
PHYSICAL REVIEW' B VOLUME 27, NUMBER 3 1 FEBRUARY 1983

Anisotropic exchange in ErSb
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The correlations of the magnetic moments and the magnetic order parameter of ErSb
have been studied by neutron diffraction. The antiferromagnetic phase transition is of first
order. The diffuse paramagnetic scattering is evaluated in terms of magnetic coupling ten-
sors which are characterized by a strong two-ion anisotropy.

I. INTRODUCTION

Owing to their simple crystallographic structure
(NaC1), the rare-earth monopnictides are presumably
the best characterized of all known rare-earth com-
pounds. A great amount of work has been done on
their magnetic structures, crystal-field splittings,
and magnetoelastic effects. In the last two years we
have noted growing evidence that the magnetic cou-
pling of the monopnictides is highly anisotropic.
PrSb (Ref. 1) and TbP (Ref. 2) show a splitting of
the paramagnetic I ~-I 4 crystal-field exciton propa-
gating along the [100] and [110]directions. In CeSb
(Ref. 3), UAs (Ref. 4), and USb (Ref. 5) the critical
paramagnetic scattering was interpreted by a large
difference between the longitudinal and the trans-
verse magnetic susceptibility at the X point of the
Brillouin zone.

Another interesting point is that these compounds
often have a high number of components of the
magnetic order parameter, a fact which may lead,
within the framework of the renormalization-group
theory, to first-order transitions. ErSb has been cit-
ed as a good candidate for such a behavior; al-

though the experimental results are controversial,
specific-heat data suggest a discontinuous transi-
tion, while previous neutron-diffraction experi-
ments suggest a continuous transition.

In this paper we report neutron-diffraction experi-
ments on ErSb and focus our attention on the mag-
netic coupling in this compound, which is probed by
the diffuse magnetic scattering. We will also corn-
ment on the nature of the magnetic phase transition.

II. EXPERIMENTAL

The neutron-diffraction experiments were carried
out on the spectrometer D10 in a three-axis mode.
It was installed at a thermal neutron guide of the

high-flux reactor of the Institute Laue-Langevin.
The wavelength of the incident neutrons after pass-
ing a Cu(200) monochromator was 1.97 A. The
pyrolytic-graphite (004) analyzer was set to zero en-

ergy transfer. The elastic energy resolution was 0.26
meV.

The ErSb single crystal was cut out from a po-
lycrystalline ingot; it had a volume of 5 mm . The
lattice constant was 6.09 A at low temperatures.
The sample was mounted in a variable-temperature
cryostat with the [011] axis perpendicular to the
scattering plane. The temperature was measured
with a calibrated carbon resistor.

III. RESULTS

The neutron-diffraction measurements began with
an investigation of the eight nuclear and 14 magnet-
ic Bragg reflections in the (011)plane. The magnet-
ic reflections occurred at the L points of the fcc
Brillouin zone, leading to a simple type-II antifer-
romagnetic low-temperature phase with a propaga-

1 1 1

tion vector qo
—

( —,, —,, —, ). A study of the intensi-

ties, positions, and widths of the nuclear reflections
showed that the chemical cell is not noticeably
changed by the onset of the magnetic order. The
upper limit for changes of the cell parameters is
0.1%.

An analysis of the integrated magnetic intensities,
properly corrected for the Lorentz and for an isotro-
pic Er + magnetic form factor, revealed that the
spontaneous moment is perpendicular to qp within
an error of 7 deg. In a magnetic structure of this
type, one expects eight domains because of the com-
bination of four equivalent propagation vectors and
the two components of the order parameter in the
plane perpendicular to qp. The intensities of the
magnetic Bragg reflections definitely showed that
the sample did not consist of a single domain. The
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low number of reflections studied did not, however,
allow one to determine the statistical weights of the
eight domains precisely. Therefore, it was assumed
that the domains were equally populated. The R
factor of this model is 14%%uo.

The magnetic moment of the Er ions at 2.97 K is
5.5JMq or 6.8'~, depending on whether the magnetic
intensities are scaled to the four strong (h, k, l all
even} or the four weak (h, k, l all odd) nuclear refiec-
tions. A comparison to the weak reflections seems
more appropriate, since the strong reflections might
suffer from extinction effects. Following a
Brillouin-type temperature dependence, one obtains
a saturated moment of (6.5—7}//, z from an extrapo-
1ation down to zero temperature. The magnetic
structure is thus in good agreement with the early
results of Child et al. on a powder sample. The in-

1 1 1

tensity of .the magnetic ( —,, —,, —, ) reflection, which

can be regarded as a measure of the square of the
magnetic order parameter, was studied in detail as a
function of temperature (Fig. 1). One observes a
hysteresis loop, centered at Tz ——3.54 K with a
width of 0.3 K, which extends up to about half the
saturated intensity. First magnetic Bragg spikes, sit-
ting on top of diffuse scattering intensities, appeared
already half a degree above TN. This behavior sug-
gests that the transition is of first order.

The diffuse paramagnetic scattering centered at
the L points was measured by performing the type
of Q scans listed in Table I and indicated by solid
lines in Fig. 2. After subtracting the Bragg spikes,
all scan profiles are well described by Lorentzians,
which are centered at the L points and superimposed
on a flat background. Figures 3 and 4 show some
representative scans. In the analysis, Lorentzians
with a height h (T}and a halfwidth ~(T) were fitted
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FIG. 1. Temperature dependence of the elastic intensi-

ty at the magnetic Bragg point (—,, —,, —,). The intensity

on the paramagnetic phase is expanded by a factor of 10.
The inset shows the hysteresis on cooling and heating

with an expanded temperature scale. The solid line is a fit
to the mean-field mode described in the text.

to the data, with the Q dependence of the magnetic
form factor taken into consideration. The variation
of the diffuse scattering across the three-
dimensional Q resolution ellipsoid was neglected
since even at the lowest temperatures in the
paramagnetic phase the corrections on III and sc were
less than 3%. The results of this analysis are listed
in Table I. Note that each scan was fitted individu-
ally. This procedure yielded slightly different values
for the height of scans through the same center per-
formed at the same temperature. Figure 5 shows the
Lorentzian height and halfwidth of the diffuse in-
tensity along the scan path ( —,+2(, —, —g, —,—g) as
a function of temperature.

TABLE I. The height I][ and the halfwidth ~ (in reduced wave-vector units) of the
Lorentzian-shaped pattern of the diffuse paramagnetic intensity at two different temperatures.
a is the lattice constant.

Center

1 1 1
( ———)2l 2' 2

1 1 1
( ———)27 27 2

1 1 1
( ———)2'2'2

1 1 1
( ———)2'272

1 5 5
(———)27 2l 2

1 5 5
( ———)2l 2y 2

7 1 1
( ———)2l 2'2

7 1 1
( ———)27 2'2

Scan
Direction

[211]

[111]

[100]

[011]

[100]

[011]

[100]

[011]

1320

1385

1292

1305

301

T=3.80 K
v (2m/a)

0.09

0.135

0.095

0.115

0.085

0.12

0.12

0.07

+0.01

2120

2043

210S

1095

1005

480

435

T=3.65 K
z (2m//'a)

0.06

0.10

0.065

0.09

0.06

0.09

0.095

0.06

+0.01
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FIG. 2. Part of the (0,1,1) plane of the reciprocal space
of an fcc structure. The closed circles are nuclear Bragg
points. The dashed lines are the boundaries of the (4,0,0)
and (0,2,2) Brillouin zones. The solid lines indicate the
scans centered at three L points, which were performed
for the study of the diffuse paramagnetic scattering. The
ellipses schematically show the in-plane components of
the susceptibility tensor f'(Q) for Q =A,L,B,A ',L ',B'.
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[011), respectively. Note the different widths of
equivalent scans.

We address ourselves to the character of the phase
transition in ErSb. As mentioned above, the

renormalization-group approach predicts a first-
order transition, whereas the experimental situation

was controversial. One of us took part in neutron-
diffraction measurements' which revealed a con-
tinuous transition (on a different single crystal} very
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FIG. 5. Temperature dependence of the height and
halfwidth of the transverse Q scans through (—,—,—, ) in
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the paramagnetic phase. The height and halfwidth were
determined by fitting Lorentzians to the experimental
data. The solid lines are the power laws described in the
text.
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similar to the results of Shapiro and Bak, whereas
in the present sample the onset of magnetic order is
of first order. Presumably, ErSb is close to a tricrit-
ical point and sample inhomogeneities can drive the
transition from first to second order.

We will show in the following that the growth of
the order parameter can be alternatively explained

by a magneto elastic interaction. Indications for the
presence of this interaction have been brought forth
by the ultrasonic study of Mullen et al. ,

"who ob-
served an anomalous temperature dependence of the
elastic constant c44. At Tz the cell should then dis-
tort rhombohedrally. So far, however, there is no
direct evidence for a structural phase transition in
ErSb.

A mean-field calculation similar to that of Ray
and Sivardiere' on CeAg was carried out, where in
addition to the magnetic coupling an electric quad-
rupole coupling between the Er4f states was con-
sidered. For simplicity the crystal-field level scheme
was truncated to the I 8" ground state. The quanti-
zation was performed not along the easy [111)axis,
but along [110] in order to simulate a spin direction
perpendicular to the propagation vector of the mag-
netic structure. An excellent verification (see Fig. 1,
solid line) of the onset of the magnetic order param-
eter could be achieved by adjusting the two coupling
parameters in the following way: The magnetic cou-

pling was chosen to yield a magnetic ordering in the
absence of quadrupole effects at 3.43 K, which is
the Neel temperature extrapolated from diffuse
scattering in the paramagnetic phase. Note that the
magnetic dipole and electric quadrupole susceptibili-
ties are decoupled in the paramagnetic state. The
quadrupolar coupling is set to induce a structural
ordering in the absence of magnetic interactions at a
fictitious temperature of 2.1 K, since then the actual
transition is predicted to be of first order at 3.53 K
due to a simultaneous ordering of the magnetic di-

poles and the electric quadrupoles.
A choice between the alternative explanations for

the first-order phase transition —renormalization-

group considerations or magnetoelastic effects—can
be made on the basis of studies of these compounds
under hydrostatic and uniaxial pressure along the
[111] axis, since the order parameter reacts dif-
ferently with respect to the two types of pressure in
the two models. In MnQ, which has the same mag-
netic structure as ErSb, this kind of experiment
favored an interpretation based on renormalization-
group theory, even in the presence of strong magne-
toelastic interactions. '

B. Diffuse scattering

A comparison of the reciprocal Q widths of the
diffuse scattering with the Er-Er distances suggests

that the measurements in the paramagnetic phase
are well above the critical regime. In fact, the
Lorentzian components of the transverse scans

1 1 1

through ( —,, —,, —, ) follow power laws of the form

h-(T T~—) and ~-(T TN—)", with exponents
y=1.0+0.1 and v=0.50+0.02, and Tz ——3.41+0.02
K, Tz ——3.45+0.02 K (solid lines of Fig. 3). These
"extrapolated paramagnetic critical temperatures"
are significantly lower than the actual transition
temperature T~ ——3.54 K. Thus the discontinuous
onset of the magnetic ordering suppresses the evolu-

tion of critical fluctuations.
The mean-field values of the exponents propose

an analysis of the paramagnetic scattering in terms
of a mean-field —random-phase-approximation
model. Here the full magnetic susceptibility tensor
is given by

X(Q) =Xo[&+J(Q)X(Q)), (1)

where J(Q) is the Fourier transform of the magnetic

coupling tensor, and Xo is the scalar susceptibility of
a single Er + ion in the cubic crystal field. Xo can
be calculated from the crystal-field parameters of
ErSb, which have been obtained from data on inelas-

tic neutron scattering. At the low temperatures,
which are of interest here, Xo can be approximated
by

Xo——g )us(14. 5/T+0. 359) . (2)

The first term represents the Curie contribution of
the I 8" ground state, the second one is due to the
crystal-field transitions out of the ground state, in
particular I 8"~I 8

'. The neutron scattering cross
section for magnetic scattering is related to the sus-
ceptibility 7 by

Q Qti
att

(a,P=x,y,z) . (3)

This form is valid for energy-integrated scattering,
its application to the present problem introduces
only minor errors since the elastic components of
the susceptibility are at least 1 order of magnitude
stronger than the inelastic crystal-field transitions.

In rare-earth systems it is standard practice to re-

gard the exchange interaction as isotropic. In that
case, X(Q) of a cubic structure reduces to a scalar
quantity, with the consequence that the pattern of
the diffuse scattering is identical in every Brillouin
zone, apart from variations due to the form factor.
In the present experiment, however, we observed dif-
ferent profiles for equivalent scans through the three
I. points investigated (Fig. 4 and Table I). To be
specific, equivalent scans, e.g., the three along (100),
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fuse scattering in UAs. The coupling tensors be-
tween the ion at the origin and a first neighbor at
(a/2, a/2, 0) or a second neighbor at (a,0,0) are,
respectively, of the form

have different widths, the diffuse intensities at
7 1 1 1 5 5

( —,, —,, —, ) and ( —,, —,, —, ) deviate by a factor of more
than 2, though the value of

~ Q ~

is identical. (An
anisotropic form factor, which might explain the
mismatch of the intensities, could not be observed in
the analysis of the magnetic structure. )

We interpret these findings by a two-ion anisotro-

py of the magnetic coupling. For an insight into the
nature of the anisotropy we consider the most gen-
eral form of a coupling to the first and second Er
neighbors which is compatible with the fcc lattice
formed by the Er ions. A treatment of this type was
already applied by us ' on the dispersion of the
paramagnetic excitations of TbP and PrSb and later
used by Sinha et al. 4 for an interpretation of the dif-

I

J (Q) = 2a2cos(aQ )+2P2[cos(aQp)+cos(aQ&)]

+2a
& Icos[ —,a(Q +Qp)]+ cos[ —,a(Q —Q

T

o.'] y) 0 cx2 0 0

Jl rl +I 0 J2 0 P2

0 0 P, 0 0 Pp

(4)

The coupling to the other first and second neighbors
is obtained by applying the cubic-symmetry opera-
tions. The components of the Fourier-transformed J
tensor are then given by

&)]+cos[—,a(Q +Qr )]+cos[—,a(Q —Qr )] ]

+2P~ [cos[—,a(Qp+Qr)]+cos[ —,a (Qtt —Qr )]I,
J~tt(Q) =2yt Icos[ —,a(Q~+Qp)] —cos[ —,a(Q~ —Qp)] ], a&P .

X(Q) and do/dQ can be now calculated from Eqs.
(1)—(3). A series expansion of der/dQ around the L
point leads to Lorentzian-shaped profiles of diffuse
intensity whose height and width follow the mean-
field power laws from above.

An application of this model failed insofar as the
theoretical values for the Q widths of the diffuse
scattering pattern were always larger than the exper-
imental results for reasonable choices of the order-
ing temperature. Obviously, the actual range of the

magnetic interaction is longer than assumed here.
Nevertheless, a comparison of the model and the ex-
periment should give valuable information on the
anisotropy of the interaction, which is expected to
be dominated by the coupling to first and second
neighbors as shown in the isornorphic compound
TbP.

In detail we come to the following conclusions:

(i) Exactly at the L point, J(Q) is sensitive to the
off-diagonal element y~ and to the combination
az+2P2 of the second-neighbor elements u2 and P2,
only. If y~ would vanish the susceptibility at the L
points were isotropic and would diverge at a tern-,
perature proportional to a&+2P2. Finite values of
y~ lead to an anisotropic X(L) tensor and hence to
different intensities at different Lgoints, in particu-
lar to different intensities at Q = ( —,—,—) and

1 5 5
2~2P2

( —,, —,, —, ) (a conclusion which will be made plausible

further below). The intensity ratio observed for
these two L points requires y& & 0, which means that

I

the transverse susceptibility is larger and diverges at
a higher temperature than the longitudinal suscepti-
bility (Tg'"'& TN"s). This result is in agreement
with the structure of the antiferromagnetic phase
where the spontaneous moment is at a right angle
with the propagation vector. A quantitative analysis
yields that T~'"'—T~"~ is about 0.6 K. A compar-
ison of this temperature difference with the actual
ordering temperature suggests that y~ is an order of
magnitude smaller than a2+ 2P2.

(ii) The Q width of scans along [100] depends on
the diagonal elements of the second-neighbor cou-
pling tensor a2 and P2, only. The differences of the
widths along this direction at the three L points in-
vestigated yield that a2 is about twice as large as P2
with az and Pz both negative.

(iii) The diagonal elements of the first-neighbor
coupling tensor a

&
and P& can be adjusted using the

results of the other scans. P& is about three times
larger than a ~, with a

&
and P~ being both positive.

A qualitative understanding for the different heights
and halfwidth of equivalent scans can be obtained
from Fig. 2, which shows a part of the (011) plane
of the reciprocal space.

We compare the scans along the [100] direction
7 1 1 1 5 5

through the L points ( —,, —,, —, ) and ( —,, —, , —, ) (paths
A L Band A'-L'-B'). -F-rom the model the suscepti-
bility tensor P(Q) is calculated along the scan path.
The tensor is especially simple for the center points
and the end points, here the in-plane components of
the. X tensors are shown schematically as ellipses.
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[The length of a radius vector of the ellipse centered
at Q is a measure of X(Q} along the direction speci-
fied by the vector. ] At L and L', the two long axes
of the ellipsoid have equal length and they are per-
pendicular to the reduced wave vector q; the short
axis is parallel to q. This difference between the
transverse Xz. and the longitudinal Xz susceptibility
is entirely due to the off-diagonal element yi. We
know from above that X~ is 0.6 K ahead of X~, the
ratio Xz./Jz grows when approaching T~. It is cal-
culated to be about 2 at 4 K and 6 at TN. When
leaving the L points, the principal axes of the 7 ten-
sor change. Their directions no longer correspond
to pure polarizations, and the residual degeneracy of
the lengths of two axes is lifted. Along the [100]
direction, these effects are due to the difference
az —P2 of the second-neighbor diagonal elements.
At .the points A, B,A', B' the polarizations are pure
again. The in-plane transverse axis is now the
shortest one, and the out-of-plane transverse axis is
slightly longer than the longitudinal axis.

The different scan profiles along A-L-B and A'-
L'-B' result from the scattering geometry. The scat-
tered intensity is proportional to the average length
of the cuts through the 7 ellipsoids perpendicular to
the full wave vector Q. It is evident from Fig. 2
that this cut at L' is longer than at L; hence the in-
tensity at L' is higher than at L. The situation is re-
versed at the end points of the scans; here the cuts at
A' and B' are shorter than at A and B. Thus the
scattered intensity starts at high values at L' and
drops to very low values at A' and B', whereas the
intensity variations along A-L-B are much smaller.
This behavior is reflected in the heights and
halfwidths of Table I.

The model introduces two sorts of anisotropy, the
differences in the diagonal elements a& —Pi and
az —P2 and the off-diagonal element yi. Referring
to the differences a; —P;, we consider a pair of Er
next neighbors with a bond along the diagonal of the
(x,y) plane. The results of the present study demand
that the coupling of the components of the magnetic
moments perpendicular to this plane is three times
stronger than the coupling of the components in the
plane. For the second-neighbor bonds the com-
ponents along the bonds are twice as strongly cou-
pled as the components perpendicular to the bond.
It is surprising that for first-neighbor bonds the
bond plane determines the anisotropy, whereas for
second neighbors it is the bond direction which
determines it. This fact rules out that the coupling
is due to the same multipolar type of interaction for
first and second neighbors. It rather emphasizes the
importance of the nonmagnetic Sb ions. Presum-
ably, the exchange is mediated by the Sb valence
electrons. In this view, the exchange paths between

the pair of first Er neighbors at (0,0,0) and
(a/2, a/2, 0) lie within the (x,y) plane and perform
right angles passing across the Sb ions at (a/2, 0,0)
and (O,a/2, 0},whereas second Er neighbors would be
connected by a linear path across the Sb ion halfway
in between.

The same type of highly anisotropic interaction
tensors were obtained for the isomorphic com-
pounds PrSb, TbP, USb, UAs, and CeSb. In the Ce
and U monopnictides the experimental evidence
came—as in the present work —from the pattern of
the diffuse intensity in the vicinity of the ordering
wave vector, whereas in the two singlet —ground-
state systems PrSb and TbP the anisotropic coupling
J(Q) was determined along the main symmetry
directions from the dispersion of the split I &-I 4 ex-
citation. The results on the two latter compounds
and the relations of the parameters in ErSb show
that the strongest mismatch between the longitudi-
nal and the transverse susceptibility occurs around
the X point of the Brillouin zone, which happens to
become the critical wave vector in CeSb, USb, and
UAs, where in fact the transverse components were
almost completely suppressed. Comparing the ele-
ments ai, Pi, a2, P2 of ErSb and the neighboring
compound TbP, ' one notes that the signs are identi-
cal and that Pi & a i in both cases, but that the in-
equality between a 2 and P2 is reversed.

In addition to the results on the other compounds,
we could probe the small off-diagonal coefficient y&
in ErSb. This was possible since the other sources
of anisotropy vanish at the L point. Presumably, it
is correct to regard y] as being due to the classical
dipole-dipole interaction, since this coupling is es-
timated to have the right strength and has the ap-
propriate symmetry. The dipole-dipole coupling
tensor to the first neighbor at (a/2, a/2, 0) is of the
form

ee0
E' 6' 0
000

Since all the compounds mentioned are isomorphic,
the common type of anisotropic coupling is expected
to be intimately related to the specific crystallo-
graphic structure. As mentioned above, the symme-
try of the coupling tensors suggests that the magnet-
ic interaction is guided by the nonmagnetic neigh-
bors of the magnetic ion. The microscopic origin-
be it superexchange, covalent bonding, or sf-
mixing —is yet unclear. In any case, the anisotropy
should increase, as observed in the compounds, with
the spatial extent of the f subshell; the effect is,
however, not reserved to the anomalous f ions Ce
and U.
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