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We present a real-space renormalization-group {RG) study of the n-component classical
Heisenberg model in the large-n limit. We obtain exact expressions for correlation functions
of block spins, given those of the original spins. We show how to extract the critical
behavior of the model from such information. The model provides a good testing ground
for evaluating the effectiveness of Monte Carlo RG techniques. We study numerically the
implementation of the real-space RG transformation on finite lattices. In two dimensions,

we obtain the P function as a function of temperature. In three dimensions, we calculate the
critical temperature and the thermal exponent. We discuss the effects of the use of finite
lattices and of the use of different forms for the initial action on the accuracy of the results.

I. INTRODUCTION

Real-space renormalization-group (RG} methods'
provide a conceptually appealing and potentially
powerful way of studying critical phenomena.
When coupled with Monte Carlo techniques these
block-spin RG's can be implemented without re-
striction to a perturbative regime, and without the
use of uncontrolled approximations. ' It is impor-
tant to understand the strengths and weaknesses of
these methods and the approximations inherent in
them in order to have confidence when applying
them to new systems. To this end we would like to
have some system where a real-space RG can be im-
plemented exactly and its working followed in de-
tail. Bell and Wilson have done just this with the
Gaussian model using a linear RG. Their work is
very instructive and we will have more to say about
it later. Hilhorst et al. have solved the two-
dimensional Ising model on a triangular lattice ex-
actly with the use of an ingenious procedure based
upon the star-triangle transformation. This work,
although very interesting, seems difficult to general-
ize.

In this paper we study via block-spin techniques
the n-component classical Heisenberg model in the
large-n limit, an exactly solvable model equivalent to
the spherical model. This system displays interest-
ing critical behavior: asymptotic freedom and
dynamical mass generation in two dimensions (2D),
and non-Gaussian critical point in three dimensions
(3D).

II. ANALYTIC DEVELOPMENTS

The classical Heisenberg model with an 0(n}
symmetric interaction is defined by the Hamiltonian

H= —gptJSt SI, (2.1)
l,J

where the S; are n-component unit vectors defined
on the sites of a d-dimensional lattice. p,J. is a
short-ranged and translationally invariant interac-
tion. The partition function for the model is given
by

Z= ID"S; +5(St —1)e (2 2)

Ma has already discussed an exact momentum
shell RG for this model, illuminating the workings
of such RG's. We focus here on a lattice version of
the model and on a block-spin RG. In particular,
we show how to implement some aspects of such an
RG exactly. We utilize a formulation of the large-n
limit developed by a number of authors in which
one studies spin-rotationally invariant quantities
only. Instead of using S; as a variable we use
I',J=S; SJ. All correlations as n~ao are deter-
mined by the saddle-point value of I",J, the so-called
master field. We show how to deduce the master
field of the block spins from the original one. We
do not know how to determine the block H but we
can get all correlations of block spins. Monte Carlo
renormalization-group (MCRG) techniques are
designed to use only correlations, so we can follow
their workings exactly.
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We divide the lattice into cubes of two sites per side
(2d-site blocks) and define block-spin variables by
the relation

Sl,a

(2.3)
Sl,a

Here, l labels a block and a runs through all the sites
in the block. Note that the new block-spin variables
are again of unit length. The interactions between
the block-spin variables are determined by the renor-
malized Hamiltonian H'( t ') defined by

exp , H'( t ') = f g [DSt,5(S(,—I)]g5 t (—
l, a l

Sl,a

Qs(.
1

exp ——H(S)
T (2.4)

From (2.3) and (2.4) we can obtain a relation for the
two-point correlation functions of the block-spin
variables:

(tl t )H' ( ps(.
Sm, a

x-. )-
a'

(2.5)

where the angle brackets stand for the averages

f Ds, g5(s, 1)e—
(~)„= (2.6)

FJ ——S; Sj. (2.7)

The Jacobian for this transformation is given by

J(F; ) = f DS; g 5(F~ —S; S ) . (2.8)

After implementing the 6-function constraints by
using Lagrange multipliers o.,& and integrating over
the spin variables, one obtains

J(Fz)= f gDajexp i ga;JF~ ——"trln(iaj)
l,J L,J

(2.9)

In the large-n limit the integral (2.9) can be obtained
from the saddle point and gives

J(FJ ) =const exp tr 1nFJ—n

2
(2.10)

The relation (2.5) simplifies in the large nlimit. -To
see this, it is convenient to rewrite the partition
function (2.2) in terms of the spin-rotationally in-
variant quantities:

X exp —g p,jFJ + tr lnF J—1 7l

l,j
(2.11)

It is convenient to implement the fixed-length con-
straint by introducing an additional integration vari-
able, yielding

Z= f dFJDA, ;exp —gp, JFJ+—trlnF, J
P1 T

l,j

+ gA, , (F„—1)

(2.12)

We have also rescaled the interactions p,J and A.; by
a factor n. The average of any function of the in-
variants Fpj is now obtained by evaluating the func-
tion at the saddle-point field of (2.12), i.e., for a
given function f

(f(S;.S )) =f(F, ), (2.13)

where the saddle-point fields FJ are given by the
equation (assuming a translational invariant saddle
point)

F(k)=—1 T
(2.14)

2 p(k)+A,
'

with A, determined by the fixed-length condition
F)) = 1, 1.e.,

1 T
2N k p(k)+ A,

(2.15)

Note that A, acts like a mass squared in Eq. (2.14).

so that the partition function (2.2) can be rewritten
as

Z= f gDF; g5(F;;—1)
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In two dimensions Eq. (2.15) has a nonzero solution
for )(, for arbitrary T, which for small T behaves as

1
Fl, m = QFla, ma'~ C= QFla, la' ~

aa' aa
(2.22)

A, -exp( 4m—/T) . (2.16)

This behavior is usually called asymptotic freedom.
For d & 2 there is a critical point at a finite tempera-
ture T, determined by

1 1 1

2N k p(k) T,

and A, has the behavior

e 2/(d —2)

(2.17)

(2.18)

with e=
~

T T, ~. —The thermal exponent follows
from Eq. (2.18):

v =1/(d —2), (2.19)

i.e., it is non-Gaussian. At the critical point, howev-
er, A, is zero and the model behaves as a Gaussian
model so that the exponent q =O.

Returning now to the block-spin correlation func-
tion (2.5), we see from Eq. (2.13) that we can factor
the right-hand side to get

for given block-spin correlations F~'~. %e have not
been able to obtain a closed expression for the renor-
malized Hamiltonian H'(F'). The renormalized
Hamiltonian H'(F') contains more information than
all the correlation functions in this model, since the
correlation functions are determined only by the
saddle-point fields of H' in the large-n limit. Thus
different H"s can give rise to the same correlation
functions. One would need to compute finite-n
corrections to the n = ao correlation functions to ob-
tain from them the Hamiltonian H'.

Here we will focus on the recursion relation for
the correlation functions, Eq. (2.20). To put the dis-
cussion in the same framework as usual
renormalization-group transformations, we will
write a corresponding Hamiltonian for the block-
spin variables assuming it is bilinear in the spins, as
the original one is. In that case the relation between
correlation functions and the underlying Hamiltoni-
an is given by Eqs. (2.14} and (2.15). We will call
this the effective Hamiltonian for the block spins.

1
Fl, m g Fla, ma' ~c aa'

C = g Fla, la' t
aa'

(2.20a)

(2.20b)

Fixed points and perturbations

The recursion relation for the correlation func-
tions (2.20) can be written symbolically as

where the prime denotes correlation functions of
block spins.

Equation (2.20) is the basic equation of our
renormalization-group transformation. Since in the
large-n limit higher-order correlation functions fac-
tor onto products of two-point correlation functions,
Eq. (2.20) completely defines arbitrary correlation
functions of the block-spin system. Unfortunately,
it does not seem possible to obtain a simple closed
form for the Hamiltonian H'(t) describing the in-
teractions between the block-spin variables. From
Eq. (2.4) we obtain

DF(2y }Fg
e

(2.23)

c=DF(0) .

In Fourier space this equation becomes

F'(q) = gF ——+—n 1 u2 —+n I
=11 q - q

c2d 2 2
1 =0, 1

with

(2.24)

2

(2.25)

with the operator D denoting the block-sum of Eq.
(2.20), and

exp —,H'(F') 5 (Fl'l —1)

3+la ma exp —H Fi~ +—trlM

tr lIlF)~

(2.21)

where the integral is restricted to the fields I"l,
satisfying the equation

sin q;
u2(q)= g z

( sin (q;/2)
(2.26)

T

c= ~g g F ~+m 1 u2 ++a 1' 2

(2.27)

Equation (2.23) looks like a linear recursion relation;
in fact, it is just the recursion relation for the Gauss-
ian model if c is a constant. The constraint on c
embodied in Eq. (2.24), however, makes it a non-



BLOCK-SPIN RENORMALIZATION GROUP IN THE LARGE-n. . . 1739

linear transformation. The corresponding effective
Hamiltonian p'(q) satisfies the relation

F'(q) =—1 T'
(2.28)

2 p q+)i,
with F'(q) given by (2.22) and A,

' determined by

2d I

, ', =1, (2.29)
2N p'(q}+ A,

'

F(q)=, =F" e—(f, F—') .
~c 1

p'(q}+e5p

(2.35}

F'= F* e(x(F—g F")—.
C

(2.36)

Under the transformation (2.23) we obtain, to lowest
order in e and using (2.33b),

and T and T' determined by some normalization
condition on the interaction p(q), for example,
lim~ Dp(q)/q =1.

The fixed-point Hamiltonian is obtained from
iterating Eq. (2.23), as

p'(q) =
r=0 ~q+2iri ~'

From (2.24) we obtain for c

c =c*[1—e(x —1)]

and replacing in (2.36) we obtain

F'=F' x;F.(f;—F'), —

which implies

(2.37)

(2.38)

sin (q;/2)
X

i=i ~(q;/2)+irl ~'
(2.30)

(2.31)

which is the same as in the Gaussian model. At the
fixed point one has also c'=2 + and A,*=O.
Under iterations, T, is also changed and tends to its
fixed-point value T,' given by

5p,'(q}=x;5p;(q) . (2.39)

x;=1/2 ', (2.40)

with i ) 1 an integer, and the corresponding rota-
tionally invariant eigenfunctions are

To find the eigenvalues and eigenfunctions we
iterate the relation (2.33b). The eigenvalues that
correspond to short-ranged interactions are of the
form

where c(n) denotes c at the nth iteration. Note the
analyticity of p (q) at q =0, implying locality in real
space. This leads us to expect that finite-lattice ap-
proximations may work.

It is simple to obtain the spectrum of irrelevant
perturbations. They are of the form

5p;(q) =,p*'(q)f;(q) p"(q), — (2.32)

where f; satisfies

—g f;(q)=1,1

q

Df;(2y )
=x~f~(y) .

(2.33a)

(2.33b)

(2.34)

so that Eq. (2.15},with A, =O, is still satisfied due to
the condition (2.33a). To see that (2.32) is indeed an
eigenfunction, we write

It is easy to verify that a perturbation of the form
(2.32) leaves the system at the critical point, since to
first order in e

2—e, f;(q)—
p"(q)+e5p(q) p'(q) &, p'(q)

2g

A'=2'A,

(2.43a)

(2.43b)

with e=T T, . Equation (2.43—a) implies that the

~(q)=X -, „II
T=O I

q+2~ 1
I

' ",=i I (q, /2}+~6
I

'
(2.41)

The fact that i is an integer guarantees that 5p;(q) is
analytic at the origin so that the interactions in real
space are short ranged. Though the irrelevant eigen-
values are the same as in the Gaussian model, the
corresponding eigenfunctions (2.32} are somewhat
different in form. One important difference with
the Gaussian case is the absence of a marginal
operator. Here, the constraint of fixed-length spins
produces a nonlinear RG with no marginality. In
his analysis of the soft-spin large-n model, Ma6

finds additional irrelevant operators. We presum-
ably avoid these by our restriction to quadratic ini-
tial actions.

The relevant eigenfunction is found to be

5p0(q) = 1
(2.42)F"(q)

and from (2.25) and (2.28) one obtains the recursion
relations
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thermal eigenvalue is v= 1/(d —2) while (2.43b)
simply says that the correlation length in the block-
spin system is half the one in the original system.
For the case of d =2 one has to go to higher order in
the recursion relation (2.43a) and gets

ln2e'=e+ 2' (2.44)

indicating marginal behavior, from which the
behavior (2.16) follows. The parameter c close to
the fixed point is given by

, =1+(1—d )e .
C

(2.45)

III. NUMERICAL STUDIES
ON FINITE LATTICES

We have seen in the last section how to calculate
expectation values of block spins from those of ori-
ginal spins. In this section we discuss techniques for
doing RG analysis with the use of the block-spin
correlations. In 2D, where the (n )3) Heisenberg
model has no phase transition, a particularly simple
scheme has been applied by Shenker and Tobochnik
(ST). Imagine that the flows are like those in Fig.
1. Pick some path in H space, such as the pure
nearest-neighbor line. Iterate point D until it is very
close (point F) to the one-dimensional unstable
manifold of the zero-temperature fixed point (the re-
normalized trajectory}. Now search the path for
some point E such that E iterated one fewer time
than D reaches F. One verifies this by comparing a

8 C

D E

I/ai

FIG. 1. Schematic diagram of renormalization-group
flows. a i and a2 are coupling constants in the Hamiltoni-
an which are proportional to 1/T. Point A represents the
low-temperature fixed point. 8, C, D, and E represent
possible starting points for the iteration of the RG pro-
cedure. f(E') = —,g(E) . (3.1)

variety of block expectation values of the two H's.
If expectation values match, we say that the two H's
are the same. To eliminate some finite-lattice ef-
fects we require the expectation values to be com-
puted on the same size lattice. A 32&32 lattice
iterated twice would yield an 8)&8 lattice of block
spins. This could be compared to a 16&16 lattice
blocked once, again giving an 8)&8 block lattice.
Since the correlation length is reduced by a factor of
2 at each iteration and since both H's at point F
have (almost) the same g, it follows that g at point D
is twice g at point E. In this way we can map out
the g behavior along the path.

This method can break down in a variety of ways.
The H's on the path chosen could be too far away
from the renormalized trajectory to reach it in a
reasonable number of iterations. (Remember, we
plan to iterate by blocking spins on some finite-size
lattice. The number of iterations we can perform is
limited by the size of the lattice we start with. }
Choosing a better path, such as the upper one in Fig.
1, can help this. At sufficiently high temperature
we expect the renormalized trajectory to stop being
attracting altogether, indicating the lack of univer-

sality in systems where correlation lengths are short.
We implemented this technique in the large-n lim-

it. Nearest-neighbor (NN), next-nearest-neighbor
(NNN}, and third-nearest-neighbor (3NN) correla-
tion functions of block spin were computed on finite
lattices by iterating Eq. (2.25) and Fourier-
transforming at the end to obtain the correlation
functions in real space. We determined matching by
requiring the NN expectation value on the largest
scale permitted by the lattice size to agree. Table I
displays an example of the procedure used: The NN
correlation function of 32&&32 blocks on a 64&&64
lattice at coupling contant X=0.80 matches the
same correlation function of 16&&16 blocks on a
32X32 lattice at coupling constant K'=0.69055.
Note that when matching is imposed on the NN
correlation function, the other correlation functions
also approximately agree, indicating that the Hamil-
tonians describing both lattices are approximately
the same, as we would expect for such low tempera-
tures. Note also that matching also occurs approxi-
mately at one lower level of blocking, indicating that
here one is already very close to the renormalized
trajectory.

In Fig. 2 we show results for ~=E' E, ob-—
tained with the use of nearest-neighbor action, start-
ing from 32 X 32 and 64&&64 lattices. The exact re-
sults for ~ are obtained by computing the value of
E' for which the correlation length g obeys
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TABLE I. An example of the matching for the two-dimensional lattice using 64X64 and
32X32 lattices: K=0.8, 64X64 lattice; K'=0.69055, 32X32 lattice.

Block length for
64X64 lattice

NN
64X64 32X32

NNN
64X64 32X32

3NN
64X64 32x 32

1

2
4
8

16
32

0.688 02
0.728 69
0.707 88
0.650 59
0.58490
0.685 12

0.64003
0.673 40
0.639 77
0.582 66
0.685 12

0.603 05
0.635 71
0.596 66
0.51952
0.44947
0.569 97

0.542 69
0.563 93
0.51056
0.448 33
0.570 63

0.54741
0.548 75
0.488 24
0.401 81
0.400 17

0.479 99
0.46478
0.396 28
0.399 88

g(E) =exp(2m'},

and the P function for this model is

(3.2)

P(T)= = T
d lnb 2m

(3.3)

so that our answers should approach the asymptotic
value

ddt(E}= ln2
1

2' (3.4}

since we are changing length scales by a factor of 2.
Notice in Fig. 2 the increased accuracy in going to
larger lattices, as the effect of irrelevant operators
are iterated away. At very large IC (low T, large g)
the amplitude of the marginally relevant operator is
extremely small and its effect on expectation values
is swamped by that of irrelevant operators, even
after many blockings. Thus accuracy is degraded at

The exact correlation length is computed along a
lattice axis (such as the x axis} by finding the pole of
Eq. (2.14) closest to the real axis with k»=0. It is
shown on the upper horizontal line of Fig. 2. At
low temperatures the correlation length behaves as

p(k) = 4 —2cosk„—2cosk»

+0.2(4—2 cosk„—2 cosk» ) (3.5)

which was used in Ref. 3. On the scale of Fig. 2,
the results are almost indistinguishable from the ex-
act answers for the whole range of temperatures for
both the 32 X 32 and 64)& 64 lattices, and are there-
fore not shown in that form. In Fig. 3 we show the
fractional error of the renormalization-group calcu-
lation for this trajectory, as a function of the corre-
lation length g. The results remain very good even
at high temperatures (correlation length g —1.5),
suggesting that we are very close to the renormal-
ized trajectory.

We also display in Fig. 3 results obtained by
matching at one lower level (16X16 blocks on the
64&(64 lattice match 8 && 8 blocks on the 32)& 32 lat-

0.06

very large E. At very small E the renormalized tra-
jectory ceases to be attracting and the results also
start to deviate markedly from the expected ones.

We have repeated the calculation using another
trajectory that is closer to the renormalized trajecto-
ry, a path specified by

O.I4-

l0 l00

O.l2-
hK Ihaaemgy

o.lo- 64x64

32&32

0.08-

+ 0.0~-

hC

I

g 0.02-

I

0.5
I

l.o l.5 0
I

a ~aM
~as sac~ ~

10 100 Iooo

FIG. 2. hK vs K for the nearest-neighbor action. AK
is the change in K needed to go from a lattice with corre-
lation length g (at K) to one of g /2. The solid line is exact
results for the infinite lattice. The dashed and dash-
dotted lines are block-spin RG results for 64X64 and
32 X 32 lattices, respectively.

FIG. 3. Fractional error in AK vs K for the trajectory
equation (3,5). The solid and long-dashed line are RG re-

sults in 32X32 and 64X64 lattices matching on the larg-
est scale permitted by the lattice size. The dash-dotted
and short-dashed lines are obtained by matching at one
level less in the iteration.



1742 JORGE E. HIRSCH AND STEPHEN H. SHENKER

Iooo-
answer. In contrast, the RG results, which also used
a 64&(64 lattice, are in remarkable agreement with
the exact solution even for correlation lengths much
larger than the lattice used in the calculation.

100—

lo-

3D

For n~ oo in 3D we have a conventional phase
transition presumably described by a standard fixed
point. Methods to deal with such a situation have
been discussed by Swendsen and Wilson. ' First,
one wants to locate the critical temperature. For
simplicity, imagine starting with an H of the form

H =H'+aqOz+a (3.6)

I

0
I

0.5 l.0 l.5

FIG. 4. Correlation length vs K for the trajectory
equation (3.5). Solid line: exact results. Long-dashed line:
RG results from 64)&64 onto 32X32 lattices. Short-
dashed line: correlation length for the 64' 64 lattice.

tice). Such a procedure was used by ST due to the
large statistical errors involved in the larger blocks.
As can be seen, this increases the error substantially.
Nevertheless, for the case studied by ST [32&(32 lat-
tice matches with 8)&8 blocks, trajectory Equation
(3.5)] Fig. 3 suggests that the error was less than 5%
for g from approximately 1 to 1000.

Finally, we show in Fig. 4 the correlation length g
as a function of E for the action equation (3.5). The
RG results were obtained by iterating the results for~ vs E up to high temperatures (K-0.25), and us-

ing the value of g for the finite lattice at these tem-
peratures. That information can be obtained in an
actual calculation from a high-temperature expan-
sion or by straight Monte Carlo techniques. We also
show in Fig. 4 the correlation length for the finite
64X64 lattice. Note how rapidly the finite-lattice
correlation length starts to deviate from the exact

(OR and OI are relevant and irrelevant operators
with eigenvalues A.~ and A,l, respectively, and a~
and ar are small enough that a linear analysis can be
applied). After n iterations one has for the block H

H'"'=H*+a+ A,z O~ +ar AIO (3.7)

The effect of the relevant perturbation grows at
large block sizes. If az ——0 (one is at the critical
point), the block H's converge to H' and the block
expectation values converge to their fixed-point
values. So to find E, one searches for the value of
E where the nth and (n+1)th expectation values
agree most closely. This becomes more and more
accurate as n grows. Errors in the procedure due to
the irrelevant operators are nominally of order
(Al/Lit)", the leading irrelevant operators dominat-
ing eventually. Table II shows the matching ob-
tained comparing blocks on a 64 lattice and a 32
lattice. (Again we arbitrarily chose to match the
NN correlations at the lowest level as closely as pos-
sible and use different size lattices to cancel finite-
lattice effects. ) In Table III we display results for
E, obtained in this manner for different size lattices.
Note the convergence to the correct answer, al-
though it is difficult to find evidence for the naive
(Al/A, ii ) -(—, ) convergence rate.

To actually compute the relevant eigenvalue we

323 64' 323 32364

TABLE II. Matchings for the 3D lattice using 64' and 32 lattices for X=0.25265. The
value of E was determined by requiring the NN correlations at the lowest level to coincide.

Block length for NN NNN 3NN
64 lattice 64

1

2
4
8

16
32

0.34049
0.441 98
0.497 64
0.525 39
0.569 76
0.765 15

0.340 96
Q AHA 33
Q.507 51
0.56609
0.765 15

0.218 38
0.31171
0.36005
0.389 08
0.452 60
0.683 94

0.21907
0.31523
0.375 16
0.45030
0.684 56

0.172 46
0.253 76
0.295 77
0.326 17
0.402 17
0.643 00

0.173 32
0.258 13
0.31469
0.400 51
0.643 91
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TABLE III. Critical temperature of the 3D lattice
from different lattice sizes (near-neighbor action).

TABLE IV. Thermal exponent of the 3D lattice from
different lattice sizes (near-neighbor action).

Size

8

16
323

64

0.231 14
0.248 25
0.25206
0.252 65
0.252 73

Size

8

16
323

64

1/v

1.221
1.126
1.039
1.0129
1

could follow the method of Swendsen, picking a fi-
nite set of operators and computing a truncated ver-
sion of the linearized RG. (Here we would not be
able to compute the derivatives by correlations, but
would have to do it numerically. ) Instead we choose
to demonstrate a method proposed by Wilson' that
does not depend on a truncation. Imagine again an
H as in Eq. (3.6). If we consider the derivative of a
block correlation function with respect to az, we
have, after n iterations,

d(ss)„ =A,a (SSOa ), ,
QR

(3.8a)

d(ss)„„
QR

=A,x+'(SSOg ), . (3.8b)

If we divide the second equation by the first, we see
that the right-hand side is just A,z (again we use dif-
ferent size initial lattices so our block lattices are of
the same size to cancel finite-lattice effects). In a
real MCRG calculation one would compute the
right-hand sides of Eqs. (3.8). For our case, howev-

I

er, these correlation functions vanish in the large-n
limit by factorization, and we should therefore com-
pute these correlation functions to higher order in
1/n. However, it is simpler to compute the left-
hand sides of Eqs. (3.8}by numerical differentiation.
Note that a higher-order term in the recursion rela-
tions such as

~x =~z~ii+ux~i (3.9)

causes an error of order A,l, so we expect slower con-
vergence here than for T, .

In Table IV we display results for v obtained us-

ing Eq. (3.8), with (SS) being the nearest-neighbor
correlation function. Other operators give similar
results. Although the answers systematically im-
prove, we do not observe quite the expected rate.

In order to improve convergence we attempted to
reduce the amplitude of the leading irrelevant opera-
tor. Proceeding in an ad hoe fashion we added
terms to the action so that the small-k behavior of
p(k} reproduced that of p"(k} to order k . The ac-
tion is given by

p(k) = 6—2 cosk» 2cosk»——2 cosk, +—„(6—2 cosk„—2 cosk» —2 cosk, )

+—
i2 [(2—2cosk„) +(2—2cosk») +(2—2cosk, )2] . (3.10)

Results for this H are shown in Table V. Note
the improved numbers, but also note the nonuni-

form convergence. Interaction of errors in the T,
determination with the v determination are a possi-
ble explanation.

IV. DISCUSSION

The analytic results of Sec. II confirm the ex-
istence of eigenvalues and eigenvectors necessary to
produce the correct critical behavior of the model.
(Again note the absence of certain irrelevant opera-
tars when we restrict ourselves to quadratic actions. )

The operators are local in real space and hence we
expect finite-lattice approximations to be effective.
The numerical results of Sec. IV confirm this. In
2D along a well-chosen line of H's we can get an ac--
curacy of about 1% for P-function numbers in re-

TABLE V. Critical temperature and thermal ex-

ponents for the 3D lattice and the action given by Eq.
(4.5).

Size

83

163

323

64

0.16707
0.17639
0.17796
0.178 21
0.17827

1/v

1.066
0.998
0.990
0.990
1

gimes where the correlation length is far larger than
the lattice. In 3D with a reasonable size lattice we
can get T, to a few parts in 10000 and v to -1%.

Although these 3D numbers are good, the ap-
proach to these numbers does not seem to follow the
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naive convergence rates predicted by the linearized
analysis. More subtle effects that we do not com-
pletely understand are contributing to the errors.
These need to be further elucidated. In connection
with this, techniques for picking out the leading ir-
relevant operators should be implemented on this
model.

Other extensions that seem worth doing include
adding in magnetic fields. The n —+ oo model has a
first-order transition in H below T, controlled
presumably by a discontinuity fixed point. It is
straightforward to see that the magnetic field scales

appropriately at T=O, and so the situation seems
amenable to analysis.
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