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The asymmetric three-state clock model is studied in the context of a one-dimensional

quantum Hamiltonian. Series expansions are used to investigate the commensurate-

incommensurate transition and the incommensurate-liquid Kosterlitz-Thouless transition.
Evidence is presented for a Lifshitz point at which the critical indices a, P, and y are Potts-

type, while the mass-gap index appears to take its Ising value, v= 1.

I. INTRODUCTION

The asymmetric clock model introduced by Ost-
lund' describes certain features of the
commensurate-incommensurate (C-I) transition ob-
served in two-dimensional experimental systems,
such as xenon monolayers absorbed on copper sub-
strates. Following Villain and Bak's treatment of
the anisotropic next-nearest-neighbor Ising
(ANNNI) model, a low-temperature free-fermion
approximation was usedl to deduce prope~ies of the
striped incommensurate phase and the C-I transi-
tion. According to this method, a meandering
domain wall is identified with a free fermion mov-
ing in one dimension. It was predicted that the in-
commensurate phase melts to a disordered phase via
the unbinding of dislocation pairs. For the three-
state model, one then expects a Lifshitz point from
which a C-I line, a Kosterlitz-Thouless line, and a
Potts line emerge. We have recently analyzed a
self-dual version of this model and find the Lifshitz
point has a rather striking signature: The thermo-
dynamic exponents a, P, and y take the values
characteristic of the Potts model, and the mass-gap
index v is equal to one, as in the Ising model.

The asymmetric clock model, in its one-
dimensional quantum form, is defined by the Ham-
iltonian

H = —g cos(ap„)+P cos(8„+i
—8„—h)a,

an of the three-state Potts model.
The quantum Hamiltonian (1.1) may be derived

by considering the extreme anisotropic limit of the
two-dimensional (2D) classical Hamiltonian

m= —g I~; cos(e„,+,—e„,)a
x, t

(1.3)
t

where O„t=0,1,2, i.e., in the limit E„~O, Et —+00
3/21t

&
.

such that P =K„e ' is finite.
In this paper, high- and low-temperature series

for the free energy, magnetization, susceptibility,
and the q-dependent mass gap are analyzed. This
analysis leads to the phase diagram shown in Fig. 1.
The main features are as follows:

+E„cos(8„+i, —8„,—h)a,

IA 0ISORDE RED

(1) Lifshitz points B and B' at which a, P, and y
are Potts-type, and v appears to be given by v = 1.

(2) Commensurate-incommensurate lines BC and
CB' of the type previously studied in striped incom-
mensurate systems.

(3) A line of Kosterlitz-Thouless transitions BB'
separating the incommensurate and disordered
phases. The mass-gap wave vector varies continu-
ously along this line.

(4) Critical lines AB and B'A' belonging to the
three-state Potts universality class.

The operators 8 and p each have three eigenvalues 0,
1, and 2, and satisfy the commutation relation

—iae„ iap~ ia8„ ia5„~ iap~e "e e "=e "e (1.2)

The coupling constant P is proportional to the in-
verse temperature. At 6=0, (1.1) is the Hamiltoni-
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FIG. 1. Phase diagram derived from the Hamiltonian,
Eq. (1.1).
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Details of the numerical study are presented in the
following sections. References 1 and 4 contain de-
tailed explanations of the theoretical methods em-

ployed to study the Hamiltonian (1.1).

II. RESULTS FROM SERIES ANALYSIS

A. Outline of method and exact limits

Perturbative expansions for the eigenvalues of the
Hamiltonian are related to high-temperature series
for the thermodynamic quantities derived from the
classical model (1.3). For example, the specific heat
is obtained by differentiation of the ground-state en-

ergy:

(2.1)

The expectation value of the disorder operator

D = g cos
'

g ap
m(n

is the appropriate "order" parameter in the small-P,
high-temperature phase. The corresponding suscep-
tibility is given by

m (q, }-(P,—P)" . (2.5)

As in previous work, one argues that the q, de-
duced from the high-temperature series is the pitch
of the low-temperature phase, at the critical point.
This pitch Qs, which is defined by the periodicity of
the correlation function, describes the phase modu-
lation in the space direction:

(2.6)

When q, locks in at a rational number and is there-
fore independent of b„ the corresponding low-

temperature phase is called commensurate. In our
case, the commensurate phases have Qs being an in-

teger. An incommensurate phase is signaled by the
continuous variation of q, with b, . In this case, Qs
also varies continuously and can be irrational and
hence incommensurate with the lattice.

Low-temperature series are most conveniently de-
rived from the dual version of (1.1). The dual vari-
ables are defined on the bonds of the original lattice.
If n refers to the bond between sites n and n + 1, the
dual Hamiltonian is given by

HD ———g cos(p„—h)a

~= &D'& —&»'= &»H+»D I » =o,
Bh

(2.2)

+ Tcos(8„+,—8„)a,

p„=8„+i—8„, 8„-= g p, T=P

(2.7a)

where (D )H+»D denotes the expectation value of D
with respect to the ground state of H +hD.

The mass gap is essential for studying transitions
involving incommensurate phases. It describes the
asymptotic decay of correlations in the "time" direc-
tion, i.e.,

m&n

(2.7b)

The magnetization is obtained by calculating the ex-
pectation value of the operator

0= icos 'a g p

(
" ex,~+.—x, ~ i —mre (2.3)

m&n

where m is the difference between the first excited-
and ground-state energies. According to Bloch's
theorem, we know that the excited states of H can
be labeled by a wave vector q. At P=O, the ap-
propriate translationally covariant first excited state
1s

(2.4)

and the susceptibility is derived from an expression
like (2.2).

The low-temperature mass gap now describes the
asymptotic decay of disorder operator correlations:

(
eepie X ape r+ ~ p ))-ee. (2.8)

k(j
1

The ground state at zero temperature, for 0~ 5 & —,,
is the vacuum state

I @o)r=o=
I p;=O n =1 2 . . & (2.9)

The total "internal momentum" P= g„p„has
eigenvalues 0, 1, and 2, and is conserved because the
interaction part of H depends only on the difference
8n+i —8n. Thus the mass gap obtained perturba-
tively from (2.4) depends on the continuous parame-
ter q. The value of q which makes m (q) vanish at
the smallest value of P defines the critical wave vec-
tor q, and determines the critical coupling P„i.e., lfo)r=o= Ip;=I n =I» (2.10)

In view of the definition of p,—,Eq. (2.7b), this is
simply the statement that there are no domain walls
in the system; this is a commensurate phase with

1
Qs=O. For —, &4 &1 and T=O, the ground s'tate

consists of clockwise domain walls (8„+i—8„=1)
at every bond:
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i.e.,
(2.11)

1
This commensurate phase has Qs ——1. At b, = —,,
T =0, the kinetic energies of the p„=0 and p„-=1
excitations are degenerate; an arbitrary number of
clockwise domain walls may be placed randomly in
the system.

For low temperatures and 6 near the multidegen-
eracy point 5= —,, the free-fermion approximation
may be used to establish the existence of a striped
incominensurate phase in which the pitch Qs varies
continuously between 0 and 1.'" In quantum
language, Qs is the density of fermions (p„-= 1 exci-
tations) or, equivalently, the density of clockwise
domain walls.

The free energy of a single fermion with wave
vector q is given by the mass gap derived perturba-
tively, to first order, from the one-particle state

I 41 ~T=O= X Ip;=P=1'p-;=0&e ""

(1}Thirteenth-order series for the ground-state en-
ergy, order parameter, and susceptibility;

(2) Ninth-order series for the mass gap.

Critical points and critical indices are obtained by
the D log Fade method, and the data points in the
various figures represent the average of three or four
of the highest-order diagonal and near-diagonal en-
tries of the Pade tables. As an exception, the
Kosterlitz-Thouless data are found by using a modi-
fied ratio test.

The error bars are set to include the Fade esti-
mates which have been used to calculate the average
of a quantity. As such, these errors reflect only the
precision of the data, and do not account for the sys-
tematic errors characterizing the Pade method. For
example, we have ignored the effect of possible con-
fiuent singularities.

It is sufficient to study the region 0&6 & —,, ac-
cording to the symmetries

m(q) =c so(b }a—cos(1 —A)a —Tcos(qa) .

(2.12)

H(P, h; 8„,p„)=H (P, —b; —8„,—p„)

=H(13,b, +k;8„+nk,p„),
(2.14a)

(2.14b)To find the critical temperature T„simply set
m '(q) =0,

T, (q) = cos(i},a)—cos(1 —b, )a

cos(qa)

This shows that q, (h)=0, and when
I

—,—b,
I &gl,

(2.13}

T,(0)=

which gives the C-I critical line. The gap vanishes
linearly along this line, i.e., v = 1.

At higher temperatures the C-I boundary must be
deduced from the longer series for m. According to
the free-fermion analysis, there is no singularity in
the free energy on the commensurate side of the
transition. Thus, in this work, the only way we can
predict the C-I boundary is by looking at the vanish-
ing of the mass gap.

The series expansions in this paper are derived by
means of a connected-diagram technique. In this
method the lattice is essentially infinite, as we only
calculate quantities which, in the thermodynamic
limit, are independent of the size of the system (e.g.,
the mass-gap and ground-state energy per site).
Thus, in contrast to the finite-lattice approach, the
wave vector q may take any value.

where k is an integer. These symmetries are valid
because the sets {8„,p„}, {—8„,—p„}, and
{8„+nk,p„} have identical eigenvalues and satisfy
the same commutation relation (1.2).

1. Lifshitz point, 6=
~

Our identification of (6= —,, T, 0.75) as the
Lifshitz point is supported by the following evi-
dence:

(1) Figure 2 is a plot of the critical points derived
from the low-temperature mass gapa [cf. Eq. (2.8)]
m

~
and m2. These masses correspond, respectively,

to the free energies of a "light" and "heavy" domain
wall [P= 1 or 2 in Eq. (2.11)]. The solid line is a
smooth curve passing through the m

&
critical points,

which are shown in Fig. 1. Error bars have been

0.8

0.6
c

04

0.2

B. Numerical results 0.0
0.0 0.I 0.2 0.3 0.4 0.5

Numerical data are derived from the following
quantities:

FIG. 2. Critical points derived from the mass gaps m
&

and m2.
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[In the self-dual model, the series for (D) repro-
duces the first 14 terms of the binomial expansion of
(2.17a), and all terms in the mass gap of order 2—9
are 0.] Equation (2.17a) displays the exact three-
state Potts-model magnetization index, P= —,, and
(2.17b) is equivalent to the Ising-model mass gap,
i.e., v=1. The exponents a and y are also Potts-
type. Additional numerical studies indicate that the
Lifshitz points of this self-dual model are at (6= —,,
P =+1), and the P =+1 point is the intersection of
a Potts line and two C-I lines.

(4} On the basis of universality, one might expect
the self-dual and Ostlund Hamiltonians to share
some common features. Indeed, based on our as-
sumption that the Lifshitz point is at 5=—,, it ap-
pears that both models exhibit the same critical in-
dices at this point. These include the high-
temperature index vH derived from (2.4) (P = 1 or 2
gives the same v~), and the low-temperature indices
v& and v2, corresponding to the masses of clockwise
(P =1) and counterclockwise (P=2) domain walls
[cf. Eq. (2.11)]. Our method of calculating m2 is in-

valid at 6=—, because the state defined by (2.11),
with P =2, is degenerate with the state consisting of
two consecutive domain walls, i.e., p„=p„+&——1.
We cannot predict the critical index of the correct
P =2 state (obtained by degenerate-state perturba-
tion theory).

The results are as follows:

omitted wherever they are smaller than the size of
the plotted point. The dots in Fig. 2 represent the
m2 critical points. Instead of averaging over the
Pade table, the individual entries are displayed.

For 0&5&0.23 it appears that both masses
predict the same critical point. However, for
0.27&5&0.45 the m2 data are scattered. We inter-
pret this erratic behavior as being a consequence of
the Pade scheme demanding" a singularity, and we
do not believe the m2 poles represent phase transi-
tions in this region.

The data of Fig. 2 indicate that a qualitative
change in the nature of the transition occurs be-
tween 6-0.23 and -0.27. From this it is reason-
able to assert the existence of a Lifshitz point at
6=0.25; for 0& 5 &0.25 the distinction between the
two types of domain walls is irrelevant, and the
transition remains three-state Potts-type, while for
0.25&6&0.5 the heavy domain walls are "frozen
out, "and a C-I transition occurs when m

&
vanishes.

(2) The point b, = —, is singled out by the special
symmetry which applies there. Combining Eqs.
(2.14), one can show that

H(P, b;, 8„,p„)=H( —P, —,—5, —8„n,—p—„) .

(2.15)

vi( —,)=0.946+0.003 (T, =0.7465+0.0007),

(2.18)

viz( —,)=0.94+0.01 (T, =0.755+0.002),

1 1and suggest that perhaps vi( —, )=v~( ~ )
=vi ( —)= 1 [cf. (2.17b)]. The determination of the
indices is hampered by our ignorance of the exact
critical point. For example, if we assume
T, (b, = —,) =0.75, we find vi( —,) =1.00+0.02.

Critical indices for the low- (L) and high- (H)
temperature ground-state series suggest that these
quantities are Potts-type. The results are as follows:

Hsn ———g cos(p„—h)a

A negative P implies antiferromagnetic couplings
(X~&0) in the x direction [cf. Eq. (1.3)]. Thus
(2.15) relates, for example, the critical lines for
(0(b, & —,, P &0) to the ones located in the region
( —& b, & —,,P & 0). Equation (2.15) also implies that
at b = —, the high-temperature series are even func-
tions of b„ i.e., the critical properties are indepen-
dent of the sign of K„.

Of course, this symmetry property does not prove
the existence of a Lifshitz point at b, = , or any oth-—

1
er value of b,. It merely suggests that b = —, is the
most likely point at which crossover behavior
occurs.

(3) Recent analysis of a self-dual version of Eq.
(1.1) indicates the special role of 5= —,. The Hamil-
tonian of the self-dual model is given by

+P cos(8„+i—8„—b, )a . (2.16)

and

m(q =0)=
2

(1—P) (2.17b}

At b, = —,, the series for the magnetization and mass

gap suggest the exact results

(2.17a)

aL, ——0.41+0.05, aH ——0.497+0.004,

pr ——0.061+0.005, 13H 0.18+0.01, —— (2.19)

yL, ——1.389+0.006, yH
——1.68+0.02 .

The exact Potts values ' are a = —, , P = —,, y= —,.9, 10

The high-temperature results deteriorate somewhat
1

near 5= 4, no doubt due to the nearness of the
Kosterlitz-Thouless line, along which P, y, and v are
essentially infinite.
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FIG. 3. Mass gap indices; v~ and v2 refer to low-
temperature masses and v~ is the high-temperature criti-
cal index.

The possibility that v = 1 and o. = —, at the
Lifshitz point indicates that either hyperscaling is
violated, or scaling is anisotropic. Note that in Eqs.
(2.3) and (2.8) the mass gap describes correlations in
the t direction; these correlation lengths are simply
related to the eigenvalues of H. However, the series
method used here does not allow us to independently
determine the x-direction correlation length or its
critical index v~.

In the presence of anisotropic scaling, the hyper-
scaling relation is 0.' =2—v, —v„. We can then pro-
pose the following classification: The Potts line,
0&6 & 4, is characterized by isotropic scaling, i.e.,

5v„=v, = —,, where v, =v~ ——v2 ——vH (a caveat: cf.
Fig. 3); scaling is anisotropic at the Lifshitz point,

24= —with v„=—and v, =v) ——vH ——1, scaling is4 X 3
1 1

also anisotropic along the C-I line, 4 &6 &» but in
1 1

this case v„=—, and v, =v~ ——1 (a = —, is a predic-
tion of the free-fermion approximation).

This scaling classification is similar to one
predicted by a theory of the smectic-A-nematic tran-
sition in three dimensions, " namely, an isotropic
line with v„=v„and an anisotropic line with
v„/v, = —,, are separated by a special point analo-

FIG. 5. Order-parameter indices along the Potts line.

gous to the Lifshitz point, but where the anisotropic
scaling is given by v /v, = 3.

2. I'otts line, 0 & 5 &—

For small 6, the transition is expected to remain
1

three-state Potts-type. Indeed, for 0&6 & 4, all of
the series predict virtually the same critical point.
The critical indices along this line are compared
with the conjectured values in Figs. 3—6. In Fig. 3
note the apparent continuous variation of v~ and vH,
whereas v2 is quite stable. It is not clear whether or
not this variation is merely a consequence of the
finite-series approximation.

1 I3. Commensurate-incommensurate line,
& &6& z

In Sec. IIA we derived Eq. (2.13), an expression
for the C-I critical line, which is valid for low tem-

1
peratures and

~

—,—6
~

&&1. The P =1 mass series
predicts a T, in agreement with (2.13) for

~

—,—b
~

&0.01, i.e., q, (b, )=0 and v(b, )=1. The
ground-state series suggest a larger value of T„but
the critical indices are erratic and quite small, and
hence unphysical. For example, in the region

~

—,—b,
~

& 0.05, the magnetization and specific-heat
series predict a T, which is larger than the one de-
rived from m &, and the indices are given by a & 0.07
and P &0.001, i.e., both quantities approach a con-

—-- Exact Potts value
0.56—

0.52—
I)

0.48—
~ 0.44—

———Exact Potts value

1.65—

oy,

0.40

0.36—

Q.32—
0 0.05 0.10 0.15 0.20 0.25

FIG. 4. Low- (O ) and high- (CI) temperature specific-
heat exponents along the Potts line.

1.55—
0

145=

I l l I I

0 0.05 0.10 0.15 0.20 0.25

FIG. 6. Susceptibility indices along the Potts line.
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stant at the C-I transition. This is consistent with
the free-fermion picture of the C-I transition: The
magnetization jumps discontinuously to zero, and
the free energy is nonsingular as the C-I line is ap-
proached from the commensurate side.

We find that this behavior persists at higher tem-
peratures; the mass gap vanishes linearly (cf. Fig. 3)
and the critical wave vector remains zero. Poles and
critical indices extracted from the ground-state
series are erratic and small.

4. Kosterlitz-Thouless transitions

&(&—p/p )X-e (2.20)

Since the standard D log Pade method is useful only
for algebraic singularities (it also does not appear to
work for the logarithm of X), we have used a ratio
test proposed by Rehr. ' If the series is represented
as X= g„" oa„p", the asymptotic form of the ra-
tios R„=a„/a„ i is

R„=
' i/(&+0)

1
l

oA

c Pl
(2.21}

The free-fermion approximation provides a
correct description of the incommensurate phase at
low temperatures and 6- —,. However, at higher
temperatures the domain-wall network becomes
unstable to the formation of free dislocations. Ap-
plying the dislocation-unbinding theory of Koster-
litz and Thouless, ' ' one predicts the melting of
the I phase to a disordered phase. In the quantum
method, the dislocations appear naturally in the con-
text of a next-higher-order fermion approximation.

To determine the incommensurate-liquid critical
line, we have assumed that the susceptibility of Eq.
(2.2) and the correlation length diverge with an
essential singularity, e.g.,

P, =9.3,
0.=0.56,

A =0.58 .

(2.24)

This value of 0 compares with the renormalization-
group prediction, ' o'= —,. The absence of data for
any other value of 6 appears to be due to the sensi-
tivity of the transformed series with respect to varia-
tions of c.

The mass gap derived from (2.4} should also exhi-
bit an essential singularity at the liquid-
incommensurate transition. In addition, the critical
wave vector q, is equal to the pitch of the I phase,
exactly at the transition. This is based on a similar
result for the self-dual model (2.16}. In this case,
the incommensurate-liquid transition is a C-I transi-
tion, and it is possible to calculate the correlation
function (2.6) using free-fermion techniques. We
find that Qs varies continuously with b„and is
equal to q, .

1 3
Thus for —, & 5 & —, we expect q, to vary continu-

ously between 0 and 1. The values of j, on the
liquid-incommensurate line determine the lines of
constant pitch in the I phase, as indicated schemati-
cally in Fig. 7. Unfortunately, we have not been
able to extract reliable values of p, and q, froin the
mass gap series. At present there appears to be no
efficient means of dealing with an essential singular-
ity.

III. RELATION TO OTHER WORK

Selke and Yeomans' have performed a Monte
Carlo analysis of the 2D model, Eq. (1.3). While the
qualitative features of the phase diagram deduced in
their work agree with ours, there remain some quan-
titative discrepancies. The one-dimensional quan-
tum model has also been studied by Centen, Ritten-

The quantities A, P„and cr are found by fitting the
calculated ratios R„""to the form (2.22). This is
done by searching for a minimum of the quantity

S(A,P„o)=g(R„—R„'"') n (2.22)

X(z;c)= g a„z", z =
1 —P

(2.23)

In order to apply this ratio test we must first per-
form an Euler transformation so that the coeffi-
cients are of the same sign:

0 ——
0

I /
'1 ~IN I

cP" x h « I

I //
/~K [ I//

X~g~/

Although we believe that the Kosterlitz-Thouless
line begins at 5= 4, the above method has only been
successful at one point, b, = —,. Choosing c = —0.31
in (2.24) a minimum of S is located at

FIG. 7. Dashed lines represent lines of constant pitch
in the incommensurate phase. The critical wave vector q,
varies continuously along the heavy dark line. The I
phase has been enlarged for clarity.
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berg, and Marcu' using finite size scaling.
Note added in proof. Recently, Huse and Fisher, '

Haldane, Bak, and Bohr, ' and also Schulz' have
suggested phase diagrams which differ from Fig. 1.
Their arguments are based upon the notion that the
chiral perturbation is relevant at b, =O, and are, of
course, not fully rigorous. Because of the inaccura-
cies in the series method, the evidence given here
can only suggest, not prove, the validity of Fig. 1.
Further work will be needed to decide between the
various pictures.
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