fluid, where it is the negative of the pressure) is tak-
en to be

co(z)=f[x(z),y(z)]+ —,m[x(z) +y'(z) ], (2.5)

where dots denote differentiation with respect to z,
where m, which we take to be a phenomenological
parameter, is constant, and where f(x,y) is the ex-
cess of the uniform pressure in the equilibrium bulk
fluids over what would be the pressure if the Quid
were constrained, hypothetically, to be uniform with
values x and y of its order parameters, at given e.
This f(x,y) is as given by a mean-field theory. It is
0 in the bulk phases,

The value of y in the bulk liquid phases is denoted

by yo, it is positive below the A, point

(yp =yr =yo & 0) and negative above (ypr ——yo & 0).
In the bulk gas phase y assumes a value y (0 which
increases (becomes less negative) with increasing e.

We extend the van der Waals, Cahn-Hilliard
theory to this case of two order parameters. Let z be
the distance in a direction perpendicular to the plane
of the liquid-gas surface and taken to increase with
increasing depth; i.e., to be the negative of the
height. The order parameters x and y are assumed
to vary smoothly with z through the interface from
their values in the bulk gas (z = —oo) to their values
in the bulk liquid (z =+ oo).. For the gas-superfluid
o.-P interface, therefore, when @&0, the boundary
conditions for the order-parameter profiles x (z) and
y(z) are

Bf .. Bfplx =, ply =
Bx By

With (2.6) these have as a first integral

(x'+ y'—) =f(x,y )
2

(2 g)

(2.9)

so with x(z) and y(z) the equilibrium profiles, the
surface tension is also given by

0 =2f f[x(z),y(z) jdz (2.10)

and by

0=m f (x +y )dz . (2.11)

Considering the equilibrium profiles x(z) and y(z)
as a parametric representation of a trajectory x(y)
that links the respective bulk-phase points in the x-y
plane, one may express (2.11) equivalently, using
(2.9), as a path integral along the trajectory. Then
the surface tension ~ p of the gas-superfluid (a-13)
interface, for example, is given by

3'p

~.p =&2m f, &f[x(y) y][1+x'(y)']'"dy,

(2.12)

where the prime means derivative with respect to y.
The free-energy density f(x,y) =f(x,y; E) and the
profiles x (z) =x(z;e ) and y (z) =y(z;e) depend
parametrically on e so the surface tension o. also de-
pends on e. Since the integral in (2.7) is stationary
with respect to variations of the profiles about their
equilibrium forms, we also have

do +~ Bf
dz ~

dE —~ BE
(2.13)

and positive everywhere else. In general, there
would be a cross term x(z)y(z) in (2.5), too, but for
our present purpose, which is to outline the simplest
phenomenological theory, that is an unnecessary re-
finement.

The equilibrium surface tension 0. is the
minimum over all possible profiles x (z) and y(z) of
the integrated excess grand-canonical free energy per
unit area:

0 =min f co(z)dz . (2.7)

The equilibrium density profiles x (z) and y (z)
through the interface are those that minimize the in-
tegral (2.7) and satisfy the boundary conditions (2.3)
or (2.4). They may be obtained either from a numer-
ical functional minimization of 0. with respect to
x (z) and y (z) or by integration of the corresponding
Euler-Lagrange equations

f[x(oo) y(a) )]=f[x(—a) ) y( —oo)]=0,
(2.6)

where the integral is to be evaluated with the equili-
brium profiles x (z)

andy�

(z) in Bf(x,y;e)/Be.
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III. MODEL FREE-ENERGY DENSITY

f(x y)=fofi(x y)f2(x y»
with

fi(x,y }=[x' y —(xo—yo }—]'+(y yo —}'

+2(x —xo) (xo —yo) ~

f2(x,y ) =x'+(y y. )—'

and with fp some positive constant. For

(3.1)

(3.2)

(3.3)

We take as a model free-energy density f(x,y) a
sixth-degree polynomial in x andy of the form

That the equilibrium bulk value xp of the superfluid
order parameter vanishes proportionally to ( —e)'~2

as e-+0 is a characteristic mean-field-theory result
(critical-point exponent P = —,, in conventional nota-
tion}. The discontinuity in the derivative of yp with
respect to e at the critical point is analogous to the
discontinuity in the constant-volume specific heat
on the critical isochore that is characteristic of the
mean-field theory of the critical point of liquid-
vapor equilibrium; the density y here plays the role
of the energy or entropy density at such a critical
point. From (3.2), (3.6), and (3.7) the factor fi in f
is

2xo=po &0 (3.4) fi(x,y;e)=x 2x y+—2y +ey+e y(e), (3.8)

this f(x,y) vanishes at three minima, one on the y
axis at y and two located symmetrically with
respect to the y axis on the parabola xp ——yp [cf.Fig.
3(a)]. The condition (3.4), therefore, defines the
three-phase region; the minimum at x =0, y=y is
associated with the a (vapor) phase and those at
x =+xp, y =yp are associated with the P and y (su-

perfluid) phases. When

xo=o yo&0 (3.5)

the f of (3.1) has only two minima, both lying on the

y axis, at yo and y, and corresponding to the liquid
HeI phase Py and the gas phase a [Figs. 3(b) and
3(c)]. In both the two- and three-phase regions f is
an even function of x and therefore symmetric with
respect to the y axis. In the three-phase region this
symmetry [as we see, for example, from (2.12) and
its analog for o~r] manifests itself in the required
equality (1.1). It is sufficient in this region to calcu-
late only the ap trajectory, the order-parameter pro-
files of the a13 interface, and the surface tension

o~p, and then to identify these as the properties of
the vapor-superfluid liquid interface.

The factor fi in (3.1) is given by (3.2) as a two-
component (x and y) Landau expansion at a critical
point. The coefficients of the terms linear in x and

y, viz. , —4xo(x p
—yp) and 2(x p

—2yp), are the
respective thermodynamic fields conjugate to those
densities. By symmetry, the former is 0 in any
physically realizable state, so either xp ——0 (e &0) or
yp=xo (E & 0), as in (3.4) and (3.5). The latter of the
two fields, viz. , the one conjugate to y, is the one
physically variable field and, close to the A, point,
may be identified with e. Thus

where

y(e)=.
1

4, a&0
1 e&0.

(3.9)

The vapor phase a is just a spectator to the py
critical point, so we take y~ to be simply linear in e
for small e:

IV. SURFACE TENSION ABOVE THE A, POINT

Since f is symmetric with respect to the y axis,
the first of the Euler-Lagrange equations (2.8) with
the boundary conditions (2.4) has the trivial solution

x(z) =0, (4.1)

as expected. The interfacial free-energy density then
depends only on the number-density profile y(z);
from (3.1}—(3.3) and (3.6)

3'a =3'a+A ~ (3.10)

where y~ is the value of y~ at the A, point, and the
constant q is imagined positive since the density of
the vapor increases with increasing temperature. In
all of our illustrations we shall take q =—y~ = 1.

Figure 4 shows a contour plot of f(x y)lfp at
e= —0.1; i.e., far below the A, point. As e increases
towards the )i, point the phase points P and y move
along the parabola x2=y towards the origin of the
x,y plane, where they eventually merge into the sin-

gle Py phase point. Above Ti„ the Py phase point
moves in the direction of more negative y as e in-

creases.

1

xo=0~ yp= —
4 6 (e &0) (3 6) f=2fo(y —yo)'(y —y. )' . (4.2)

and

xp=( —
2
e'), yp= —i 6 (6 &0) .1/2 (3.7)

With this f the second of Eqs. (2.8) may be solved
analytically. With the boundary conditions (2.4) it
yields the classical hyperbolic-tangent profile
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V. LENGTH SCALES BELOW Tg

The Euler-Lagrange equations (2.8) cannot be
solved analytically with the free-energy density (3.1)
in the three-phase region. We may gain some in-
sight into the order-parameter profiles x (z) and y (z)
by linearizing (2.8) in a small neighborhood of each
of the bulk phases a and P. This will show us how
the order parameters approach their bulk-phase
values as z~+oo. Knowledge of this asymptotic
behavior is prerequisite for the construction of a
method of numerical solution. It will also allow us
to determine analytically the shape and direction of
the trajectory x (y) close to its endpoints, as a test of
the accuracy of the numerical results.

In the neighborhood xp+g, yp+rl of the P-phase
point xp, yp, with the neglect of cubic and higher-
order terms in g and rl, the free-energy density (3.1)
has elliptical contour lines (cf. Fig. 4) given by

2xpg' —2xpgrl+r) =8 (5 1)
-0.4 -0.2 0.0

X

0.2 0.4

FIG. 4. Contours of constant f(x,y)lfp in the x,y
plane for q =—y =1 and e = —0. 1.

and distinguished by the positive parameter 8 .
The principal axes of these ellipses define a coor-

dinate system g, ri that is rotated by an angle E rela-
tive to the g, rl coordinate system (cf. Fig. 5) with

1 1 Z
y(z) = (yp+y )+ —,(yp —y )tanh

2
(4.3)

cotE = Xp

4 i 1/2
Xp —

2
—Xp+

(5.2)

where g, the thickness of the interface, is given by
' 1/2

g
—1

m
(yp —y. ) (4.4)

We obtain the surface tension from (2.10), (2.11),
or (2.12):

Thus, as the A, point is approached from below, i.e.,
as (xp,yp)~(0, 0), the short axis g aligns itself more
and more closely with the y axis of the x,y coordi-
nate system. The ratio a of the lengths of the two
principal axes,

a= , &fpm (yp —y. )',-
or, in terms of the temperature e,

o(e) =crp(1 de)—
where crp is the surface tension at the A, point

op ——, Qfpm ( —y )—1 A 3

(4.5)

(4.6)

(4.7)

and where, from (3.6) and (3.10), the coefficient d is
the positive constant

d=(q+ —,)/( —y, ) . (4.8)

For later comparison with the numerical results on
the surface tension in the three-phase region it is
useful to expand o/op in powers of e. Here we
again take q = —y~ = 1. Then from (4.6),

o(e)/rrp 1 —3.75@+——4.6875' —1.953 125e

(4.9)

X

FIG. 5. Elliptical contour of constant f (x,y) about the
P-phase point xp,yp in the order-parameter plane x,y.
Coordinate systems g, il and g, il have their origin at xp,yp
and are rotated from each other by the angle E. g and ri
axes are parallel to the x and y axes, respectively. g and rl
axes lie along the principal axes of the ellipse, which are
of lengths I& and l-„, respectively.
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I„-
a ———

l-

' 1/2

xp+ q +(xp+ 4 )

xp+ —,—(xp+ —,)
4 ) /'2

(5.3)

Transformation of the solutions (5.7) to the x,y
coordinate system then yields for the profiles in the
limit of large z,

x(z) xp[1+a exp( —z/g& )

then diverges due to a divergence of the length I„- of
the major axis. At the A, point the ellipse (5.1) de-
generates into a pair of lines parallel to the x axis,
indicating that the liquid-phase minimum of f (x,y}
has become quartic in the x direction while remain-
ing quadratic in the y direction.

In the principal-axis coordinate system g,r} the
linearized Euler-Lagrange equations (2.8) are decou-
pled:

k=ki V i=42'0 (5.4)

where the constants g &
and gz are

ki, ~ =2[(fp/~)[yp+(yp —y )'1

X [xp+ —,+(xp+ —,)' ']) ' ' . (5.5)

—1 A, 3 1=&—e +2fp/m —y~ eq+ —,——
4 4 A.

+O(e ) (5 6)

From (5.6} we see that g2 diverges with the classical
critical-point exponent v = —,.

Imposing the boundary conditions (2.3), which
imply that g and rj vanish as z~ oo, we find for the
linearized differential equations (5.4}, in the (—,+ )

quadrant of the g, r} coordinate system, the solutions

g(z) = —a exp( —z/g& ),
f(z) =b exp( —z/gz),

(5.7)

where a and b are positive constants. According to
(5.2) and (3.7), near criticality cotK =—xp.

We observe that the ratio (2/g& is equal to the ratio
a of the lengths of the principal axes of the ellipses
(5.1}. The constants g~ and gz are, in fact, propor-
tional to the lengths l& and I-, respectively, and gz
diverges as the A, point is approached from below.
As will become apparent later, g~ is the distance
over which x decays through the surface from its
bulk-phase value xp in the superfluid to 0 in the gas
phase; i.e, it is the coherence length of the superfluid
order parameter. The length g& remains finite and
at Tq becomes equal to g of Eq. (4.4), which is the
distance over which the density varies between its
two bulk-phase values. From (3.6) and (3.10), we

may express (2 as a function of the reduced tem-

peratures For ~e
~

sm. all

—(b /xp )exp( —z/g2 )], (5.8)

r}=0 (b=0) (5.10)

and

y(z) =yp —a exp( —z/g~ ) xpb—exp( —z/gz) .

(5 9)

Since g2 »g& close to T~, the approach of either or-
der parameter x or y towards its bulk-superfluid
value will eventually be dominated by the slowly de-
caying exponential.

There is, however, an important difference be-
tween the two profiles, which is due to the different
temperature dependence of the amplitudes of the ex-
ponentials. The solutions (5.8) and (5.9) have to
hold in the limit e=O, where the superfluid order
parameter x(z) vanishes identically. Thus the in-
tegration constant b must also vanish in this limit,
and we may anticipate that it does so proportionally
to xp. The integration constant a, on the other
hand, must approach the value ——,y &0 for y(z)
to approach the limiting profile (4.3). Therefore, the
coefficients of the two exponentials in (5.8) are com-
parable, and, because the sign of the first is positive,
most of the increase of x (z) towards its bulk super-
fiuid value xp occurs over the distance (2.
Meanwhile, close to the A, point the amplitude of the
slowly decaying exponential in (5.9) is very small, so
most of the increase of the particle density y(z) to-
wards its liquid-phase value occurs over the small
distance g~ while the additional increase of y(z),
which occurs over the longer distance g2, becomes
negligible as e~O Therefore. , two vastly different
length scales are necessary for the description of the
density profiles x(z) and y(z). This is the main dif-
ficulty in any attempt to calculate the surface ten-
sion numerically with sufficient accuracy in the
three-phase region at temperatures close to T~. In
Sec. VI we give a method that incorporates the
length scales g~ and g2 from the outset and yields an
accurate numerical solution.

The qualitative correctness of the numerical solu-
tions can be judged by comparing the shape and
direction of the trajectory y(x) in the neighborhood
of the bulk-phase points with the results of the
asymptotic analysis. From (5.7) we obtain for the
trajectory in the vicinity of the p-phase point in the
principal-axis coordinate system g,r}
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s =tanh 7z

2
(6.1)

FIG. 6. Trajectory g= —a(z)lb) for E=E] ol' e=fz,
with —e~ & —ez &0, in the neighborhood of the P-phase
point P~ or Pz, schematic

g(z) )= — r) (b &0)
ba

(5.11)

VI. NUMERICAL METHOD (REF. 10)

where a, given by (5.3), is the ratio gz/g ~
of the two

characteristic lengths. Below the A, point, where
Iz &0, the trajectory approaches the P-phase point
tangentially to the long axis of the elliptical contour
because a & 1. As the critical endpoint is ap-
proached the exponent a and the factor a/b both
diverge, so the trajectory clings more and more
closely to the long axis, curving off from it more
and more sharply towards the short axis (Fig. 6).

A similar analysis may be made of the approach
of the profiles x (z) and y (z) to their respective gas-
phase values 0 and y~ as z —+ —oo. It proves to be
much simpler since the contour lines of the free-
energy density f (x,y) are circular in the vicinity of
the a-phase point, thus yielding only one charac-
teristic length g, of short range, g~ =g&. Both or-
der parameters approach their bulk-gas-phase values
on the same length scale g&.

where ~ is some positive constant close to 1. Then
we divide I" into n +1 equal intervals, thus defin-
ing a grid 2 of points s;, i =0, 1,. . ., n" +1, where
so and s &

&
correspond to z= —oo and z=+ ~,

respectively. The point s"„corresponds to a value of
z given by

z „=(g,/z. )inn" . (6.2)

s~=b tanh
2gz

(6.3)

where gz-gz, and we choose a number n of grid
points on which we are going to describe the profiles
for z &z „. Equation (6.3) compresses the z axis into

an interval I =[ b, b], wh—ich we then divide into
n +1 equal intervals (grid 8), in such a way that
the next-to-last point s"& of the grid A coincides

n

with the point s s z of the grid 8 (so that their

respective transforms z ~ and z s z are therefore

also equal). Fixing gz(=gz) determines the total
number n of points on the grid B since

B Xn —n
z s «=(2ln

n —n nx+1 (6 4)

Thus any function of z that essentially varies be-
tween its two asymptotic values in an interval of or-
der g~ about z =0 varies smoothly and moderately
on the grid 3, which is then well suited to a numeri-
cal representation of the function.

To describe functions whose essential variations
are over a greater range, gz, occurring mostly at
z pz &, we replace the integration variable z in the

interval [z „,+ oo] by

We calculate the surface tension in the three-
phase region in the temperature range
0.0001& —@&0.1 by a direct numerical functional
minimization of the surface-tension integral (2.7)
with respect to the profiles x (z) and y (z). This tem-
perature range corresponds to the range
3.7&a &115.4 of the ratio of coherence lengths,
a =gz/g~ [see (5.3)], indicating that our calculations
go deep into the critical region. To enable us to im-
pose the boundary conditions (2.3) on the profiles
and incorporate the vastly different length scales g~
and gz into the theory we map the z axis onto a fin-
ite interval I=[—1, b &1] by the following con-
struction.

First we compress the z axis to the interval
I"= [—1,1] by a change of integration variable from
z to a variable s" defined by

The condition z &
——z & then sets the size of the

interval I,
(n +1)(n"—1)

[2(n —n )—(n +1)](n"+1)
(6.5)

Thus we describe a function g(z) for z &z „as a

function g (s") on the points s;, i =O, . . ,nz of th.e A

grid and for z & z & as a function g (s ) on the points

s;, i =n +1,. . .,n +n +1 of the B grid. The
boundary conditions are imposed at so ———1 and

s„+&——b, where n =n +n is the total number of
interior points.

%ith these definitions the surface-tension integral
(2.7) can be represented as a sum of integrals over
the compressed space:
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'" f(s"»ki „'"k(s")[1—(s")']r „b f(&'»b(2 s ' k(s )[b' —(s ) ]-' r[(1—(s")'] -' 2(i '.& [b' —(s )']
(6.6)

where k(s) is the square-gradient term in (2.5) with
the derivatives taken with respect to s. Each of
these integrals is now replaced by a sum of integrals
over intervals I; of length h that bracket the points
s; and cover the whole compressed space I. Neglect-
ing the two end intervals, where oi(s) is small, and
assuming that the profiles and their derivatives vary
.slowly in each interval, we transform (6.6) into a
functional of the profiles x; =x (s;) andy; =y(s;):

0(e;n)=g(f v+4; iv), (6.7)

where

(6.8)

vi ——
2(i

y
ds

I; 1 $2
(6.10)

iv;= (1—s ds .
4g, (12Ii")

(6.11)

Special precautions have to be taken at the point s &,~Ay

where the two grids are linked. The boundary con-
ditions enter at the two ends, through the differences
(6.9). Given trial profiles x; and y;, the functional
(6.7) may now be minimized with respect to the 2n
points x;,y; by standard procedures.

The resulting profiles were insensitive to the ini-

(6.9)

with b, indicating a five-point difference, and where
the weights v; and w; for the A grid, for instance, are
the constants (i =1,. . ,nz —1),.

I

tial guesses x;,y;. They were also insensitive to the
number n of points chosen, but for the surface ten-
sions to be accurate, n had to be large: 500—1200,
say, with n =2n . Computing times were only of
the order of minutes even for very large n and poor
initial guesses. To judge the accuracy of the mini-
mized cr(e;n) we also calculated cr by (2.10) and
(2.11), thereby obtaining values of(E;n) and ok(e;n)
of which cr(e;n) is the arithmetic mean. For our al-
gorithm, with r &0.7 [see (6.1)], we always had
of(E;n) (0~(E;n)." We also found ok(e;n) to be a
monotonically decreasing and of(E;n) a monotoni-
cally increasing function of n, thus yielding mono-
tonic upper and lower bounds for cr(e; ao), the
asymptotic numerical result. The difference of the
bounds, which we denote ho(e;n), is an error
bound.

For our two temperatures e = —10 and
e= —5&10 closest to the A, point, where the
highest accuracy was required, and for e =0, where
the analytical solution is known, we carried out an
asymptotic analysis (n ~ ao ) for our algorithm. For
large n the surface tension o(e;n) proved to con-
verge to the limiting (extrapolated) value o(E; oo ) as
n . From an analysis of the extrapolation pro-
cedure we determined an absolute error bound
b,o(e; ao ) for the extrapolated 0(e; ao ). Using up to
n =500 grid points we obtained at e =0 the values

0(0;ao)/0'p=1. 0+1~ 5X10

and

b,rr(0i co )/ao ——1.2X10

TABLE I. Surface tension o. and its temperature derivative do /de, from numerical minim-
ization of the surface-tension integral, as functions of the reduced temperature e g 0.

0.0
—0.0001
—0.0005
—0.0010
—0.0050
—0.0100
—0.0200
—0.0400
—0.0600
—0.0800
—0.1000

900
900
600
600
600
500
500
500

o.(e;n) /o. o

1.000 000 000
1.000 375 758
1.001 884 086
1.003 777 639
1.019 119553
1.038 688 158
1.078 944 372
1.163 585 438
1.253 533 342
1.348 750 580
1.449 274 639

Ao.(e;n )/o.o

0.000000001
0.000000004
0.000 000 118
0.000 002 196
0.000 001 990
0.000004 382
0.000004 858
0.000014680
0.000029 000
0.000 045 940
0.000 069 490

—do.(e;n)/de
1

o'o

—3.750000
—3.761 557'
—3.778 442'
—3.792 999
—3.872 847
—3.952 772
—4.096 543
—4.365 670
—4.629 078
—4.893 090
—5.160015

'Calculated at n = 1200.
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FIG. 7. Trajectories giving the variations of the order
parameters x and y through the interface between the va-

por a and the superfiuid phase P, for (1) e= —0. 1, (2)
e =—0.06, (3) e = —0.04, (4) e = —0.005, and (5)
e = —0.0001. Respective bulk-phase points are a; and P;.

demonstrating the accuracy of the numerical
method.

VII. SURFACE TENSION BELOW THE A, POINT

0.0

(a)

20

20
40
60
80
IOO

The results of our numerical calculations are sum-

marized in Table I, which gives the surface tensions

o(e;n), the error bounds ho(e;n), and the tempera-
ture derivatives do(e;n)/de, the latter calculated
from (2.13) with the profiles x(z) andy(z). Figure 7
shows a selection of trajectories x(y). Starting at
the gas-phase point a these follow the y axis more
and more closely, and to smaller and smaller values
of ~y ~, as

~

e
~

decreases. The suddenness with
which they ultimately veer away from the y axis to-
wards x &0 also increases with decreasing

~

e
~

. On
the scale of the figure, trajectory 5, corresponding to

4
~

e
~

=10, seems to coincide with the y axis all the
way to y =0, where it suddenly turns 90' and then
follows the x axis to P5. The actual deviations of
that trajectory from the axes and the rounding of
the turn are detectable only on a greatly expanded
scale. We have taken q= —y~=1 in all calcula-
tions.

The form of the trajectories in the neighborhood
of the bulk-superfiuid-phase points P is seen to agree
well with the predictions of the asymptotic analysis

120

-0.5—

I 20

l00
80
60
40
20

-I.O

0.000
20
0.025

I

0.050

(b)

FTC'IG. 8. x,y trajectory on a background of contour lines
of constant f (x,y)/f 0, for (a) e = —0. 1 and (b)
e= —0.005. (Elliptical contour about the a-phase point
would have been circular had the x and y scales been the
same. )
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(a) FIG. 10. Density y as a function of distance z (in units
of gm /fo) near the A. point (e = —10 ~).

2.95

z 0.00

-2.95—

llpses seem already to have degenerate to pairs of
straight lines. The direction of the tangent of x (y)

at p that we find numerically agrees closely with

(5.2).
Figures 9 and 10 give some insight into the struc-

ture of the surface of HeII near the A, point. The

figures show the profiles of the order parameters x
and y as functions of the distance z through the in-

terface for e= —10 . The profile of the superfluid

order parameter x (Fig. 9) is highly asymmetric; x
approaches its bulk-superfluid value xo at z =+ 0e

very slowly, over several hundred units of z, while it

decays to zero rapidly in the gas phase a as z~ —Do

[Fig. 9(b)j. Numerically, for small
I
e

I
the x profile

is to a good approximation

-5.90—
0.00 0.09 O. I 8

x/10 3
0.27

0, z(0
x (z) =x(z) = ~

xctanh(z/2(z ), z & 0 .

(b)

FIG. 9. Order parameter x as a function of distance z

through the liquid-vapor interface near the A, point
(e= —10 ~). Distance z is in units of Qm/fo. Scales

are chosen to show (a) the slow decay of x to xo in the su-

perfluid and (b) the rapid decay of x to 0 in the vapor.

summarized in Fig. 6. To examine this further, in
Figs. 8(a) and 8(b) we display trajectories 1 and 4 on
contour maps of the free-energy density f(x,y;e)
Both figures show that the trajectories do approach
the P point tangentially to the long axes of the ellip-
tical contours about this point. In Fig. 8(b) those el-

This confirms the conclusion in Sec. V that the g2
of (5.5) may be identified with the coherence length
of the superfluid order parameter.

As is apparent in Fig. 10, the density changes on a
much smaller length scale. Although for the densi-

ty, too, there is a slow, decay on the scale g2, into
the superfluid phase, this is not visible in the figure,
since this slowly decaying part is only a fraction of
order

~

e
~

=10 of the total change in density.
Thus the y profile is nearly symmetric; it yields a
sharp interface of thickness g given by (4.4), and it is
well approximated by the hyperbolic-tangent profile
(4.3), which we shall call y(z).
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TABLE II. Surface tension o, the approximation o., the contributions O.„and o.
~ to 0. made by the x and y profiles, the

numerical error 60 in 0, and the difference 0.—0. between the exact and approximate surface tensions.

0.0
—0.0001
—0.0005
—0.0010
—0.0050
—0.0100
—0.0200
—0.0400
—0.0600
—0.0800
—0.1000

Oy /0'p

1.000 000 000
1.000 375 047
1.001 876 172
1.003 754 687
1.018 867 184
1.037 968 756
1.076 874 998
1.157499 996
1.241 874 994
1.329 999925
1.421 875 112

0.0
0.000 000 707
0.000 007 914
0.000 022 405
0.000 252 500
0.000 721 249
0.002 080000
0.006 109402
0.011 639 381
0.018 559 994
0.026 832 826

0 /0'p

1.000 000000
1.000 375 754
1.001 884 086
1.003 777 093
1.019 119683
1.038 690 005
1.078 954 998
1.163 609 399
1.253 514 375
1.348 559 919
1.448 707 938

1.000 000 000
1.000 375 758
1.001 884086
1.003 777 639
1.019 119553
1.038 688 158
1.078 944 372
1.163 585 438
1.253 533 342
1.348 750 580
1.449 274 639

ACT /0'p

0.000000001
0.000 000004
0.000 000 118
0.000002 196
0.000001 990
0.000 004 382
0.000 004 858
0.000014 680
0.000029 000
0.000045 940
0.000 069 490

(0.—0.) /Op

0.0
0.000000004
0.000 000000
0.000000 546

—0.000000 130
—0.000001 847
—0.000010626
—0.000023 961

0.000018 967
0.000 190661
0.000 566 700

o(e)/oo ——1.0—3.75m+
i
e

i2

+4.6875@2+V 2
f
e

f

The terms with fractional powers of
~

e
~

are contri-
buted by o„. They are not present above the X

point. The terms with integer exponents derive
from the density profile y(z) and are identical on
both sides of the A, point. We shall call cr~ the regu-
lar and o„ the singular part of the surface tension.

In Table II the numerical results for o. are com-
pared with the approximation in (7.2) and (7.4). For

~
e

~
& 10 they agree within the uncertainty

b,o(e;n) in the numerical results. For larger values
of

~

e
~

deviations are unambiguous and increasing,
indicating that (7.4) is correct only asymptotically
for small

~

e
~

.
Having displayed the singular and regular contri-

butions to cr separately in Table II, we can now also
see why it was necessary to calculate cr for

~

e
~

at
least as small as 10 if we were to prove the
correctness of the first singular term in the expan-
sion (7.4). The reason is that successive contribu-
tions to o differ by a factor of

~

e
~

'~, so it is only
for such small

~

e
~

that they differ in at least two

(7.4)

Through (2.11) these two approximations x(z) and

y(z) to the profiles allow us to write a corresponding
approximation formula for the surface tension,

(7.2)

which is expected to be asymptotically exact in the
limit

~

e
~

—+0. Here cr~ is given by what was the
analytical solution (4.5) above the A, point, while cr„
is found to be

(7.3)

Expanding 0. in powers of e and neglecting higher-
order terms, we get from (4.9), (3.7), and (5.6)

decimal places and can be sorted out. The correct-
ness of the first two (regular) terms follows from the
continuity of o and of its temperature derivative at
e=O, which are expected on theoretical grounds'
and which are clearly reflected in our numerical
data. It is the unambiguous existence of a contribu-
tion of the order 0.7&&10 to o at

~

E
~

=10
which cannot be attributed to a higher-order term,
that proves the correctness of the

~

e
~

~ term in the
expansion (7.4). This justifies a posteriori the con-
siderable effort that had to be made to obtain such
accurate results near T~.

Figure 11 shows the approximation (7.4) to the

1.50
(

l.25

0
i.oo-

b

0.75—

0.50
-0.Io -0.05 0.00 0.05 O. lo

FIG. 11. 0/op as a function of e. Line marked T is
the tangent to the curve at the A, point. Circles are the nu-
merical data, the branch of the curve at e &0 is the ap-
proximation 0/o. p, and the branch of the curve at e & 0 is
the analytical solution for 0/o-p.
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-3.82

0.05—

-3.8e ~

-0.0050 -0.0025 0.0000 0.0025 0.0050

0.00—
-Q.0l0 -0.005 0.000 0.005 O.OI 0

FIG. 12. Height of 0./O. p above the tangent line T in
Fig. 11 as a function of e.

FIG. 13. 0'p do'/de as a function of e, showing con-
tinuity of do/de at the A, point and divergence of
d 0./de as the A, point is approached from below.

surface tension together with the numerical results
from Table I. The numerical data are represented
by the circles. For e &0 the analytical solution is
also shown. On both sides of the )(, point o/ao lies
above the common tangent (1.0—3.75m), as in exper-
iment. ' To display these results with higher reso-
lution, we show in Fig. 12 a graph of the difference
between cr/pro and its tangent with the e scale ex-
panded by a factor of 10 over that in Fig. 11. The
curve in this plot has a horizontal tangent at the A,

point, from which it deviates proportionally to
~

e
~

~ or to e as the A, point is approached from
below or from above, respectively.

The singular contribution proportional to
~

e
~

~

for T & Ti„ is
~

e
~

", where p = —, is the mean-

field-theory value of the exponent with which the
tension of the interface between two phases that be-
come identical at a critical point vanishes. When
the P and y phases are spatially separated below the
critical point (as they are below an ordinary critical
point in a classical fluid, although not below the A,

point of helium), it is the power of
~

e
~

with which

crier vanishes. It is related to the specific-heat and
correlation-length exponents a and v by
p=2 —v —a (Sec. I), or by p=(d —1)v for dimen-
sionality d &4. The mean-field-theory value @=—,

is replaced by the more accurate, nonclassical value
p=1.26 at an ordinary critical point of two-phase
equilibrium (in the universality class of the Ising
model or of classical liquid-vapor equilibrium) or by
p=1.35 at the A, point of helium and other critical
points in its universality class.

It is found also in the theory of surface tension at
unsymmetrical critical endpoints (where the a
phase is unsymmetrically related to the P and y
phases) that ~e ~" is the leading singular term.
There it appears on both sides of the critical end-
point, as Hohenberg' supposed it would at the A,

point. In the present mean-field theory we find it to
occur only for T & T~, as Sobyanin did. Whether
that is a general feature of symmetrical critical end-
points (a symmetrically related to P and y) or an ar-
tifact of the mean-field approximation, is not yet
known and is an important question of principle. In
any case, whether or not there is in reality a

~

e
~

i'

term at T & T~, we have seen that an additional

~

e ~" contribution is expected below Ti due to the
vanishing, as T~Ti, of the superfluid order param-
eter x (z), thus giving rise to an asymmetry in o(E)
about e =0.

To illustrate this asymmetry we show in Fig. 13 a
graph of do/de, the temperature derivative of the
surface tension. It has a kink at the A, point. The
second derivative of 0 diverges as

~

e
~

'~ as the A,

point is approached from below but remains finite
as the A, point is approached from above. The corre-
sponding numerical data are collected in Table III.
Since do/de depends on the singular contribution
even more sensitively than cr does, the good agree-
ment of the approximation der/de with the
do(e;n)/de calculated from the numerical profiles
verifies further the correctness of the expansion
(7.4).

If we follow the course of the curve do. /de vs e in
Fig. 13 upward to T~ we see that, except for the up-
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TABLE III. Temperature derivatives do /de, do. /de', do.„/de, and do~/de.

0.0
—0.0001
—0.0005
—0.0010
—0.0050
—0.0100
—0.0200
—0.0400
—0.0600
—0.0800
—0.1000

dOy

o'p dE'

—3.750000
—3.750938
—3.754688
—3.759 375
—3.796 875
—3.843 750
—3.937 500
—4.125 000
—4.312 500
—4.500000
—4.687 500

] do.„
o'p dE'

0.0
—0.010610
—0.023 757
—0.033 653
—0.076250
—0.109602
—0.160000
—0.240416
—0.311769
—0.380000
—0.447214

1 do.

op dE

—3.750000
—3.761 548

3 778 AAA

—3.793 028
—3.873 125
—3.953 352
—4.097 500
—4.365 416
—4.624269
—4.880000
—5.134714

1 do
o'p dE'

—3.750000
—3.761 557
—3.778 442
—3.792 999
—3.872 847
—3.952 772
—4.096 543
—4.365 670
—4.629 078
—4.893 090
—5.160015

turn just before T~, it appears to be aiming toward a
value less than the limiting value reached by do/de
as T~ is approached from above. It requires, as we

saw, great numerical accuracy close to e =0 to es-
tablish the continuity of do/de there. The origin of
the near discontinuity, which disappears only at the
last moment as T~T~, is the proximity of the ex-
ponent p= —, to unity. The nonclassical p=1.35 is

enough closer to 1 for the apparent discontinuity to
be even sharper when

~

e
~

' is plotted in place of
~

e
~

. This is also the origin of the discontinuity
in dcrldT that one seems to see on viewing the
Magerlein-Sanders data on an unexpanded tempera-
ture scale.

portionally to ~e ~" (where JM in this mean-field
theory has the classical value p, = —,) as the A, point is
approached from below. Such a contribution is not
present above T~. Although it may be that a refor-
mulated theory allowing for nonclassical values of
the critical exponents would yield terms of order

~

e ~" also for e & 0, we still expect an asymmetry in
the functional dependence of o on e i.e., we expect
the coefficient b in (1.2) to be in any case different
on the two sides of the A, point.

It was remarked by Fisher' that this asymmetry
could explain a puzzling detail of the data of Mager-
lein and Sanders. ' They presented their measure-

VIII. SUMMARY AND CONCLUSION

Using a two-order-parameter Landau expansion
of the free-energy density in the framework of the
van der Waals theory, we have calculated, both
analytically and numerically, the structure of the
~He liquid-vapor interface and the corresponding
surface tension as a function of temperature near the
A, point. We found that the thickness of the inter-
face changes only slightly as the system passes
through the A, point along the vapor pressure line,
with the interfacial thickness defined as the distance
over which the total density y undergoes most of its
change from its bulk-liquid-phase to its bulk-gas-
phase value. Accordingly, the temperature depen-
dence of the regular part of the surface tension o.„,
which arises from the variation of the total density,
is in our model analytic in e and, to a good approxi-
mation, the same on both sides of the A, point. As
the A, point is approached from below, the superfluid
density is depleted in the interface and reaches its
(diminishing) bulk-HeII value only deep inside the
superfluid liquid phase. The corresponding singular
contribution o.„ to the surface tension vanishes pro-

0.075

OJ
1

O

~ 0.050
1

O
b

b

0.025

0.000-
-0.010 -0.005 0.000 0.005 0.010

FIG. 14. Height of o/op above the line 1.0—3.78m

(called T') as a function of e.



27 van der WAALS MODEL FOR THE SURFACE TENSION OF. . . 193

ments in a plot analogous to our Fig. 12, but sub-
tracted from the surface tension a tangent that made
the two branches of the resulting plot nearly symme-
trical about e =0 I.n that difference plot the
minimum does not occur at the A, point, as it does in
our Fig. 12, but is slightly shifted towards lower
temperatures. If we subtract from our o/oo data
the straight line 1.0—3.78e instead of the tangent
1.0—3.75e, the former being a little steeper, we ob-
tain a difference plot, Fig. 14, that resembles the
Magerlein-Sanders results much more closely than
does Fig. 12; the two branches of the plot are now
more nearly symmetrical, and, significantly, the
mminimum occurs at slightly negative e.

Note added in proof. We wish to call attention to
the interesting paper by V. K. Wong [J. Low Temp.
Phys. 36, 629 (1979)], which treats this same prob-
lem by different methods.
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