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A theory of melting and crystallization in small specimens with surface coating is

developed. The basic idea is that both transitions may be described within the framework of
a strongly coupled system of dislocations and vacancies (free volume). The configurational

integral of the dislocations is calculated by taking the dislocation-vacancy interaction for the

mobility of the dislocations (absorption and emission of vacancies) and directly over their

conservative interaction into account. Integrating out the configurations of the dislocations

generates an induced and attractive interaction between vacancies. The solid-liquid transi-

tion is then studied via a gas-liquid —type transition in the vacancy system, where it is as-

sumed that the number of unpaired vacancies (or free volume) is a conserved quantity, due

to the surface coating. Under reasonable assumptions it is shown that melting proceeds

within a teInperature interval as observed by Gleiter, Perepezko, and Smidoda. Within the

same theory, crystallization of supercooled samples is studied.

I. INTRODUCTION

Recently the experimental study of superheating'
and supercooling phenomena in specimens of a size
in the order of microns and, provided with a surface
coating has received much attention. The surface
coating of these specimens is supposed to inactivate
the nucleation processes starting mainly at the open
surfaces of the system and should therefore allow
the study of their physical properties in the usually
inaccessible domains of metastability. In these re-
gimes the transition into the thermodynamically
stable phases is of particular interest. For super-
cooled specimens the theoretical prediction by
Schneider et al. is that a soft relaxational mode
drives the system into the solid phase continuously,
implying the divergence of the structure factor
S(qp) at T~, where qp is a reciprocal-lattice vector
of the solid. Recent experiments by Suck et al. ~

show that this is not observed experimentally. Simi-
larly it has been suggested that superheated speci-
mens melt continuously over a soft-phonon mechan-

ism. Gleiter, Perepezko, and Smidoda' observe,
however, that superheated small specimens ap-
parently melt in a temperature interval reminiscent
of what is observed in systems that expand on melt-

ing but are constrained by constant-volume condi-
tions.

Conventional theories of the metastable-state
transitions are based usually on the hypothesis of
homogeneous nucleation which for supercooled
specimens is rather successful ' as far as the predic-
tion of a transition temperature is concerned. All

other properties (dynamic structure factor, diffusity,
etc.), however, cannot be described by such a theory.
In particular the observation of Gleiter, Perepezko,
and Smidoda' of' melting in a temperature interval
cannot be explained this way. Let us point out that
also in systems like quartz and cristobalite, where
large superheating has been observed by Ainslie
et ah. , the homogeneous nucleation hypothesis fails
because heterogeneous melting is observed. As a
matter of fact, the transition is always initiated at
the surface or at grain boundaries of the system.

The following interpretation is based on the idea
that a system, when it melts, needs free volume in
order that the particle aggregate is able to develop
liquid-state properties. Similarly a liquid must get
rid of the free volume in order to crystallize, and if
it is prevented from expelling or annihilating its free
volume it vitrifies at sufficiently low temperatures.
On a qualitative theoretical level this idea can be in-
corporated in a model where melting is driven by
dislocations, and a theory of the liquid state as a
plasma of dislocation loops. Because dislocations
are able to move via conservative and nonconserva-
tive processes (requiring material transport) and be-
cause purely conservative motion leads to immobili-
ty of the dislocation system (if more than one glide
system is activated), a mobile dislocation loop sys-
tem is necessarily strongly coupled to point-defect
motion. This picture is supported by the observa-
tions of Cotterill et al. , using computer simulation,
that upon melting, point defects are created in large
numbers where moving dislocations intersect. In a
solid, point defects are generated in vacancy intersti-
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tial pairs and dissociation of these pairs provides the
point defects for the nonconservative dislocation
motion. Owing to the asymmetry of the
interparticle-interaction law, the formation energy
of vacancies is usually much lower than for intersti-
tials and the mobility of interstitials is usually
higher than for vacancies. A consequence of that is
that vacancies usually enter the system through an
open or free surface, thus circumventing the pair-
generation law applying to the bulk. The important
role of vacancies for the melting process and the
melt itself is supported by the observation that the
surface of a specimen is usually the most favorable
site for nucleation, and that the concentration of va-
cancies increases from about (0.01—10)% for typical
metals during the melting transition. The role of
vacancies for the melting transition and the melt has
been studied extensively by Gorecki. '

Suppose now that a solid specimen of volume Q is
provided with a surface coating at a temperature
Tsc. Then the number of unpaired vacancies in the
system is Nv(Tsc). Under the condition that the
surface coating fits smoothly to the specimen, is
impenetrable to vacancies, and does not yield, the
possible configurations of dislocation loops are sub-

ject to the constraint of conservation of matter.
This constraint may be put into the form

b r Xd r (Nv NI—) = —N—v(Tsc) .
Q0 C~

being deposited coherently into the lattice with the
bounding misfit dislocation expelled through the
surface. This implies that the surface-coated sys-
tems under ideal conditions are correctly specified

by the three thermodynamic variables T, Q (or p),
and V~. Obviously under these conditions su-
perheating and supercooling of surface-coated speci-
mens do not imply that these systems are necessarily
in a metastable state but that they may be thermo-
dynamically stable under the given boundary condi-
tions. It is this point of view on which the following
theory is based.

In Sec. II the qualitative properties of the model
are explained. The starting point of the theory is
that the mobility properties of a dislocation loop de-
pend on the density of point defects and their
respective mobilities. The evaluation of the parti-
tion function is then done such that the configura-
tions of the dislocation loop are integrated out first.
This procedure generates an induced interaction be-
tween the point defects. The solid-liquid transition
of the specimen can now be studied on the back-
ground of the gas-liquid transition within the vacan-
cy system. The justification of that method is done
in Sec. III but its qualitative features are already dis-
cussed in Sec. II, because the theoretical derivation
and justification of the induced-interaction law is
rather involved. In Sec. IV a critical discussion of
the results and shortcomings of the theory is given.
Mathematical details are worked out in two appen-
dixes.

Here I C, b I represents an ensemble of dislocation
loops, where C and b are the dislocation line seg-
ment and Burgers vector of type 0, respectively. Nv
and El represent the total number of vacancies and
interstitials, and Qp ——(4m. /3)rp represents the
volume per particle. Equation (1) is the general law
to which the generation of point defects is subject
and includes the case that, e.g., interstitials are con-
densed in dislocation loops. It is obvious from Eq.
(1) that Nv( Tsc)Qp is a quantity defining the
canonical ensemble corresponding to a given amount
of free volume delivered to the system at Tsc.

How good a thermodynamic variable is
Nv(Tsc)Qp? It is obvious that this is a conserved
quantity under the boundary conditions imposed, in
contrast to Nv(Tsc), because the number of vacan-
cies in a strongly disordered crystal or a liquid is not
well defined, but must be replaced by the free-
volume' '" concept. There is, however, no reason to
not consider the free volume defined by

Vj' =Nv( Tsc )Qp( T)

as a thermodynamic variable as long as the surface
coating does not yield, i.e., it prevents material from

II. QUALITATIVE PROPERTIES
OF THE MODEL

In order that a dislocation loop may display its
possible conformations with a reasonable speed, ma-
terial transport is required' and this implies that
the partition function must contain also the contri-
butions of the point-defect configurations. Assume
for the sake of simplicity that the possible configu-
rations of a dislocation loop are formed over
random-walk processes on a reference lattice, ignor-
ing the constraint given by Eq. (1). Owing to the
globular structure of the mean configuration (an
average over all possible configurations), a radius of
gyration Rg(T) may be defined and also a corre-
sponding volume of the order of Qd( T)
=(4m/3)Rg(T) The numbe. r of vacancies and in-
terstitials in Q~ is obtained as

Ezd f d r [nv(r)+nI(r)]——, (3)

where n v( r ) and nr( r ) are vacancy and interstitial
densities. Given the number Nzd in Q~ (the volume
where the dislocation displays its configurations),
obviously only loops of lengths s, not exceeding a
certain length s*, are able to activate a11 their de-



27 THEORY OF MELTING AND CRYSTALLIZATION IN SMALL. . . 1747

grees of freedom. For those loops where s&s~
holds, there are not enough point defects available to
keep them mobile. If q is the number of possibilities
available for a random walk at each successive step
(q~=5 on a three-dimensional lattice), then the an-
satz

q(s, r)=q(r)e

m r &Rg
q(r)=

qme &", r)g

ro =—r/r,
conforms qualitatively to the constraint imposed.
The length tt ' measures the thickness of the inter-
face boundary between the liquid droplet of volume
Qd and the solid material of volume 0—Q~. A
possible scaling relation for s* is

fn d'r [&v(r)Qo, v+nt(r)Qot]
=Z~(T, Q) .

nbhplps*

lattice vibrations. Second, there is an induced in-
teraction between point defects which arises from
their interaction with the dislocations. It will be ob-
tained (in Sec. III) by integrating out the configura-
tions of the dislocation loop in the partition func-
tion. In addition, one obtains a renormalization of
their chemical potential, as a function of their rela-
tive distance to the center of gravity of the disloca-
tion loop. The effective interaction between point
defects of the same kind turns out to be attractiue
and for the others repulsive. Furthermore, the effec-
tive coupling constant increases with increasing tern-
perature.

Suppose that Nv(T)=Nv(Tsc) »Nt(T) holds.
Then at a certain temperature T, & T (the ther-

modynamic melting temperature) a gas-liquid —type
transition (see Sec. III) within the vacancy system
will be nucleated at a certain point in the interior of
the specimen, say, at an internal stress center or at a
grain boundary. By this mechanism a liquid droplet
is nucleated in the specimen extending over a
domain Q~ with the vacancy density satisfying

nv(r GQd) »nv(r EQd) .

Here it has been assumed that the effective length of
a "step" in the random-walk process generating the
dislocation loop is lo and its cross section (forming
the core of the dislocation) ho. The definition of
these quantities allows one to treat s and s* as di-
mensionless quantities. For b,0 &10 the length lo de-
fines the lattice unit of the reference lattice.
Qo v(T, Q) and Qot(T, Q) represent the specific
volume of a vacancy and interstitial, respectively.
The number of linearly independent Burgers vectors
that the branched loops are made up of is given by
nt, (see Sec. III). The number Z~(T, Q) decreases
for T increasing due to higher mobility of the point
defects and increasing efficiency of conservative
motion of dislocations to overcome barriers due to
interaction and packing effects of dislocations. Be-
cause such processes occur via thermally activated
motion we assume

Zg(Z Q) h(n)ikT

The next problem is to determine-the point-defect
concentrations nv(r) and nt(r) The inte. raction be-
tween the point defects consists of two parts. First,
there is the hard-core repulsion between point de-
fects of the same kind and in addition a rather weak
long-range interaction' ' decaying like 1/r with
distance r. This interaction decreases with increas-
ing temperature due to anharmonic effects of the

This implies that the region outside of the nu-
cleation center is deprived of vacancies [see Figs.
1(a) and 1(b)]. Because the transition temperature is
dependent on the vacancy density, a slightly higher
temperature than T is required to attract further

m&

vacancies into the liquid droplet and to have it grow.
It is obvious that if once a liquid nucleus has been
formed at a certain position then all other possible
nucleation centers are discriminated against the ac-
tivated one, because the density of vacancies at their
positions is now steadily decreasing, as a conse-
quence of getting absorbed by the first nucleation
center. Once the liquid domain has absorbed most
of the vacancies, the vacancy interstitial pair genera-
tion must provide the lubrication to transform the
rest of the sample into liquid. Using the numbers
quoted earlier for vacancy densities in solid and
liquid metals, one concludes that only a fraction of
(10 of the sample will be transformed into liquid

using the available Nv(Tsc) vacancies.
Since the vacancy interstitial pair formation gets

energetically more favorable if the interstitials are
condensed into dislocation loops, it is reasonable to
assume that once a liquid droplet has been formed,
representing a mobile dislocation loop, loop configu-
rations with Nv &Nv(Tsc) get activated. It is easy
to show, however, that as long as the dislocation
loop is confined to the droplet or partially surrounds
it in a coil-like configuration, its internal-stress-
energy change hU must satisfy the inequality
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2—Qo[Np —Ny(Tsc)] /Q &hU & —Qo[Ny —Ny(Tsc)] /Qg,2 2 2

where A,
' is proportional to the Lame constant p and

weakly depends on the dislocation configuration.
Equation (8) is a consequence of the fact that the
long-range dilatational stress fields for fixed
Nz Nv(—Tsc) cannot be screened out. If an ordi-
nary system melts subject to a constant-volume con-
straint the influx of 4N~ vacancies will lead to an
increase of the internal energy U as follows:

b, U= —,A 0o(b Ny) /Q . (9)

Because such a system melts over a temperature in-
terval, comparison of Eqs. (8) and (9) shows that the

I

generation of additional vacancies in the surface-
coated system does not allow the system to melt at a
fixed temperature. Both mechanisms considered, to
have a liquid droplet grow in a surface-coated sys-
tem will lead, therefore, to melting in a temperature
interval [T~,,T,]; see Fig 2..

The temperature T marks, under ideal condi-

tions, the end point of the two-phase coexistence re-
gion. Experimentally it presumably marks the tem-
perature where liquid touches the surface coating at
some place and fuses a hole into it. A schematical
plot of the phase diagram of the system is given in

(a} (a}

7= Tm2 &used

(b} (b}

FIG. 1. (a) Schematic plot of specimen, with surface
coating drawn hatched. Five possible nucleation centers
are schematically depicted, from which number 1 is sup-
posed to be energetically distinguished. The small circles
symbolize vacancies. (b) At T nucleation center, 1 gets

1

active and forms a liquid droplet of radius rI . Taking up
latent heat it grows to a final radius Eg & rl until the sys-
tem at T is in equilibrium. For T& T the liquid

1 1

domain grows.

FIG. 2. (a) Solid dots represent interstitials which ap-
pear at T)T allow the number of vacancies in the solid

1

and liquid region to grow. Condensation of interstitials
into dislocation loops as assumed in the text is not drawn.
(b) End point of two-phase coexistence region at T
Here the liquid domain reaches the boundary and fuses
holes into it allowing a flux of free volume to enter the
system.
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Fig. 3. The dashed-dotted curve starting at Tsc and
traversing the two-phase coexistence region in the
temperature interval [T,,T,] corresponds to the

thermodynamic trajectory of the system just dis-
cussed. The heat-absorption curve corresponding to
the melting process discussed above is schematically
plotted in Fig. 4. Accordingly this theory provides a
qualitative interpretation of the interval melting ob-
served by Gleiter, Perepezko, and Smidoda. '

In a similar manner the model allows the discus-
sion of the crystallization of surface-coated liquid
droplets. Here it is assumed that the free volume

Vf(Tsc) exceeds the free volume of the system with

open boundaries at T (Tsc. Consequently, the
formation of a solid nucleus should occur at

Tf (T~ in order to stay consistent with the melting
1

model discussed earlier. Because on lowering the
temperature the effective interaction between vacan-
cies (mediated by the dislocation loops which are
shrinking) gets weaker, the formation of a solid nu-

cleus is a consequence of the liquid-gas transition in
the vacancy system. Suppose that the solid nucleus
grows at the surface, forming eventually a crust,
then free volume from the solid regions is expelled
into the liquid. Consequently the initial solid nu-
cleus grows on lowering the temperature, but the
liquid still remains stable for T & Tf, due to the in-

VOLUME V

T1

T2"

y = const.
fopen systezj

FIG. 3. Schematic plot of the p-V diagram of the va-

cancy system. The hatched domain represents the coex-

istence region. The thick dashed line represents the tra-

jectory of the system in thermodynamic equilibrium. The
dashed-dotted curves correspond to superheating and su-

percooling trajectories of surface-coated systems, respec-

tively, where scales will depend on the volume 0 of the
sample. Solid curves represent isotherms.

T

gdQ

I
I

Tm

I

I

I

I

I

I

T
FIG. 4. Schematic plot of heat absorption dg of

the process illustrated in Figs. 1 and 2. L~ is the latent
heat needed to have the liquid droplet grow in Fig. 1(b)
from r~* to ri. The heat absorbed in the coexistence re-

gion, extending from T to T, is required to have the
1 2

liquid droplet grow to larger size until at T it touches

the boundary. L2 is required to transform the rest of the
sample into liquid through a flux of free volume entering
through the fused surface coating [see Fig. 2(b)].

creased density of vacancies or free volume there. It
is, however, also possible to assume that once a nu-
cleus is formed at the surface it will not form a
smooth crust but one which is perforated with holes
and channels, where it accommodates the free
volume 5VF released during the growth of the solid
phase. Because the initial solid nucleus must have a
lower free energy per particle than a solid perforated
by holes and channels, due to the difference in sur-
face energy, it is not necessarily unstable against
growth at Tf . Accordingly, both mechanisms con-

sidered to have a solid crust grow on the surface will
lead to crystallization in a temperature interval

(Tf, , TI,). The temperature Tf marks the point

where the sample is transformed into solid material.
The situation described is represented in Fig. 3 by
means of the dashed-dotted curve starting at Tsc. It
is also possible that for T& Tf, a glass transition

occurs in the bulk of the sample.
Experimentally now, crystallization of super-

cooled samples occurs at sharply defined tempera-
tures and is not observed to be smeared over an in-
terval. A possible explanation for this is that the
formation of the solid phase does not proceed via a
nucleation mechanism at the surface coating but
perhaps in a way as visualized by Schneider et al.
Within the present model this is possible as follows.
On lowering the temperature, free volume is succes-
sively annihilated by generating dislocation-loop
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configurations with Nv &Nv(Tsc). Because their
internal energy again must satisfy Eq. (8), whereas
their configurational entropy gets reduced due to an-
nihilated free volume, an instability for T&T~
arises only if the internal-energy gain due to col-
lapsed vacancies is in excess of that free-energy loss.
It is reasonable to assume that in the case where the
free volume is present in the form of finely
dispersed vacancies this is not the case. Further-
more, the collapse of vacancies to form a solid nu-
cleus requires an activation barrier to be overcome.
It is therefore possible that the free volume is suc-
cessively converted into dislocation loops, which are
expelled to the surface, if this activation barrier al-
ways remains small with respect to the thermal ener-

gy. In this fashion a continuous transition at Tz
may result (see Fig. 3). Owing to the large differ-
ence in volume between solid and liquid state, sur-
face yield may lead to a mechanical instability of the
system for T & T2 over a sharp transition.

III. THEORETICAL TREATMENT
OF THE MODEL

We calculate the partition function of the problem
starting from the solid phase, assume an impene-
trable boundary of the system, and therefore take
Nv( Tsc) fixed. Then we ignore presently the contri-
bution of small thermally produced dislocation rings
to the statistical sums, because such rings are only
able to grow once they have reached a critical size
where the long-range Biot-Savart interaction be-

tween different parts of the loop is screened out. ' '
If a loop has reached a critical size where it is able
to grow, it constitutes a small liquid droplet. This
process takes place over an activation barrier. The
liquid droplet is presumably located at a favorable
site, where there is already a dislocation loop grown
in or at a grain boundary. Owing to the reasons
given in Sec. II it is sufficient to consider just one
nucleation center.

In the simplest case a branched loop will be
present having an equal distribution of Burgers vec-
tors b for the easiest glide planes. For the sake of
simplicity, we assume that for the calculation of the
partition function the branched loop can be approxi-
mated as a product of nb unbranched and open-
ended loops. The Biot-Savart interaction between
loop segments will be neglected for indiuidual con-
figurations, since the loops only give a significant
contribution once s*»1 holds (activated nucleation
center) and in that case these interactions are mainly
screened out. ' ' The constraint given by Eq. (1)
will be neglected for s*» 1 and Nl ——0,
Nv=Nv(T'sc) For Nv —Nv(Tsc)40 the un-
screened dilatational interactions estimated by Eq.
(8) and the associated reduction of the number of
loop configurations will be taken into account ap-
proximately. The interaction between dislocation
loops and point defects, within the path-integral for-
mulation of the dislocation theory, ' is obtained in
Appendix A using formulas given in Refs. 13 and
14 for internal-stress —point-defect interactions.
From Appendix A, Eqs. (Al) and (A2), one obtains

Vdp(
I b j I })

OP + g f b [n(R)&& r ]ds
2' c ~r (s ) —r —~2

(10)

where

+, +1 for an interstitial
&r —1 for a vacancy

and R=—r ~(s~)—r;, and the set [r; j represents the positions of the defects, p is a Lame coefficient, and

r =d r /ds. The possible configurations of a loop extending from r ' to r and being of length s can be ob-
tained via the Green's function' (up to a proportionality factor)

StT Pl~G(rs~r', 0[v; j)= f '
d[r(s~)]exp —f ds (r~) + Vs~(r, [r;j)-

+ g u ~(r ( ),bs, I jr)+—,+ykT

where u s is defined via Eq. (10) as follows:

V"~([b j, [P; j)—:g f ds u (r (s ),b, [F; j),
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and from Eq. (4)

y (
~

P(s) —r '
~

) =y~ —ln[q( [ Qrs) —r '
~
)/q«],

(12)
y =(y' kT—lnq )kT .

Here y' is the internal energy of the dislocation per step unit lo. It can be considered as a renormalized core
energy of the dislocation. V„s~ represents the hard-core repulsion between the point defects and the dislocation
for r ~C

I P~ij. This term must be included because otherwise the degrees of freedom of the system are over-
counted. The evaluation of Eq. (11) via the differential equation satisfied by the Green's function is done in
Appendix B. There one obtains approximately [see Eq. (812')]

G~(r, r ', [P~iI )—:g G(r,s;r ',0;IPfI )

s~=1
R

ye cay' exp —e 2m iy s~ 2' +y' ' R2~'"R (13)

Here the following abbreviations have been introduced: R =
~

r —r '
~, y' —=y +5y, and

CE

sy.(I~, ~Q;I)=—,(b )' g go(~,'/R~)2' ~ +d 3~p
&~i

3 cx3 a 7T (b~} 2

2 NEO ~d
I
~g

PiPpcos (b pn~~ ~n')

g-i I& I
7 ' i '

I l

~g
g T

g ~R
Xg, ,

'

exp( —«.
I

& —& '
I »

Rd Rd

where a =(3pQO/2mkT) represents the intrinsic
couphng constant, n, =2/r, Rs =[(3/4n'}Qd]'
and go and g& are geometrical factors satisfying
go(0}=gi(0,0)=1, and go(1)=0, g, (1,1)=0. Q~ is
of the order of Q~ and Eqs. (13) and (14) apply to all
defects which are located within Qs. The first term
of Eq. (14) represents the modification of the chemi-
cal potential of the point defects and the second
term their mutual interaction. It is seen that due to
the induced interaction the point-defect system
develops the properties of a Coulomb plasma with
long-range interactions. Before we discuss the signi-
ficance of the exponential factors in Eqs. (13) and
(14), some remarks with respect to the derivation of
these equations shall be made.

Equation (14) has been derived by calculating the
eigenvalue spectrum of the differential operator
determining the Green's function given by Eq. (11),
as a function of the second and third term of the ar-
gument of the exponential, in perturbation theory up
to second order in a. For the sake of simplicity Eq.
(12), which is derived from Eq. (4), has been taken
into account approximately by using instead of the
exact bound-state wave functions for the construc-
tion of the Green's function plane waves which are
confined to Qs. According to Eq. (4} the volume

I

Qd will be of the order of Qs or slightly larger de-
pending on ~. The volume Qd is obtained subject to
the condition that y' ~0 holds, because this implies
liquid properties and is certainly a necessary condi-
tion that a dislocation loop is mobile. Qz must then
be determined self-consistently over the radius of
gyration of the dislocation loop in the volume Qs.

If V«sz in Eq. (11) is ignored, then the factor
g«z(IP~J ) and the exponential factor in Eq. (14)
must be replaced by 1. In this case, rather long-
range interactions are induced by the dislocation
loops and an instability of the point-defect system to
condense into clusters of defects of equal type is ob-
vious. This will lead to a breakdown of perturbation
theory as explained in Appendix B. Taking V„~
into account produces the factor g„~(IP;I ) which.
vanishes whenever the defects try to form clusters
because the dislocation gets expelled from such re-
gions. The physical significance of V«s& has to be
understood as follows. In order to count the degrees
of freedom of the system correctly those configura-
tions where a point defect gets absorbed by the dislo-
cation loop belong to a sector in phase space with
one defect less, etc. On the other hand, we have just
introduced the point defects in order to allow the
dislocation to move nonconservatively. Absorption



1752 A. HOLZ AND H. GLEITER 27

and emission of point defects is therefore an intrin-
sic property of the model, and is taken into account
over $* which guarantees that the dislocation can
display all its possible configurations. Because Eqs.
(13) and (14) are obtained (without the exponential
decay factors) by holding all point-defect positions
fixed and integrating over the configurations of the
dislocation this important constraint is violated.
Taking the constraint into account will have two
consequences. First, the interaction between two
point defects will not sample all configurations of
the dislocation loop due to the finite lifetime of the
defects and thus will diminish in the mean. Second,
if a point defect moves or is absorbed at one place
and emitted at some other place, e.g., in the process
of a climbing motion of the dislocation, then its in-
teraction with another point defect, which moves
and suffers a similiar recycling, will get a stochastic
character due to retardation for defects which are
rather far apart. Because the induced interaction be-
tween two defects which are rather far apart gets
pretty small it must result from a cancellation pro-
cess over many dislocation configurations, which
can only be reached over many intermediate point-
defect configurations. One expects that over the
time two defects have well-defined positions, only a

I

Z ([r; I)= f d'r G (O, r, Ir fI),
0

(15)

where the integral is performed over the volume Qo
of a unit cell. ' This expression guarantees that the
loop is closed. Integration of Eq. (15) yields

small number of paths entering Eq. (11) will contri-
bute. In Eq. (14) this effect is taken into account by
means of the exponential decay factor. Let us point
out that even if it is assumed that the scattering
centers represented by V„~~ in Eq. (11) attribute a
stochastic character to the wave functions of the re-
lated eigenvalue problem, from which Eq. (11) is
calculated, this seems not to be sufficient to produce
the exponential decay factor of Eq. (14). The ex-
ponential factor in front of Eq. (13), can however, be
obtained this way. From this discussion it follows
that it is reasonable to assume that ~& and ~, in
Eqs. (13) and (14) will be proportional to the point-
defect densities. Their dependence on the mobility
of the point defects via retardation will be such that
they increase with increasing mobility.

The partition function of a closed loop with
Burgers vector b is obtained from Eq. (13) by
means of the limiting procedure

301~Z (jr~) }= 3 f dye ~ g 8(ey' )f( e[2m [iy/(s —/2)' +y' ])' ),
27' t'0 —

e + 1

where

f (z) =z [1—e ( I+zro)] )0 . (17)

1/2

Integration of Eq. (16) can be done by means of st'eepest-descent methods. As has been pointed out earlier, the
problem which actually should be solved is that of a branched loop. The partition function to that problem
will be approximated by a product over nI, dislocation strings. Using a slight generalization of the theory
developed so far to the case where bNv Nv Nv( Tsc—)—vaca—ncies are created or annihilated, one obtains

n b

Z~([r--, I )=exp Qo(nNv)'(—Qd—)-'/kr g f ds exp( —sy' —s /2s', „)
"b %$~

=exp — Qo(bNv) (Qd) /kT g exp(y' s" „/2)
o=1

X[1—P((s~ +s~ Y' )/(2snx )' )] . (18)

Equation (18) applies to the case that the dislocation loops are confined to Qd and its surroundings as ex-
plained below Eq. (8), and

s~~ -2
~
bÃv

~
Qo/(nslob Rd ) (19)

take approximately into account the constraint given by Eq. (1). Fu~he~ore, s~ is calculated over Eq. (5).
V

p(Z) represents the probability integral. ' The main property of this expression used to support the following
arguments is that it is increasing monotoneously with y' decreasing. This follows immediately from the well-
known properties of the probability integral. The total partition function of the problem outlined in Sec. II can
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now be represented in the form (suppressing kinetic terms)

Q(Q, T, V/}=
V &V~~SC~

pr—duvr/kT 1 „Zi(Q T V )e NV NV(TSC
CY P.

—V&g(jr; j)/kT ({~ ))
~ ~i jNV

where

Z()(Q, T, Vj }=
NV(TSC)

exp[ —Vg, ({r; j)/kT] (21)

represents the canonical partition function of the va-
cancy gas (without activated nucleation center) and
Vg, ({r, )) takes account of the direct interaction
between the vacancies. The second term of Eq. (20)
takes care of a single nucleation center where it is
assumed that the excitations of the nucleation center
(liquid droplet) are such that interstitials due to en-

ergetical reasons are condensed in dislocation loops.
The problem is now defined by Eqs. (18)—(21), (5),
and (6). Owing to the fact that a number of quanti-
ties like Qd, n),(r), and sa~ must be obtained self-

consistently, the statistical mechanics of the present
problem is rather complex. The qualitative features
of the problem can, however, be easily understood.
It should be observed that each term of Eq. (20}
must be multiplied in principle with the partition
function due to the phonon excitations defined on
the defect lattice supplemented by a dilute gas of
small fluctuating dislocation loops to be discussed at
the end of Sec. IV.

At very low temperatures it follows from Eqs. (5)
and (6} that s"(T)-e /" holds. Accordingly, for
T +0, Z~ ~0—will be obtained as follows from

Eq. (18) and the fact that for T~0,
~5y

~

(s*)'/ ~0 holds. In Eq. (20) then only the
Zo term survives. It should be noted that despite
5y~- —1/T2, no condensation phenomena of the
vacancies takes place, because the main saddle point
of Q(Q, T, V~) is given by the Zo term The sa.ddle
point of the second term of Eq. (20) is realized for
the condensed phase of the vacancies (y~&0) for
T~O, and therefore describes a metastable state
within the present model. In fact, it describes a
smooth extension of the liquid-droplet state illus-
trated in Fig. 1(b) to T &T~, , and for T approach-

ing T~ from below it serves as an activated nu-
m&

cleation center of the liquid phase.
Consider now what happens when the system ap-

proaches T~ from below. Because s~(T) increases
1

with increasing temperature according to Eqs. (5)
and (6}, the second term of Eq. (20) will grow in

I

magnitude. However, because 5y ——1/T the in-
trinsic coupling constant of the induced point-defect
interaction decreases. This implies that the saddle
point of this term describes a two-phase coexistence
state, which consists of the condensed phase of va-
cancies, which represents the liquid droplet, and a
gas phase, which represents the solid domain. As-
sume that at T~, the saddle point of the first and

second term of Eq. (19) are of equal magnitude and
for T&T the saddle point of the second term

dominates. Then at T a first-order phase transi-Nl )

tion occurs into a two-phase state consisting of the
liquid droplet surrounded by solid material. It is
important to note that this is a first-order transition
absorbing heat and that the growth of the initial nu-
cleus of radius r~' to its final radius Rs(T) as illus-
trated in Fig. 1(b) is accomplished with that heat. If
it is assumed that b, -kT, , then further growth of
s~ for T p T is only guaranteed if the free volume,

given by

J d r nr(r)QO )
d

in the range of the dislocation, is increasing. On the
other hand, the term 5y ——1/T will counteract
this. tendency partly because with diminishing cou-
pling constant it will succeed in driving a liquid-gas
transition. This situation is modified when the addi-
tional terms in Eq. (19) with hÃr &0 are taken into
account. The additional vacancies generated will in-
crease sz)v, and will also increase the density of the

vacancy gas, which will suppress the liquid-gas tran-
sition mentioned above. It is reasonable to assume
therefore that this process will come to a halt once
the liquid domain extends over the whole sample. If
the corresponding temperature is identified with T

2

then the analytical model constructed in this section
agrees with the qualitative model outlined in Sec. II
and leads to the state depicted in Fig. 2(b).

It should be pointed out that the effective cou-
pling constant of the point-defect system depends in
a rather complicated way on s~~ and the intrinsic
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coupling constant of the term 5y given by Eq. (14).
It is the effective coupling constant on which the
discussion of Sec. II is based. Furthermore, it fol-
lows from Eq. (5) that for Q~~Q, sa~ -Ev, and

from Eq. (18) that the free energy of the canonical
ensemble labeled by AXq has the usual extensivity
property. Notice that when A,

' is sufficiently small,
the growth of the initial nucleus of radius r~ may
only stop once the whole specimen is liquified. In
that case no interval melting is observed. As will be
discussed in more detail in Sec. IV, the operation of
a Bardeen-Herring source' may imply that the ar-
gument of the prefactor in Eq. (18) has to be substi-
tuted by the first term of Eq. (8). Also in that case
the initial droplet will spread over the whole speci-
rnen. Because A,

' will be proportional to the Lame
constant JM but will also depend on the configura-
tions of the dislocation loops in the droplet, an
evaluation of the instabilities mentioned above is
rather difficult. On account of this discussion it
seems possible, however, that depending on A,

' there
will be materials which show melting in a tempera-
ture interval when surface coated and others which
melt at a sharp temperature.

The present model can also be used to discuss the
crystallization phenomena in supercooled droplets.

Tf marks then the temperature where a solid nu-
1

cleus is created, e.g., at the surface coating of the
droplet, and corresponds to T . For T& Tf one

may have two-phase coexistence and annihilation of
free volume, taken into account by the ENy&0
terms in Eq. (20). This process comes to halt at Tf
where the vacancies (or free volume) of the remain-

ing liquid domain suffer a liquid-gas transition and
the whole sample solidifies. Tf corresponds natur-

2

ally to Tm . The problem under which conditions

Tf Q Tf holds is discussed in Sec. II.

IV. DISCUSSION AND CONCLUSION

The main idea advocated in this paper is that
melting of a solid is not simply a problem of calcu-
lating dislocation configurations, where the mobility
properties of the system can be ignored completely,
but that the latter properties are most significant.
Nucleation of the liquid phase at an open boundary
of a solid as mostly observed is under these premises
favorable not only because the system is there free to
expand readily, but because the surface acts also as a
source of free volume and reduces activation barriers
by means of mirror forces. Nucleation of a liquid
droplet in the bulk of a specimen with open surfaces
suffers, under these conditions, two handicaps.
First, a current of vacancies from the surface to the
droplet has to be set up in order to provide the free

volume. However, the force driving this current
comes only into existence once a nucleus has been
formed and this implies a rather large free-energy
barrier to be overcome as explained in Ref. 12.
Second, mirror forces cannot be exploited. Obvious-
ly in such a problem the boundary of the system
does not play a secondary role, like providing a
free-energy contribution of the order of 0 ~, and
may therefore be ignored in the thermodynamic lim-
it, but is of primary importance in determining the
bulk properties.

The main assumption underlying the deductions
presented in this paper is that once the specimens
are surface coated, the free-volume content Vf of
the system plays the role of a thermodynamic vari-
able. Practically, this implies that the experiments
are done on a time scale, where vacancy diffusion
through the surface coating is small. Theoretically,
it implies that creation and annihilation of free
volume during superheating and supercooling,
respectively, are strongly coupled to the generation
of dislocation loops whose dilatational and cornpres-
sional stress fields cannot be screened out by the sys-
tem. The simple analytical model presented to
describe the statistical mechanics of the problem
predicts for a given solid sample that melting is ini-
tiated at a temperature T~ through a discontinuousNg )

phase transition leading to a liquid droplet and a
solid region. At a temperature T the sample is

2

transformed into liquid. In the temperature interval

[T,, T~,] one has two-phase coexistence with the

liquid domain growing for T increasing (see Fig. 3).
Because the fractional change of vacancies from the
solid to the liquid state in typical metals is about
10, there the initial size of a nucleus can be es-
timated to be of the order of 10 0 with T~ & T~.m&

For increasing sample size Q, an increasing number
of nucleation centers located closely to the surface
of the system can be expected. The probability that
an initial nucleus will touch the surface and per-
forate a hole into it will therefore increase and ac-
cordingly the extension of the interval [T,T jm» m&

will decrease. It can also be expected that with in-
creasing 0, T~ gets reduced and may approach T .
This is a consequence of the fact that fluctuations in
the number of vacancies at a possible nucleation site
get larger with increasing Q.

In a typical experiment usually not just one speci-
men is studied but a whole collection of them. A
statistical average over a distribution of specimens
of varying size and therefore different amounts of
free volume and nucleation centers should corre-
spond to an average over various heat-absorption
curves of the kind depicted in Fig. 4. The average
over such curves will produce a smooth curve which
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is reasonably differentiable, allowing the calculation
of the specific heat of the averaged samples and thus
may conform to what is observed in the experi-
ments. '

The discussion of the crystallization of super-
cooled samples follows the same line of thought in
the interval [T~,T~] with Tf &T~ (see Fig. 3).
The transition here, however, may be relatively
sharp if the crystalline nucleus grows into a struc-
ture that is perforated with holes and channels and
in this way takes care of the free volume.

The nucleation mechanisms have not been dis-
cussed so far. For a supercooled system the surface
coating may provide possible nucleation centers.
The other possibility is that a nucleus is formed over
a Bardeen-Herring —type source, ' which is a well-
known mechanism in quenched materials to get rid
of vacancies. Such a mechanism, however, will not
be operative in a supercooled liquid if the free
volume is present in a finely dispersed form. Furth-
ermore, the intimate coupling of the free volume, in
the form of vacancies or fractions of vacancies, to
the dislocation motion makes it suggestive that the
free volume below Tsc is successively and uniformly
transferred according to Eq. (1) into the dislocation
system. Ignoring for the present the formation of a
solid nucleus at the boundary, the end point of such
processes may be a continuous transition at T2 into
a solid phase with a network of dislocations and free
volume grown in. In order to check the viability of
this idea the properties of the present model have to
be studied in its domain of metastability.

With respect to the nucleation mechanisms in the
superheated state, the possible operation of a
Bardeen-Herring —type source' must also be taken
into account, in particular for the case Ni (Tsc)~0.
In the latter case the dislocation loop representing
the nucleation center should also provide the free
volume which guarantees its mobility. The forma-
tion of such a source requires first the excitation of
a big number of vacancy interstitial pairs. Then the
interstitials are condensed into a dislocation loop
forming the liquid droplet of size Qd. This droplet
acts now as a Bardeen-Herring source' if it expels
concentric rings of dislocation which climb to the
surface by generating a flux of vacancies which is
absorbed by the droplet. If the dislocation rings are
not expelled through the surface, then the elastic en-

ergy is bounded by the left-hand side of Eq. (8) and,
according to the theory developed in Sec. III, the in-
itial nucleus may spread at T over the whole

m&

specimen. Expelling the rings from the domain Qd
iinplies also that sqz =0 is used instead of Eq. (19).
Consequently, this seems to be a much more favor-
able case than the one assumed in Sec. III, where the

free volume-generating loop was supposed to be con-
fined to the liquid droplet and its surroundings. The
viability of the Bardeen-Herring mechanism as ex-
plained here depends on the order of magnitude of
the activation barriers to form the initial nucleus
and to expel dislocation rings to the surface. Al-
though this problem has so far not been studied in
detail it is reasonable to assume that T ~ T holds

1

because the activation barrier in the bulk must be
larger than at an open surface. The transition, how-
ever, may be rather sharp if the initial liquid droplet
is unstable against growth via the Bardeen-Herring
mechanism as explained above. In the latter case
the results obtained by Gleiter, Perepezko, and Smi-
doda' must be interpreted as an average over an en-
semble of samples with individually well-defined
transition temperatures.

Finally we consider the possibility that no nu-
cleation mechanism of the dislocation type is opera-
tive in the solid-liquid transition. In that case only
the first term of Eq. (20) contributes. As has al-

ready been pointed out this term in principle should
be supplemented by the phonon and small-
dislocation-loop partition function. The vacancy
problem alone could be studied by means of a
lattice-gas model which, due to the long-range in-
teraction VQ', ( [ r; J ), would lead to a van der Waals
equation of state. ' A gas-liquid transition within
that system would not lead to a gain in free energy if
it is not assumed that such a process liberates addi-
tional degrees of freedom. Taking the phonon parti-
tion function into account, such a feature would be
provided by a softening of the phonon spectrum in
the domain of vacancy condensation. Propagation
of soft-lattice modes into the bulk can, however,
only occur either via a shear instability and the mul-
tiplicative processes of dislocations invoked earlier
or over the generation of many small dislocation
rings. Such a gas of dipolar rings may be looked at
as a system of ballistic anharmonic phonons. Its in-
stability against condensation would then lead to a
macroscopic shear instability and liquid-type prop-
erties of the sample. In cases where no nucleation
mechanism works, it can be imagined that the
solid-liquid transition occurs over such a process in
a continuous fashion at T"i (see Fig, 3). On ap-
proaching T'i from below, liquid-type properties
would then be realized sucessively from small to
large scales. A similar interpretation of the continu-
ous transition at T2 postulated by Schneider et al.
has been given in Ref. 19. There it has been claimed
that in situations where no nucleation mechanism
works solid properties will be realized successively
from small to large scales on approaching T2 from
above. In conclusion, we state that the phase dia-
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gram of surface-coated systems may be of the type
depicted in Fig. 3 whose two-phase regime is bor-
dered by two critical points (which attract those tra-
jectories where no nucleation mechanism is opera-
tive) and where melting and freezing may occur in
temperature intervals. Figure 3 has been obtained
by mapping the problem outlined in Secs. II and III
onto a van der Waals equation of state. With the
use of the fact that the effective interaction between
vacancies vanishes for T +0 a—nd runs through a
maximum at some temperature T~, which scales
with b,(Q ) as defined in Eq. (6), it can be shown that
a phase diagram with two critical points must
arise. 20
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APPENDIX A: THE DISLOCATION-INDUCED
POINT-DEFECT INTERACTION

The interaction between a spherical inclusion of
radius ro and a stress field cr~Ii(r ) is given by'

where

——.4 (r, IF; I)
l

'2

3Qo

k1 2m
r

n

X pe; bX

(A3)

where 5=3@(1—v)/(1+ v), v is the Poisson
modulus, and e is a number which determines the
effective radius of the point defect, i.e.,

r,rf
——ro(1+a) .

Obviously e & 0 for interstitials and e &0 for vacan-
cies.

The trace of the stress-field tensor of a dislocation
with Burgers vector b can be represented in the
form of a contour integral'

o (r)= p, 1+v 1 b.[n-„Xr ']ds,
2m 1 —v

where

div4 =0. (A4)

Here Q ( r ) is a stochastic vector potential
representing the effect of the long-range Biot-Savart
interaction, ' and ~b Xr represents a mass con-
straint and takes care of Eq. (1).

It follows from Eq. (A3) that the mathematical
problem of determining the Green's function in the
presence of point defects is equivalent to finding the
eigenfunctions of a charged particle moving in a
vector potential

A(r)=Q (r)+a'b Xr+ —.4 (r, IF; I),
1

to which corresponds the "magnetic field"

3po —bH=VXA(r)=VXQ (r)+2mb +— g E~

l

3b~(r~ ~f~)'—
e

Here f e~ I represents three orthogonal unit vectors. The last term of Eq. (A5) represents the magnetic field of
an ensemble of magnetic dipoles of imaginary dipole strength. Note that r = ~ ~ corresponds to the absorption
of a point defect by the dislocation, and therefore this case must be excluded in the formulas above, otherwise
overcounting of degrees of freedom results. In the following we will take care of this effect by adding to H~ a
repulsive potential, i.e.,

H (r,s ) +H (r,s )+Vt~( —[re) . (A3')
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The differential equation which is satisfied by the Green's function given by Eq. (11}is

[8/Bs~+H (r,s~)]G(r,s;r ',0, 4~) =5(s~)5i(r —r ') .

Using the simplifications explained in the main text, we have

2

H ( r,s ) = —7 ——4 ( r, j P. ; J ) + V„~&(r, I r ~] )+y (
~

r —r '
~

)+s/s' .
m i i

(81)

(82)

Here only the dipolar part of the vector potential has been taken into account, and furthermore, H has been
supplemented by two terms obtained from Eqs. (4) and (12).

The Green's function G~(r, r ',
I r fJ ) defined by Eq. (13) can be represented in the form

G (r, r', [r; ))= g +1(tk(r}1(k(r ')exp[ —(y +Ek)s —(s ) /2s'] .
k

(83)

Here gk ( r ) and Ek are obtained from the eigenvalue problem

fk(r) =Ekfk(r), (84)

and I gk I is supposed to form a complete set of orthonormal eigenfunctions, i.e.,

gPk(r)gk(r ')=5'(r-r ')
k

(85)

holds. Furthermore, y~ —+y~ —i6, 5 &0, in the case that s —+Oo. At reasonably high temperatures, summa-
tion over s in Eq. (83) can be substituted by integration and yields

' 1/2
(y~+Ek) s"

exp [1 P((y +Ek)(—s'/2)'~ )], (86)

where P (z) is the probability integral as defined in Ref. 16.
Evaluation of Ek and fk(r ) is done using perturbation theory starting from 4 =0, V„~~—:0. The perturba-

tion operator is theri given by

V= ge; b)&
ma

n~r —r;
V

n~r —gR
b x +V~@(r,Ir; J), (87)

where

3pQp

2mkT

It is well known that V„~ which is of a hard-core type cannot be taken into account via simple perturbation
theory. We will come back to that point later. Setting V@p 0 presently and applying second-order perturba-
tion theory using V~, one obtains
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n

Ek= + ge; fdr bx
2m m (, '

Qd ~r r-a~~2
j

g 1
n

e-,.e,". f d'r b X
Qd g rK)2

n
~g r —t,. bx

1 1
X0'd k —k'

n

+i+i f'drfdr' b X k

(88)

where Q~ =(4m /3)Rd is the normalization volume, and H projects the principal value. Owing to the loga-
rithmic te~ in Eq (84) the unpe~urbed problem will have only bound-state eigenfunctions for Ek less than
the energy barrier represented by that term. For the sake of simplicity, we will take care of this energy ba~er
by using plane waves normalized to the volume Qd )Qd. Integrations in Eq. (Bs) are rather tedious and in the
following only the result will be given:

2 4m. a 1 0 ~Q CX
2

Ek=k /2m — i g e;kXb
d

I T

3' 'Ir (b~)2 g ear~
d

cos (b, n ~~, )i' i'

Rd Rd

2(b Xk.n ~ ~)t, 7s

(b xk)'
—1 J2(2k

i
r; —P. ; i

)

where

go
d

p

xg, +O(k ),
Rd Rd

r

3r0 1 Rg Rd HRd +r-=1—,z
. [1+cos (b, r)] 1+ + lnRd— 2 Rd r—

1 2 1 Rd Rd
+ —,[1—3cos (b, r)] 1+— +

2
L

1 Rd —r Rd+~
1n

4

(810)

and J„(z) is the Bessel function of nth order. A difficulty in evaluating the integrals in Eq. (88) is that for fin-
ite Q~ these integrals are (owing to the variables [ r —;I) position dependent. This position dependence has only
been calculated for the second and third term of Eq. (89) explicitly. For the other factors, one obtains

liin g&~2~
Rd +oo Rd Rd

=1p '7(QQ p 1 g OO ~ (811)

Furthermore, Eq. (89) applies only for such defects which are located within the domain Q~. Induced interac-
tions for point defects outside that domain are much weaker because they get reduced by powers of their dis-
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tance to the liquid domain Q~. It follows then from Eqs. (B9)—(Bl 1) that for Q~~ oo and a finite number of
defect centers Ek ——k /2m holds. In this case only phase-shifted wave functions arise. Note that the second
and fifth terms of Eq. (B9) are proportional to k. The next quantity to be calculated by perturbation theory is
the wave function. Because this will lead to rather complicated expressions which we are not able to manipu-
late further, wave-function corrections will be ignored presently but discussed on a qualitative level later.
Within that approximation one obtains for Eq. (B6)

G (r ri [ it]) Jg3k&ik (r —r'&sel/2

(2ir)

' 1/2

2
exp (y, +Ek) [1 P(—(y~+Ek)+s "l2)] .

2

(B12}

Observing that Eq. (B9} implies that E-„=E"-„

holds, one notes that G~( r, r ', j F J }is real. The in-
tegration of Eq. (B12), however, is rather difficult
due to the angular dependence of the second and
fifth terms of Ek Beca.use the second term of Eq.
(B9) represents the leading correction in the expan-
sion parameter a, it is important to notice that this
term contributes only for nonuniform point-defect
distributions, that is, where

(B13)

H~= — b, + Vre~p(r, [Ãg ) },
2m~

(B14}

does not hold. Because this condition is a constraint
on the center of gravity of the point defects, for
which it is reasonable to assume that it lies in the
center of the specimen, it will be assumed to be ful-
filled in the following. If Eq. (B13) does not hold,
then G (r, r 't P~J } will develop anisotropic proper-
ties to leading order in a as can be seen by eliminat-

ing the second term of Ek in Eq. (B12), by means of
shifting the origin of the k integration. Obviously
this leads to an unnecessary complication of the
problem and therefore Eq. (B13) will be assumed to
hold in the following.

Consider next the fourth and fifth terms of Eq.
(B9). For those cases where the number of vacancies
and interstitials is equal, these terms are proportion-
al to the density of these defects. However, if these
terms are calculated for a distribution of vacancies
only, then the fourth term is proportional to (Q~ )

/

and the fifth term proportional to kQ~. Observe
that the Bessel functions do not decay exponentially.
It is obvious that under these circumstances the va-

lidity of the perturbation theory breaks down, be-

cause with Q~~oo the unperturbed first term of
Eq. (B10) becomes negligible. A possible reason for
the problem lies in the use of plane waves to derive

Eq. (B9). The correct starting point to derive Eq.
(B9) should be to use the eigenfunctions of the Ham-
ilton operator (in the domain Qq)

which takes the hard-core repulsive potential of Eq.
(B7} into account. For a finite density of point de-
fects the classical problem corresponding to Eq.
(B14) will lead to stochasticity, since all constants of
motion with the exception of the energy will be des-
troyed. This implies that for the quantal system the
eigensolutions to Eq. (B14) should get random func-
tions. z' z Although for conservative systems a
strong rearrangement of eigenvalue level spacings
occurs the density of eigensolutions changes insigni-
ficantly. '

Assume that a mapping between the plane waves
and a possible set of eigenfunctions of Eq. (B14}ex-
ists in the form

e'"''/QQq~gk(r), (B15a)
' '/Q~~gk(r)gk(r ')=pk(r—, r ')/Qq .

(B15b)

It can be expected that the scattering phase shifts
suffered by the plane waves get randomized over a
distance «z, which will be a function of the density
of defects. Under this condition it is reasonable to
assume that for a uniform distribution of point de-
fects

=exp[i k ( r —r ') —«„z
~

r —r '
~ ]

(B16)

holds. If Eq. (B15b) is substituted into Eq. (B8) it
follows that the fifth term of Eq. (B9) will contain
an exponential decay factor of the form
exp( —«„~ r; r;

~
) in its do—uble sum. This im-

plies that it will be of the order of (Q~ ) . The third
term of Eq. (B8), however, still gives trouble, for
here enters the diagonal term of Eq. (B15b) which
satisfies pk(r, r) &0. Although the integrant of that
term varies in sign over the domain of integration,
the stochastic character of pk ( r, r ) will get
smoothed out over the domains of integration where
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pk(r, r)=0 for r=r; E Ir; I, (B17)

this term cannot lead to a collapse of the defect sys-
tem. A consequence of Eq. (B17) is that within the
double sum of the fourth term of Eq. (B9) a func-
tion g«~( I P; J ) appears which will vanish whenever
the defects try to form clusters. The problem that
this term is proportional to (Q~ )

~ for finite density
I

the integrant is of positive or negative sign, respec-
tively. We expect from this that the fourth term of
Eq. (B9) is the leading term. However, due to the
fact that the diagonal term pk(r, r) must satisfy the
constraint

of point defects therefore cannot be eliminated this
way. The origin of that problem must consequently
be looked for somewhere else, for instance, in retar-
dation effects. As explained in the main text it is
reasonable to assume that the retardation effects
provide an additional exponential or algebraic decay
law for the interaction terms in Eq. (B9). Because
we are not able to calculate this decay law from first
principles, we also cannot say if the retardation ef-
fect leads to a stronger decay as the stochasticity ef-
fect discussed earlier or not. For the sake of simpli-
city we will use for Ek the following expression:

a 8
—+Q

Ek=k /2m — (b ) g gp
m Q~ ~0 I, Rd

(b )' n ((zR
pyg Cl

7 'T'l l

-]r
J
r~- ~~

J

)e r i i'
~g -+g

1 7 l'

Rj Rd

k2/—2m +5y (IsI) . (B9')

The angular integration in Eq. (B12) can now be performed and yields
1/2

—x )r —r'J
PP

(2m)'
/

r —r'/

X f dk keik I
r —r '

exp
(y' +k /2m ) s'

[1—P((y~+k /2m~)(s*/2)'~ )],

where y' —=y +5yp has been introduced. Here for the sake of consistency the substitution given by Eq. (B15b)
has been made in Eq. (B12). For nonuniform distributions of the defects, az will be position dependent and a
function of the defect density. With the use of the following representation of the probability integral'

f2 22x,» e "dt zP(xy)=1 — e 's f, Rey &0,
t +x

and the residue theorem, one obtains

R

6 (r, r ', Ir J)= 3&2 f dye ~ g 8(ey' )exp( —e[2m~[iy/(s"/2)'~ +y~]I'~ R),
2 3/2R

(B12')

where

R=
/

— '/, 8( )=
0, x&0.

For the case (s")'~ &&1 and y~ & 0, one obtains

G (r, r', [r; j)= exp[ —(+2m y' +ir~)R] .
2 R

(B18)

This is just the Green's function of a "free" particle with a modified decay constant. In the limit (s')'~ &&1
and y' &0, one obtains approximately, expanding the argument of the exponential in Eq. (B12),
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—rc R

6 (r, r', jrpj)= g exp( —itch 2m IyIrlR)
2srR 2

. &2m ly I

2 1 —ia, , 2 R
4S 'Yo

Xexp m~R
itr+2m

I

y'
I4" ly-'I 1—

4s'y'

1 —p —(m /s'
I

y'
I

)'/ R
itr+2m

I ya I

4

1/2 '

(B19)

Equation (B19) allows the discussion of various special cases. The essential point, however, is that
G (r, r', Ir , j) is a—.n oscillating function of

I
r —r '

I
for

I
r —r '

I

/s*« l. All other cases are less interest-
ing.
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