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We study the nature of the ground state of the Su-Schrieffer-Heeger model for electron-
phonon interactions in one dimension in the half-filled-band case. We consider the cases of
spinless electrons (n=1) and spin-% electrons (n =2), and discuss the stability of the
Peierls-dimerized ground state as a function of the ionic mass and electron-phonon coupling
constant. We first consider the zero-mass limit of the theory and extend our results to finite
mass using renormalization-group arguments. For spinless electrons, it is found that quan-
tum fluctuations destroy the long-range dimerization order for the small electron-phonon
coupling constant if the ionic mass is finite. For spin-% electrons, the system is dimerized
for an arbitrary coupling constant and phonon frequency. Renormalization-group trajec-
tories show that the low-energy behavior of the system is governed by the zero-mass limit of
the theory, an n-component Gross-Neveu model. Monte Carlo simulations are performed
for the model at finite phonon frequencies, and the results are compared with the static lim-
it result. We study in particular the set of parameters appropriate for polyacetylene and
find a 15% reduction in the phonon order parameter due to fluctuations of the phonon
field. A finite-size scaling analysis of the numerical data for the cases n=1 and 2 is per-
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formed, which confirms the results obtained from the renormalization-group analysis.

I. INTRODUCTION

In recent years one-dimensional electron-phonon
systems have attracted renewed attention. In their
study of the properties of quasi-one-dimensional sys-
tems like polyacetylene, Su, Schrieffer, and Heeger'
(SSH) introduced a model in which the phonons in-
teract with the electrons by modifying the electron
hopping matrix elements. Working with the as-
sumption that the phonon degrees of freedom may
be treated classically, since the ionic mass M is very
large, SSH further studied the system within the
mean-field adiabatic approximation. The resulting
physics turned out to be quite rich. The system, for
a half-filled band, undergoes a Peierls instability and
the ground state is dimerized. SSH also considered
the spectrum of low-lying excitation,? in particular
the soliton states, soliton-fermion bound states, etc.
Takayama, Lin-Liu, and Maki?® introduced a contin-
uum version of the SSH model and studied it in the
same approximation as SSH. More recently
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Nakahara and Maki* considered the first quantum
corrections to the adiabatic approximation and
Campbell and Bishop® studied its semiclassical static
limit.

In this paper we study the behavior of this one-
dimensional electron-phonon system for all values of
the ionic mass M and the electron-phonon coupling
constant g in the half-filled band case. In particular
we want to address the question of whether the
dimerized ground state is stable against fluctuations
of the phonon field. Furthermore, we want to study
the dependence of the results on the number of com-
ponents of the electron spin. In the adiabatic limit
the electronic spin appears to play no significant
role, unlike what happens in systems with local
four-fermion interactions like the Hubbard model.
However, we will see that spin fluctuations also play
an important role in systems like the SSH model
when the quantum fluctuations of the phonon field
are taken into consideration.

The understanding of coupled electron-phonon
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systems for all values of M and g is a very difficult
problem. However, one may gain considerable in-
sight into the stability problem by simply consider-
ing limiting situations. By analyzing the stability of
these limits a qualitative picture of the possible
phases (or ground states) of the system will emerge.
When doing so we will use renormalization-group
ideas to extrapolate away from these limits. It is
important to note that this procedure provides not
only the ground-state properties but also the low-
lying spectrum. Furthermore, we do a numerical
study of the model using recently developed Monte
Carlo techniques,® which can give us information
also outside of the region where the theoretical treat-
ment is expected to be valid.

We consider the SSH model and two cases are
studied: (a) spinless electrons (n =1) and (b) spin-—;—
electrons (n =2), n being the number of spin states.
In a subsequent paper we study the molecular crys-
tal model for electron-phonon interactions’ using
similar techniques. In these models there are only
two free parameters: the ion’s mass M and the
electron-phonon coupling constant g. We consider
limiting cases in the M-g plane and nontrivial effec-
tive Hamiltonians are constructed. The continuum
version of the models is considered and compared
with the lattice version.

Previous work has concentrated on the large-M
behavior of the theory.!~* In this paper emphasis is
put on the opposite limit, M =0. We will show that
the long-distance, low-energy behavior of the theory
for finite M is governed by the M =0 limit, which is
an n-component Gross-Neveu (GN) model.® As in
the GN model, we find that for n > 2 the system has
long-range dimerization order for abitrary coupling.
The underlying reason is that the phonon fluctua-
tions induced an effective electron-electron interac-
tion which has no attractive forward scattering com-
ponent. The umklapp scattering opens up a gap in
the electronic spectrum for n>2 and gives long-
range dimerization order. In contrast, for n =1 the
umklapp scattering is not effective in opening up a
gap for the small coupling constant because of the
Pauli exclusion principle. Consequently, we find
that the n =1 model has a disordered phase for a
small electron-phonon coupling constant if the mass
of the ions is finite. As the mass of the ions goes to

infinity, the size of the disordered region shrinks to
zero. The numerical study using the Monte Carlo
method allows us to get quantitative results for vari-
ous lattice and electronic properties for essentially
arbitrary parameters. We study, in particular, the
set of parameters appropriate for polyacetylene, and
find a 15% reduction in the order parameter due to
phonon fluctuations. The optical-phonon frequency
is found to be reduced by a factor of 0.64. To ex-
tract the asymptotic behavior of the model, we per-
form a finite-size scaling analysis of the numerical
data for a case of large ionic frequency. We also do
the corresponding analysis for the case M = oo, as a
check on our procedure. For the case n =2, our
analysis shows the behavior expected in the Gross-
Neveu model for a small coupling constant and the
crossover towards static behavior as the coupling
constant increases. For the case » =1, our numeri-
cal data show a transition for a finite coupling con-
stant in accordance with the theoretical analysis.

The case n =1 could be of interest for systems
with small values of the gap, where a strong enough
magnetic field can be applied that effectively decou-
ples the spin-up and spin-down electrons. It is also
of interest in connection with the spin-Peierls transi-
tion. Our model with n =1 is equivalent, through a
Jordan-Wigner transformation, to an xy spin chain
that undergoes a spin-Peierls transition.’ In the fu-
ture it will be of interest to study the corresponding
problem for the Heisenberg chain, which amounts to
adding a nearest-neighbor repulsion term to the
spinless fermion Hamiltonian. Further extensions of
this work will include a study of the behavior of the
model in the presence of a magnetic field, extension
to non-half-filled band cases, and inclusion of
electron-electron interactions.

The paper is organized as follows. In Sec. II the
model is defined, and the phase diagrams as well as
the low-lying spectra are worked out. We will re-
strict ourselves to the half-filled-band case at zero
temperature. In Sec. III we present results of nu-
merical simulations for the cases n =2 and 1 and
various sets of parameters, as well as a finite-size
scaling analysis of the numerical data. Part of the
results presented in this paper were reported briefly
elsewhere.!”

II. MODEL AND PHASE DIAGRAMS

The SSH Hamiltonian' is defined as

P:
HSSH = '—'tz(cjj:st_,_l’s +H.c. )"‘aZ(qJ —qj+1)(CstCj+1,s +H.c. )+2 EJ‘L{‘ +
s bs j

7 D

?(qj'——qj+1)2 , (2.1)
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where D is the elastic constant and s =1,...,n are
the spin components. j runs from 1 to N, the num-
ber of lattice sites, and we will be interested in the
infinite chain limit N— . The SSH Hamiltonian
has only two independent parameters apart from an
overall energy scale. We choose them to be the pho-
non frequency at wave vector 2kp=m, ©=2VD/M,
and the reduced electron-phonon coupling constant
g =a/V'Dt. Su, Schrieffer, and Heeger have stud-
ied the properties of this model, for n =2, in the
static limit M — . In this limit they showed that
the ground state is always dimerized for a half-
filled-band system. This result is correct, at M — oo,
for all n since the spin plays very little role in this
semiclassical limit. If one assumes that the lattice is
perfectly dimerized, so that the displacements are of
the form

qj=(—1)jmp

with m, the phonon (staggered) order parameter, the
value of m, that minimizes the total ground-state
energy of the system satisfies the equation

(2.2)

_ 88 T o
= fodk(smk)
X [4t%cos’k

+(4gV'D /tm,,)’sin’k ] ~1/2

(2.3)

in the limit N— «. For small values of the cou-
pling constant g one finds

gm, ==~ 1/De—"/2m8" 2.4)
One can also define an electron order parameter for
this model given by

|

H= zfdx Pl(x) [—z— ]ay,bs(x +fdx P

V2g [dx Al x)2¢s(x)¢s(x)+———fdx é(x)

s=1

where we have set D=1. This formula requires
some explanation. First, ¢(x) is a doublet (a spinor)
made up of the right-moving 1 ,(x) and left-moving
¥55(x) components of the Fermi field near the Fermi
points. The two scalar fields ¢(x) and A(x),
represent the acoustic (k—0) and dimerization
(k—1r) pieces of the phonon spectrum respectively.
The canonically conjugate momenta are m(x) and

2
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1 X2 .
e=p2 3 (—=1¥(0| C},Cj 1, +H.c. |0)
=1s=1

(2.5)

where |0) is the ground state of the system. This
order parameter measures the difference in the elec-
tronic density of the short and long bonds in the
chain. In the M — o limit it is related to the pho-
non order parameter by
m,= %VD Jim, . (2.6)
As a matter of fact, Eq. (2.6) is just the condition
for mean-field theory of the Hamiltonian (2.1) to be
self-consistent.
Finally, the gap in the electronic spectrum is re-
lated to the staggered phonon displacment by
A=4am, and has the asymptotic form

A= i{ ——1r/2ng2 .
e

(2.7)

Equations (2.7) and (2.4) predict the existence of
long-range dimerization order and a gap in the elec-
tronic spectrum for the arbitrarily small coupling
constant g and arbitrary electronic spin n. We will
study now how this result is affected when the pho-
nons have a finite frequency (M < «) so that they
can undergo zero-point quantum fluctuations.

We start by constructing a continuum field
theory, which describes the long-distance behavior
of this model. For the case n =2, Takayama, Lin-
Liu, and Maki® (TLM) have constructed a continu-
um theory and studies its adiabatic limit. With
some minor modifications the continuum theory we
propose is that of TLM. However, we will discuss
fluctuation effects quite explicitly.

The continuum theory has a Hamiltonian density
given by

ST |+ f I‘(x) %A(x)szx
+ 32 82 ST
1 ¢,(x)?03¢s(x)————-ax2 (x)o3(x) |, (2.8)
T
I'(x), respectively:
[6(x),m(y)]=i8(x —y),
(2.9)

[A(x),T(y)]=ib(x —y) .

In Eq. (2.8) Feymann’s ¢ notation is used. The
Dirac y matrices in two dimensions are chosen to be
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0 —i
Yo=02= |; ¢
1 0
Ys=03= 0 —1 =a,
(2.10)
01
Yi=Yoa=ioy=|; o>

17’5 =¢I1’o .

Thus the electron dimerization order parameter is

me= 3 (0| (x)x(x) | 0)

s=1

—i3 (0| (¥}, (x11,0)

s=1
— P (0)P(x)]|0) @.11)

and the ground state is dimerized whenever m,+0.
Note that 2 has a discrete global symmetry

¢s"’¢s' =vs¥s 'E_"Js, =—‘E75’

(2.12)
Alx)— —Ax) .
The dimerized state breaks this symmetry, since
no_ no_
3 U (X)W (x)—> — 3, i (x)s(x) (2.13)
s=1 s=1

under this symmetry.

A few words about dimensions are needed. In
formula (2.8) we have set the Fermi velocity equal to
one. Thus space and time are measured in units of
length L. Likewise, the Fermi fields 9,(x) have
units of L ~!/2, the acoustic-phonon field ¢ is di-
mensionless, and the dimerization field A(x) has
units of L~'. This choice of dimensions explicitly
renders the coupling constant between the fermions
and the field A(x) dimensionless.

Before we begin a study of the properties of this
Hamiltonian a few comments are in order. Equa-
tion (2.8) contains all the leading and next-to-leading
terms in a power-series expansion in a, the lattice
spacing. Such a naive approach is justified in the
case of polyacetylene since SSH (Ref. 1) have shown
that the width of the soliton is of the order of seven
lattice constants, and hence a continuum approach is
well founded. However, in general we must take
care that all relevant terms, in the renormalization-
group sense, are kept. Otherwise some important
physics will be missing. We argue that Eq. (2.8)
contains all the possible relevant and marginal
operators that can arise from the SSH model. Since
the coupling constant g is dimensionless, ga, has di-

mensions of length. Therefore, the operator
d(x)ploy(3/3x)y,

is expected to be irrelevant by power counting.
Higher-order terms in a, will bring only higher ir-
relevant operators that cannot change the physics of
the ground state and the low-lying spectrum. Of
course, irrelevant operators do contribute to fer-
mionic excitations away from the Fermi surface.
The Hamiltonian (2.8) can be in fact further simpli-
fied by dropping the last term. The acoustic part of
the phonon spectrum thus decouples from the phys-
ics of the low-energy spectrum and may be ignored
altogether. It should be stressed that the continuum
model (2.8) is a model for the low-energy part of the
spectrum of the SSH model. The fields included in
(2.8) are slowly varying on the scale of the lattice
spacing. However, Eq. (2.8) is also an ultralocal ap-
proximation to the lattice theory. In the derivation,
which we do not give here, nonlocal, cutoff-
dependent terms arise and we have not included
them here, in the spirit of a continuum theory.
However, their very existence implies that wherever
we multiply continuum operators at the same point,
a point-splitting prescription should be assumed.
The importance of this remark will become apparent
in the next section.

A. The spinless case (n =1)

As was stated above, we want to understand the
role of both spin fluctuations as well as quantum
fluctuations of the phonon field. We then begin our
discussion by considering the case of spinless elec-
trons. This case may seem superficially unphysical
since electrons always carry spin. However, in the
presence of a magnetic field H spin fluctuations are
suppressed and the low-energy Hamiltonian is given
by Eq. (2.8) with n =1. In other words a term of
the form

J @ Hypl(0g,(x) (2.14)

will appear in the Hamiltonian and the spin symme-
try [SU(n)] will be explicitly broken. This term is
relevant in the renormalization-group sense. As
mentioned earlier, another instance of spinless elec-
trons is found by means of a Jordan-Wigner
transformation of the SSH Hamiltonian with n =1,
which yields the spin-Peierls problem for the XY
spin chain. The results of SSH at large M have been
reviewed at the beginning of this section. Let us
consider the opposite limit: M —0.
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1. The zero mass limit

In the M —0 limit the deformation field A(x) can
be integrated out explicitly. The Lagrangian in this
limit is

2
J=i$8¢—~A2——\/§gA1/7¢. (2.15)

After the bosons are integrated out an effective fer-
mion Lagrangian is found,

L =ihdY+gXPp)* . (2.16)

This is the Lagrangian density of the n =1 Gross-
Neveu model.® As a matter of fact that argument
works for arbitrary » yielding an effective Lagrang-
ian

L =i U9 +g>
s=1

which is the SU(n) Gross-Neveu model.®
Returning to Eq. (2.16) we can use the formula,
valid only for n =1 (Ref. 11),

(P92 =800 Y — 3Py, ¥)?
—[@g2+ @l 2] (2.18)

to write the effective Lagrangian in the form of the
massless Thirring (or Luttinger) model

s=1

n 2
> st ] , (2.17)

2
fzi‘/jad}“%(ipyul/))z
—[Wi) 2+l +80wty . 219

The first two terms form the Lagrangian density of
the massless Thirring model. The fourth term is an
(infinite) chemical potential and may be ignored.
The third term (¢;¢1)2+(¢I¢2)2 apparently
vanishes because of Fermi statistics. However, this
is a dangerous argument since we are multiplying
quantum fields at the same point and quantum fluc-
tuation may yield a nonvanishing contribution.
Indeed this is the case as was discussed in great de-
tail by den Nijs.!?

As a matter of fact, the Lagrangians (2.16) and
(2.19) have different symmetries if the third term is
dropped. The massless Thirring model is invariant
under the global continuous [U(1)] chiral transfor-
mation

v—Y' =expliys0), 0<6 <27
b9 =1 exp(+iys0) ,

while (2.16), the n =1 Gross-Neveu model, has only
a discrete chiral symmetry

(2.20)

VY =iysP, PP =ipys . 2.21)

The third term in (2.19) breaks the continuous chiral
symmetry (2.20) down to the discrete symmetry
(2.21). Since this chiral symmetry is discrete, it can
be spontaneously broken leading to a phase in which
(1) )5£0 and the system is dimerized. The continu-
ous symmetry (2.20) cannot be spontaneously broken
in one dimension (7" > 0) due to the Mermin-Wagner
theorem.'?

The phase transition to a dimerized state occurs
only if g is strong enough. This result can also be
obtained in the M =0 case for the lattice version of
the SSH model, Eq. (2.1). By writing the phonon
part as a functional integral and integrating out the
phonon degrees of freedom, we obtain the exact ef-
fective Hamiltonian

H=—13(C/C;,1+H.c.)
i

g’ t
- TE(C] Cj+1 +HC )2 ,
J
which, using the commutation relations, can be
rewritten as

H=—t3(C/C; 1 +H.c.)
J
+g22njnj+1-—g22nj . (2.22)
J j

Thus the fermions experience an effective repulsive
force between nearest neighbors. For g2/2t=1 the
system undergoes a transition to a charge-density-
wave state. This can also be visualized by noting
that the Hamiltonian equation (2.22) is, via a
Jordan-Wigner transformation, equivalent to the
XXZ antiferromagnetic spin chain. The phase tran-
sition takes place at the isotropic point.

We follow Witten'* and den Nijs'2 in analyzing
the model at M =0 by introducing the boson repre-
sentation of the fermion fields. The equivalent Bose
field"~!° (x) has a Lagrangian density equal to

1 2 g2A2
fz;(a,m) + 2 cos[2B8n(x)], (2.23)
where
2g? -
Bi=(167) |14~
T

The last term in (2.18) originates from the short-
distance expansion of ({1,)2+(¥;)? in the boson
representation. The coefficient of cos(287),

2

z=%=g—2, (2.24)
o
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which plays the role of a coupling constant (or
“fugacity”), is defined in terms of a large momen-
tum cutoff A in the boson theory. However, as den
Nijs'? has discussed quite extensively, there is a crit-
ical value of g =g, (where B2=8) below which the
cos(23n) operator is relevant and cannot be ignored.

The renormalization-group properties of (2.23) are
well known.'*~22 The long-distance behavior of
(2.23) is controlled by the Kosterlitz renormalization
group (see Fig. 1). The model (2.23) lives on the
physical curve

y=502-x), 2.25)

where y = -}a and x =2(B?/8m —1), following Amit
et al?! As indicated in the figure there is an inter-
section between this curve and the separatrix y =x.
They meet at g2=1 /4.

It is important to stress that the Lagrangian (2.22)
contains all the relevant and marginal operators that
can be generated from the short-distance expansion
of the SSH model at M =0 for g> <7 /4. Of course,
the actual SSH Hamiltonian contains a large (infi-
nite) number of irrelevant operators. But these
operators give negligible contribution for g <7 /4
since their coupling constants include powers of the
lattice constant.

N [ N
2/3 2 X

FIG. 1. Renormalization-group flow of Kosterlitz
(schematic). The dashed line represents the initial values

of x and y accessible for the n=1 SSH model. The dot is
the phase transition point.

2. Finite mass

At finite ionic mass M the phonons can still be in-
tegrated out, however, at the price of introducing re-
tardation effects. For finite mass the Lagrangian,
after dropping the acoustic phonons, is

- ) 2 N
f=i¢a¢+-;—mA2——éz——\/§gA¢¢ . (2.26)
where m =4(Maj)=1/0>

The Bose field A can be integrated out explicitly
yielding an effective action s for the Fermi fields

The discussion sketched above follows the work s [ T.40= [ DA i [ dx at ]
of den Nijs'? very closely. The point of reproducing expliSenl §,41) f P ! f xdt 2 |,
it here is to clarify the role of some symmetries and 2.27)
the effect of retardation. with
1

Ser= [ dxdtipdy+g® [dx [dt [ dt'P(x,000(x,0)G(t —tP(x,t'Wp(x,1) . (2.28)
The Green’s function G(¢ —t') is equal to

G(t —t")=i(0| T[ Alx,t)A(x,t")] |O>=%exp(—i lt—t'|w) . (2.29)

Hence the effective action is nonlocal in time. However, we are only interested in the low-energy behavior (i.e.,
ground-state and low-lying excitations) of the system. In this limit the fields ¢(x,?) are slowly varying both in
space and time. Thus if we study states with an excitation energy AE <<w, the nonlocal effects should be
unimportant for them. Quite to the contrary, there will be states with excitation energies of the order w for
which retardation effects are essential. Since w is proportional to 1/V'M we see that as the ions get lighter
most of the actual spectrum lies in the region AE <<w. But in the classical limit (M — « ) the region of validi-
ty of our approximations shrinks to zero. We are going to argue in the next section that as M — « the semi-
classical treatment should be exact. _
Let us define an operator J(x,t)=v(x,t)¥(x,t). Then the effective action reads

Ser= [ dxdtifdy+g® [ dx [ dtdt'J(x,0)G(e—t' ) (x,t')

o0 -— 2 © -] 0
= [Tax fariap+ S [T ax [T dr [T ds ol 0l )+ 0xt —s)le . (2.30)
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By expanding J(x,z£s) in powers of s we find an ef-
fective Lagrangian
2

— © n
La=ifovrs’ 3 | Taen |
(2.31)
We can rewrite the effective Lagrangian to read
, T — g |9 - 2
L or=1 9B +g*( 1/}1,!1)24-;2— 5?(/,,/,] b
(2.32)

Thus the effect of finite mass, and hence all retarda-
tion effects, are terms of the form

a(n) _ 2

at(n)

In the boson representation, these terms will render
operators of the form

a(n) 2
—_at‘") and

(n) 2

ad
aum el cosf3n

b

etc. All these terms contain explicit derivatives and
thus have dimensions higher than those in (2.22).
Those operators are irrelevant by power counting
and remain irrelevant for g2 <m/4, dropping out
from the physics at low energies. We then conclude
that the properties of the system near (and below)
the dimerization transition are independent of the
mass of the ions and, so far as M is finite they are
always controlled by the behavior at M =0. In some
sense @, the excitation energy of the Bose field,
plays the role of an energy-scale intermediate be-
tween the low-energy (scaling) regime and the cutoff
(bandwidth) scale. If the system is probed at dif-
ferent energies a crossover should be observed be-
tween the Gross-Neveu behavior (AE <<®) and the
semiclassical behavior (AE >>w). The crossover re-
gion will not be present in the semiclassical limit
(M— o) in which it is a nonperturbative effect.
Thus the calculations of SSH (Refs. 1 and 2) should
be accurate for states with excitation energies much
bigger than w, while our considerations apply to the
low-energy part of the spectrum only.

The massless Thirring model, and for these
matters the same applies to the Gross-Neveu
models, relate to the fermion-boson Lagrangian
(2.26) in another interesting way. The Lagrangian
(2.26) represents a coupling between relativistic fer-
mions ¢ and nonpropagating bosons A. “Elastic”
terms, i.e., (3¢ /0x )2, are of course going to be gen-
erated in perturbation theory. In some sense the di-
mension that we have assigned to the boson field A
is not the standard dimension for a Bose field. Our

assignment is completely natural at M =0 but not so
natural when M=£0 and “elastic” terms are present.
In such situations one may expect A to be dimen-
sionless in one dimension. The coupling constant g
would not then be dimensionless in one dimension,
but rather, in three. Something very similar hap-
pens in ¢* field theory in its relation to the non-
linear 0 model. Indeed, the Gross-Neveu models
have properties very much analogous to the non-
linear o models, while (2.26) is naturally closer to ¢ *
theory. The standard procedure of writing down an
effective Lagrangian for the Goldstone modes of ¢*
theory, which yields the nonlinear ¢ models, paral-
lels the line of arguments that we used to eliminate
the retardation effects.

3. Phase diagram

We can now collect the results of Secs. IIA 1 and
ITA2 together with the results of SSH (Refs. 1 and
2) and TLM (Ref. 3) for M — o into a phase dia-
gram (Fig. 2). The half-filled-band spinless SSH
model has two phases.

(i) The first is a strong coupling phase in which
the ground state is dimerized. The system, on a lat-
tice, is invariant under translations by two lattice
spacings (Peierls instability). In the continuum
model the discrete chiral symmetry ) —iysy is bro-
ken and the dimerization order parameter (i 1)
has a nonvanishing expectation value. The fermion
spectrum has a gap. In Sec. IIA 1 we showed that
this was indeed the case for M =0 if g%> g2~ /4.
In Sec. IT A2 we showed that these results extend to
finite M provided that the system is close enough to
criticality, where the continuum limit results are
valid. On the other hand both SSH (Refs. 1 and 2)
and TLM (Ref. 3) have shown that the system al-

o=
AN
\
\\ DIMERIZED
\
| \
w \
\
\
\
UNDIMERIZED \\
\
0 X
0 g* ®
g

FIG. 2. Qualitative phase diagram for the n=1 SSH
model.
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ways dimerizes as M — oo for all g.

(ii) The second is a weak coupling phase in which
the ground state is not dimerized and ( ¢ ¢ )=0.
This phase is, as a matter of fact, critical since the
Green’s functions are long ranged. No soliton states
are present in this case (they are actually massless).
The critical phase is expected to exist up to arbi-
trarily large ionic masses so far as g is small enough.
For very large M the arguments given in Sec. IT A 2
about the irrelevance of the extra operators fail since
©—0 and the effective Lagrangian becomes truly
nonlocal.

(iii) The model also has a phase boundary, which
is depicted in the figure. This transition is of the
Kosterlitz-Thouless type. Close enough to this line
the SSH model (n=1) behaves like the boson La-
grangian (2.32).

B. The spin-; SSH model (n =2)

This is the case of actual interest for a polyace-
tylene chain without a magnetic field. The physics
for n>1 (all n) is actually very similar to the case
of n =2 except for some special properties of the
spectrum at n =2.

The formalism used to describe the n =1 model
in Sec. II A applies for general n. The physics of the
models with n > 1 is, however, very different. Once
again we will write down a continuum model that
represents the system near the dimerization phase
transition.

1. The zero mass limit (M—0)

We begin our discussion by considering the SSH
continuum model in the limit where the mass of
ions vanishes. The Lagrangian density, after in-
tegrating out the bosons, is
2

S 4., (2.33)

s=1

L=i 2 ¢sa¢s+82

s=1

It was pointed out in Sec. II A1 that this is the La-
grangian of the Gross-Neveu (GN) model. This
model has been extensively studied and even though
it has not been solved exactly so far, many of its
properties are by now well understood.

Let us first summarize the properties of this
model. It has the following symmetries:

(i) A continuous SU(n) symmetry 3 '= Uy where
U is an SU(n) matrix. This is just the spin rotation
symmetry of the SSH model. This symmetry
remains unbroken.

(ii) A discrete chiral symmetry ¢ '=iy sy, already
present in the » =1 model. This symmetry turns
out to be broken for all values of the coupling con-
stant g. The order parameter ¥ ¢ ) is thus nonvan-

ishing for all g=40.

Gross and Neveu studied both the re-
normalization-group properties of this model as well
as its behavior in the semiclassical limit #— . In
the critical phenomena language they found that the
B function for the dimensionless coupling constant g
has only one infrared unstable fixed point, at g*=0,
and that the theory is asymptotically free. That is
to say, the effective coupling constant at short dis-
tances is small while at long distances it is large; the
system always iterates to strong coupling in the in-
frared. Specifically, to one-loop order they found

n—1
T

B(g)=—ag——

3
dlna, 8 2.34)

where g2 is the (bare) dimensionless coupling con-
stant and a is the lattice spacing. This result clear-
ly shows that g becomes relevant due to fluctuation
effects.

Gross and Neveu further studied this model and
considered the large-n limit. In this limit, where the
Hartree approximation is exact, they found that the
operator ¥ acquires a nonvanishing expectation
value for all g >0. The system is dimerized and the
discrete chiral symmetry is broken. There is a gap
in the single-particle spectrum equal to Ay,

Ap=Aexp{—7/g?}, (2.35)

as n—o0. In (2.35) g2=ng? and A~1/ay. The or-
der parameter { Y¢) is equal to Ap/g2 The phys-
ics of the GN model in large n is thus very similar
to the M — o« limit of SSH and TLM.

The GN model has been further studied, in the
semiclassical (i.e., large-n) limit, by Dashen,
Hasslacher, and Neveu?> (DHN), who found an
enormously rich spectrum of solitons, solitons-
antisolitons bound states, etc. The results of DHN
for large n, as well as some of their conjectures for
finite n, have been confirmed by an exact calculation
of the S matrix of the GN model by Zamolodchikov
and Zamolodchikov,2* Witten,'* and, more recently,
by Karowski and Thun.?®* Of particular interest for
the physics of polyacetylene is the finding that the
soliton-antisoliton (s§) bound state becomes un-
stable at n =2 (Ref. 24). Indeed, these studies find
that the energy of an s § bound state is equal to?>23

El =2Ey sin[mj/2(n—1)] ,

j=1:---; <n—1. (2.36)

Thus for n =2 we have E .=2E,, and the binding
energy vanishes. This result implies that the binding
energy of a polaron, a bound state of soliton, antisol-
iton, and a fermion, must also vanish as n—2.
Thus polaron states must be unstable for the SSH
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model in the continuum limit. Even though this re-
sult is actually true for M =0 we are going to argue
shortly that it ought to hold wherever the continu-
um model applies. In contrast, the polaron state is
known to be stable in the M =0 limit for n=2.
We will return to this point at the end of this sec-
tion.

2. Finite mass

We use a renormalization-group treatment to
analyze the role of a finite ionic mass M, and hence
retardation effects. A line of thought similar to the
arguments that led to the effective Lagrangian (2.32)
in the spinless case yields the natural generalization

2

jeff= 2 "Zva'ps +g2 2 Js’ﬁs
s=1 s=1
2 _ 2
+ S0+ @3
(0] s at

The continuum Fermi fields i; have dimensions
of (length)~!/2. This implies that the coupling con-
stant g is dimensionless but, also, that the coupling
constant for ( 3, 9/3t1;)* must have dimensions
of (length)>. Hence ( 3 3/0t1,)? is superficially
an irrelevant operator of two dimensions. The
higher-order terms [i.e., O(1/w*) and higher] have
even larger dimension and hence are more irrelevant.
This naive power counting argument is correct be-
cause the infrared unstable fixed point at g =0,
where the transition to the dimerized state takes
place, is asymptotically free. In such situations fluc-
tuation effects will only produce small logarithmic
corrections to free-field results.

These claims can be readily verified by modifying
the renormalization-group treatment of Gross and
Neveu® in the presence of a finite mass M. Let
Iz(x,y) be the inverse propagator for the Bose field
A(x), i.e.,

I3 (x,p)=(0| T[A(X)A(»)]|0) , (2.38)

where x =(x,¢) and y=(y,#’) and |0) is the exact
ground state.

The unperturbed boson
momentum-frequency space, is

Tp(p,0)=—i(—Mw?+1—ic) , (2.39)

propagator, in

which reflects the nonpropagating nature of the
(decoupled) field A. However, since fermion-boson
interactions will generate propagating terms we are
forced to write a more general form for the bare
propagator,

Tp(p,0)=—i(1—Mo?+sp*—ic) . (2.40)

The parameter s is equal to zero at the starting
point. Dimensionally, M and s are very similar;
they both have dimensions of (length)?. It is more
convenient to define the dimensionless parameters
M ands,

M=MA?, 5=sA?, (2.41)

where A ~1/aq, ay being a length of the order of
the lattice spacing.

A straightforward renormalization-group calcula-
tion shows that the parameters M and § are ir-
relevant. An explicit calculation, to one-loop order,
yields the result

B M__ w1 1+g? n-l ,
dlna T
(2.42)
o5 — 2 n—1
= =-25|1 —
As dlna, S|ite

These B functions, when complemented by the
Gross-Neveu S function, Eq. (2.34), show that M
and § not only are irrelevant but also become more
irrelevant due to fluctuation effects. Thus there is
only one infrared unstable fixed point still located at
g*=0.

Equations (2.42) enable us to investigate the role
of these irrelevant operators. It is useful to elim-
inate the implicit dependence in @y from (2.42) and
(2.34) to investigate the dependence of M on the ef-
fective coupling constant at a given length scale. By
taking the ratio of (2.42) and (2.34) we find

dlnM  3lns 27 1 2 ln—1
= = — — 1 = -
og og n—1|g | T8 T ]
(2.43)
This equation can be integrated to yield the result
— T 1
InM — el ey +21ng = const , (2.44)
—1]g

or, equivalently, the result in which M has the fol-
lowing dependence on g, the coupling constant at the
scale ay:

const
2
4

T

—_— . 2.45)
(n—1)g? (

M=

p|+

Thus as @g— o0, g— o and M—0. Conversely, as
ay—0, g—0 and M— w0, thus showing that ir-
relevant operators, while dropping out from long-
distance physics, make an overwhelming effect at
short distances. The renormalization-group flow
(2.45), (2.34) is shown in Fig. 3. In other words, the
coupled electron-phonon system for n > 1 is in the
universality class of the Gross-Neveu model for the
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FIG. 3. Qualitative renormalization-group flows for
the n=2 SSH model. Note that the trajectory with the
largest value of v gets closer to the asymptotic trajectory
faster.

same value of n. In any practical situation, howev-
er, some amount of this irrelevant operator will al-
ways be present. The problem is then to determine
how strong the coupling constant g will become for
M to be reduced by a factor of o (for example, 10).
If the effective coupling constant is less than one
then most of the low-lying spectrum will not be af-
fected by the irrelevant operator. This is so since
the gap in the fermionic spectrum behaves like®

T

— (2.46)
2(n—1)g

Ap~A exp

(in the GN limit), becoming very small if g is small.
However, should g become of the order of unity the
gap would be of the order of A (the cutoff) and we
would have no reason to drop the irrelevant opera-
tor. The upshot is that a criterion for estimating the
maximum M at which retardation effects are unim-
portant is to set g < 1. Clearly, the result is a func-
tion of the initial coupling as well. Thus for a fixed
reduction factor o, we can set a limit on the initial
bare coupling constant to be the solution of the
equation

= exp (2.47)

n—1 5P

B,|a

(n—l)g(z)

Equation (2.47) shows that for a given bare coupling
g <go retardation effects will drop out from the
physics at low energies at a length scale smaller (i.e.,
a higher energy) than the coherence length
&~1/Af. Conversely, for g >go we will have the
opposite situation and retardation effects will be sig-
nificant for all states except the ground state.

By making use of Eq. (2.47) and the definition of
@ ~1/V'M , we can write Eq. (2.45) in the form

w(g)
gAr(a,g)

Note that this ratio is dimensionless. Thus if the in-
itial g and M are such that v is large (i.e., © >gAf),
retardation effects are negligible and the system is
always controlled by the Gross-Neveu limit. This is
not the situation in polyacetylene, where v~0.39
since Ap~0.7 eV, w~0.16 eV, and g~0.58 eV.
Therefore, while we expect retardation effects not to
affect the nature of the ground state, significant
contributions are to be expected to the nature of the
low-lying states like solitons, polarons, etc. Since
g ~0.58, polyacetylene is right in the middle of the
crossover region between strong and weak coupling.
Numerical calculations should be accurate in this re-
gime.

=const=v . (2.48)

3. Phase diagram

Summarizing the results on the SSH model, for a
half-filled band and n > 1, we conclude that it has
no structure. The ground state is dimerized
throughout the diagram for all M as long as g=O0.
The order parameter ( ¢ 1 ), which measures the
difference in energy between two nearby bonds, is
nonvanishing. We have seen that these results apply
in both the Gross-Neveu and static limits.

The spectrum of the system, however, changes
with both M and n. Low-lying states, like the pola-
ron, while deeply bound in the adiabatic, as well as
for large n (all M), become unstable for n =2 in the
Gross-Neveu limit. Since polyacetylene is in the
middle of the crossover region further studies are re-
quired to investigate the effects of irrelevant opera-
tors on this state.

III. NUMERICAL RESULTS

In this section we present results of Monte Carlo (MC) simulations of the SSH model. The numerical
method® is based on a direct-space—imaginary-time representation of the phonon and electron fields. The par-
tition function for an N-site ring at temperature 7'=1/f3 is written as

2
M
2 2

ij

9i+1,j —4i,j
AT

Z= f 11 da; exp’ —Ar
ij

L
X Tr [ exp

i=1

jeven

AT 2 [ti:j+l(i)](cjj,'scj+l,s +H.c.)

D
+7(qi,j+l"qi,j)2‘ ]

exp

AT 3 [4,; 1(DNCHKCypy, s+ Hel) |
jodd
(3.1)
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with
tijr(D=t—algijr1—a;) - (3.2)

Here, 1<j <N labels spatial sites and 1<i <L la-
bels imaginary time. The temperature axis has been
divided into L slices of size Ar=f/L. The fermion
Boltzmann factor has been broken up in such a way
that it is now simple to compute the fermion trace
by inserting complete sets of intermediate states.
Figure 4 shows the resulting two-dimensional lattice
for the case N=4,L =2. It also shows an example
of two possible fermion world lines. Details of this
approach are presented in Ref. 6.

In order for the breakup involved in obtaining Eq.
(3.1) to be accurate we need to satisfy the conditions

At <1, (3.3a)
Aro << 1. (3.3b)

It should be stressed that our procedure is essentially
exact if Eq. (3.3) is satisfied, and no assumption
about the relative energy scales of electronic and
ionic motions has been made. For practical pur-
poses, it is sometimes useful to use different slicing
for electrons and phonons A7, and A7, that satisfy
Egs. (3.3a) and (3.3b), respectively. For large M for
example (adiabatic regime), one can take A7, <<A7,
so that the same phonon field occurs in several fer-
mion time slices.

Although we are interested in studying infinite
systems at zero temperature, in practice, of course,
we can only study finite systems in space and ima-
ginary time. In order to be at sufficiently low tem-
peratures we have to satisfy the further constraints

7 /]
1a(@)
Wl 123(2%4 9,3 /]
v /qzz / Q24
i 1,2(2) 134(2)
LA Y,
[0 ft 6
|
41
a1 /% 93 ///
////qlz ///qu
12(D) t54(1)
/12 /34
I /// /A
| 2 3 4 |
i

FIG. 4. Space-time lattice for the SSH model and
N=4, L=2. Electrons can only hop across shaded
squares, with matrix elements that are a function of the
phonon field. The heavy lines are an example of allowed
electron world lines.

(a) (b)
RN KRN KK K MR R K AR R KA KK K KR KK
x ob- HE -+ B H-+-+ HH +-Hx *
* +- HE -+ B H-d-+ U +-Bx B Fototox
kB +-8 —+-+ BE —+H F-dx = *
x-H+ H-~ +-4+ HE —+H + H-+x P e ettt & et ek et k.
AHHEH —~ +-+E--+-R + -8 * *
ARB+E - —+-ER -8+ -0 x - -
KHAH B ~H 4B —d-d-d He X * *
AHEH —F=H PR M —4-+-+ H- % =
XHEH - H-+4B B - He- -8 * *
XH+ B H-+IB - HE- -8 % o Hpommmmm e D et
K-t —H B HEE -0 - R = *
Kot B F-HHEE —H b= —F-Hex L et e el e et
Ko HE- AH-HE ——Fd-d —-HER * *
Xe B HE-R do—dd-d —E-Hix ——— -x
Kb—bdo HE—obd-f B+ B H--x * *
Kb—tde Hb-—dd-8 B +-4 H-—x L e e L L L
x # 4=+~ H-+ He-H +-+ H-Hx x =
X # b-de Hod RE-B S-dodH-x
xR OB 40 B R Fo-dHe-x x *
X8 H F-H R —+-eR ]
Ko HE d-—d-dodbobod 0OHE 4 * *
X BE F--d-dod-d—d HOHE X -x
BB F- Hod-d HE-—+ HE HE * *
X Ho# 4- Hodod -4 HE Hx *
Komtb— BE=B Fo— - Pk x *
el T B Mmm o m e omm——— *
E —tdm Bododdod-B —de- HEX * *
K —dt— H—d—+ITH-B —+- HEX Emm Fom o *
X b--48 8 Ne-H B +- B o#Rx * *
® 4--+8 8 HEHR- B - B HHX + +

FIG. 5. Typical configuration of the electron and pho-
non fields for a 24-site ring, and parameters appropriate
for polyacetylene: g=0.58, »=0.066, A7, =10, Ar,=0.5,
and B=150. (a) The electron configuration for the first
30 time slices, denoted by + (—) for spin up (down), and
# for double occupation. On careful examination a
charge-density wave located on the bonds becomes ap-
parent. (b) Sign of the staggered phonon field.

pBt>>1, (3.4a)
Po>>1, (3.4b)

and BA>>1, with A the gap in the electronic spec-
trum.

The Monte Carlo procedure consists in going
sequentially through the space-time lattice and up-
dating the fermion world lines at each plaquette’

(a) (b)

Tl e L T R ROK K KKK K RO K
kb F-B B —+EHob-d——d HE-ox = *
x4 H R OH O OBER 8 Ho-d Hi--x B ettt Sl St Tt 2 ]
wf H-+ B OHER B OB Hy- 8 ox * *
xR H-+ B -4HE B —+-H4- #ox B T et L Ll St L Lt 2 ]
xi HH OH -He+ B OB B B 8 ox * *
B OHE H -HE+ B OH- o8RO oax L et R T e e ek
xR BN —4— B+ B H--+ B Hx * *
Ki-RY —d-dodd-d-t-—d # UK *
RE-HE B M- He- 8 OB OH Hx x *
R-+HE R - FH- B bo—d—dk T e S L e et
K-t HE —d-d-d FH-F= bbbk * *
X HE -+-+-+ Ri-+ -8 # H % T e e e e L R L St ]
*- BB B # —+- HE Hod-d-dx * *
X- BUE-+- —+d- FH-4R He-x +x
®-fl He—4- H +- FH-+H  He-x * *
x-f HH —+-+ - HE HEO® Hx B et T R et A D e
k- BH -+-+ B -+ R H Hx x *
w-B He- H-+ B -+ HH ¥ x *

Koot —HE Fo—Fd- AHE 8 X * *
K—d—f B R F-—dd —HE H % x

x=-  HE -+ H -++ 0 oHE H x = *®
el HE —+H B —+d—+ Be-R X *

x- # HE- BobR —HE- HRE-R X * =
K F-fE- HodH —+d— PHE-H % * —+-+

X - H B -+ B HY-H-x x *
® - B B-+8 -+ HE H-dR-x PRI RIS S S 2 et St Satnh Sl S
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e d-—4H B OHE BB 8 He-x + *
® +-—40 B OB 8 H-+ B OHE Hx * *
® O +-B B —++-8 H-+ B BHE 8k =

..... KK

FIG. 6. Same as Fig. 5 with g=0.58, o=1,
Atp,=A7,=0.5, and B=7.5.
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FIG. 7. Phonon spatial correlation function D,()). The thin horizontal lines go through the values of D,(J) in the static

limit (@=0). (a) g=0.58, ®=0.066; (b) g=0.58, @=1. Note the much larger zero-point on-site fluctuations (/=0Y for the

smaller ion mass.

and the phonon field at each point. For the
phonon-field updating a step size was chosen at ran-
dom between —r and r, and several updating at-
tempts (three to five) of the phonon field at the site
were made in order to bring it in equilibrium with
its environment. The maximum step size r was
chosen such that the acceptance ratio of these moves
was about 0.5. We have tested our program by com-
paring with known results for electron and phonon
properties in the uncoupled limit (¢=0) and for
electron properties in the static limit (M = «) where
the phonon-field coordinates were fixed at a dimer-
ized configuration. It was found that taking
At,t~0.5, AT,0 ~0.5 gave reasonable agreement
(within a few percent) with the exact results in these
limits.

Since it is difficult to handle negative weights
with our MC algorithm, we have modified some-
what the original model Eq. (2.1). The hopping ma-
trix element in Eq. (3.2) was taken to be

t—al(gij1—4gij), if‘Ii,j+1—qi,j<t/a

) (3.5a)
tj,j+1(l)=

0, ifq,-,j+1—q,~,j2t/a . (3.5b)

This modification, of course, makes sense from a
physical point of view. As the atoms move away
from each other the overlap matrix elements go to
zero and do not change sign, as implied by Eq. (3.2).
Nevertheless, the theoretical treatment of the
preceding section used the form Eq. (3.2), and the
phonon coordinates were integrated from — oo to
4+ o. We do not think the difference between both
models is essential (it certainly is not for small a).
Still, we will restrict the numerical study to not too
large phonon frequencies so that the hopping matrix
elements remain nonzero most of the time.

Most of the results presented in this section are of
the more realistic case of electrons with spin (n=2).
At the end of the section we present some results for

1.0 T T T T T
(@)  w/A=0.22

FIG. 8. Electron spatial bond correlation function D,(]). (a) g=0.58, ©=0.066; (b) §=0.58, 0 =1.
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PHONONS
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g

FIG. 9. Energy vs coupling constant for the case o =1
on a 40X40 lattice, A7,=A7,=0.5. Results were ob-
tained from a cycle where g was varied in steps of 0.002
from O to 1 and back to 0, and at each point the results of
four measurements were averaged. The smooth lines are
exact results for the static case (w=0). Note the appreci-
able zero-point energy of the phonons (w /7 for g=0).
The small difference with the static results for the elect-
ron energy at g=0 is due to the finite A7, used.

the spinless case (n=1).

According to SSH,! parameters appropriate for
polyacetylene are t=2.5 eV, D=21 eV/A2, a=42
eV/A and M=3145 eV/A2 These give an energy
gap of 2A=1.47 eV, ©=0.163 eV. We have re-
scaled the units of length and energy so that our re-
scaled parameters are t=1, D=1, a=g=0.58, and

O.15¢+ -

=% _e__o_ 0 —e——e——¢

0.10 , 4

L

FIG. 10. Phonon order-parameter time correlation
function G,(7) for the case w=1 and several values of g,
on a 24X 24 lattice, A7, =A7,=0.5. The full line is exact
results for g=0, the dashed lines are fits to the form
equation (3.12).

0.054}_ T L L} T T T 3
N
\
-\, 4
Gp(T) o
.\\
0.052} e =
Te——e-—¢
1 1 1 1 1 1
0 8 16 24

FIG. 11. Phonon order-parameter time correlation
function G,(7) for the case of polyacetylene. The dashed
line is a fit to the form equation (3.21), which yields
@/0=0.64.

M=928, ie, A=0.295, ©=0.666. For the MC
simulation for this case we have taken A7,=10,
A7,=0.5, and B=150, i.e., 15 phonon time slices
and 300 electron time slices, so that conditions (3.3)
and (3.4) are approximately satisfied. One needs a
very large lattice in the time direction because of the
large difference in scale between the electronic and
ionic energies.

Figure 5 shows a typical configuration in a MC
run for a 24-site ring. In Fig. 5(a) we are plotting
only the first 30 fermion time slices. In Fig. 5(b) we
are plotting the staggered phonon field with a + or
— depending on its sign. (There is no correspon-
dence between the fermion and phonon fields shown
in Fig. 5, since all fermion time slices shown corre-
spond only to the first two phonon slices.) Note the
relatively frequent tunneling of the staggered pho-
non field to the opposite phase. This has also been
previously observed by Su.?® In the fermion field it
is difficult to see the order, since the electron
charge-density wave resides on the bonds. Neverthe-
less, on careful examination it becomes apparent
that fermion world lines go diagonally, predom-
inantly between sites 2j and 2j+1, which corre-
spond to short bonds.

Figure 6 shows a typical configuration for the
same coupling constant but much smaller mass
(@w=1). Here, we have taken Ar,=A7,=0.5,
B=7.5. Note the larger fluctuations that appear
now in the phonon field. Nevertheless, on comput-
ing appropriate averages one finds that the system
has appreciable long-range order for these parame-
ters too.

Figure 7 shows the phonon spatlal correlation
functions

1 N
p(l zﬁg (QJ+1 q] q1+1+l_q1+l)>
(3.6)
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FIG. 12. Phonon order parameter vs g for the case =1 on a 24 X 24 lattice. The full and dashed lines are exact results

for the static case on a 24-site lattice and on an infinite lattice, respectively.

(n=1).

for these two cases (w/A=0.22 and w/A=3.3 with
A the classical gap.) These functions show the oscil-
lating behavior characteristic of the dimerized state.
For large ! one can obtain from it the phonon order
parameter m,, defined as

< 2 (— 1)’(q,~+1—qj)> ’ (3.7)
j=1

since D) I)—>4m1p for large I. For the (CH), case
there is approximately a 15% reduction in the value
of the order parameter from the =0 case due to
quantum fluctuations. Therefore, the bare interac-
tion for (CH), would have to be taken somewhat
larger to obtain the gap that is observed experimen-
tally. For w=1 we should be well into the Gross-
Neveu regime, since the parameter v defined in Eq.
(2.48) is about 6. Note how the on-site phonon
correlation function grows as o increases, due to the

(a) Spin-% case (n=2). (b) Spinless case

zero-point fluctuations. At long distances the quan-
tum fluctuations reduce the value of the correlation
functions as w increases. Still, even for a frequency
larger than the adiabatic gap (w/A=3.3) the long-
range order is about 60% of the » =0 value.

Figure 8 shows the corresponding correlation
functions for the electrons, defined by

(D=2 (2( ,C41e+H.C)

X (CJT+I,st+I+1,s +H.c. )) . (3.8)

The oscillations in these functions show the ex-
istence of a charge-density wave defined on the
bonds. Again, one can obtain from this the electron
order parameter defined in Eq. (2.5) by taking the
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FIG. 13. Finite-size scaling analysis of the SSH model n=2. In of the lattice size times the gap is plotted vs 1/g?2 for
the cases (a) @=1 and (b) ®=0. Note that the curves are steeper in (a) than in (b). The horizontal bars in (a) and (b)
represent the expected distance between the curves in the Gross-Neveu limit [Eq. (3.19b)] and in the static case [Eq.

(3.19a)], respectively.
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limit of large I.

Figure 9 shows results for the energy as a func-
tion of the coupling constant for the case w=1. We
have taken =20 here so that this is essentially the
ground-state energy. The zero-point energy of the
phonon field at zero coupling constant is /7, and
the numerical results agree with this. The variation
of energy with the coupling constant is similar to
the one in the static limit, as shown in Fig. 9. (The
small discrepancy between the MC and exact static
limit results for the electron energy at g=0 is due to
the finite A7 used.)

In Fig. 10 we show results for the phonon order-
parameter time-correlation function, defined by

G,(1)=(0,(r)0,(0)) , (3.9)
with
Op=iz(—1)j(Qj+1“4j) (3.10)
N5

for the case w=1 and several values of g on a
2424 lattice. In the noninteracting case this func-
tion is found to be

0 2 —oT
—_—— 1
Gp(T,w,M) NMwe

(3.11)

This is drawn as a full line in Fig. 10. For the in-
teracting case we have fitted the correlation function
to the form

Gp(T)=G7,&5,M)+4m} , (3.12)

where the renormalized frequency @ was obtained
from the initial slope of the numerical data, and the
phonon order parameter m, and the renormalized
mass M were obtained by fitting the MC points at
7=0 and 7=/3/2 to the form (3.12). Even with this
three-parameter fit the MC data deviate somewhat
from the form equation (3.12) (the dashed lines in
Fig. 10), indicating that there are deviations from
mean-field theory behavior. Nevertheless, we be-
lieve that this is a reasonable way of obtaining the
phonon order parameter m, from data for the corre-
. lation functions, especially for small lattices where
finite lattice effects are substantial. (A direct mea-
surement of the order parameter is not very accurate
because of tunneling between the two degenerate
ground states.) We found the value of M to be al-
ways very close to the bare mass (within 10% for all
coupling constants studied) and the renormalized
frequency to decrease with the increasing coupling
constant, to about @ ~0.57w for g=0.75.
For the case of polyacetylene, Fig. 11 shows the
phonon time correlation function and the fit to the

MC data, which gives @®=0.64w. This is in reason-
able agreement with the result obtained by Nakahara
and Maki* for this case (@=0.60w).

In Fig. 12 we show results for the phonon order
parameter m, [obtained from Eq. (3.12)] for the case
o=1 and a 24-site lattice, as a function of the cou-
pling constant. We show for comparison also exact
results in the static limit for the 24-site lattice and
for an infinite lattice. The MC results for w=1 are
always lower than the corresponding w=0 results
for the finite lattice, as expected. It can also be seen
from the static results of Fig. 12 that finite-lattice
effects are substantial for g <0.6 in the 24-site lat-
tice. This happens roughly when & >N /4, where
the correlation length £ is the inverse of the energy
gap. We also show in Fig. 12, for comparison, the
corresponding results for the spinless case (n=1).
Although they show a greater reduction than the
case n=2, no phase transition is apparent if we only
look at one size system. We will return to the n=1
case later in this section.

In order to determine the analytic behavior of the
order parameter or the gap from the numerical data
it is essential to take finite-lattice effects into ac-
count. We assume that the gap for a finite system
of N=L sites, Ay, obeys the finite-size scaling hy-
pothesis?’~%

1
AN—Nf(NAaJ, (3.13)

with A the gap for an infinite lattice. To be more
precise, N in Eq. (3.13) should be replaced by an ef-
fective N, a function of the space and time size of
our lattice. However, we will only study systems of
varying size with N=L so that the effective N will
presumably be proportional to N and we can assume
Eq. (3.13) to be valid.

Assume we do a small change in both N and the
coupling constant g so that the product NAy
remains unchanged. We have then, from (3.13),

0=d(NAy)=A_f'(NA_)N

NdA‘” "(NA_)d, 3
+ de f ©)dg, (3.14)

with f'(x)=df /dx. We obtain then from (3.14)

dina, |

dg

dg

dInN —

(3.15)

This is the B function of the system. If the gap has
the analytic form

A, =ce—°/8" (3.16)
then from (3.15)
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FIG. 14. Finite-size scaling analyses of the SSH model, n=1. Lattice size times phonon order parameter is plotted vs g.
(a) MC results for the case w=1. The curves are expected to come together at the transition point. (b) Exact results for

the static case, for comparison.

d(1/g2)

dInN

and we expect a=m/2n in the static limit and
a=m/2(n —1) in the Gross-Neveu regime [Eq.
(2.46)]. In practice, we will do finite changes in both
N and g. If we have then a system of size N; at
coupling constant g; and a system of size N, at cou-
pling g, such that

1 (3.17)
a

NiAy (81)=N,Ay,(8,), (3.18)
we expect
1 1 2n N

LAyt (3.19a)
gl g 7T N,

in the static limit, and

1. N
1l =D, (3.19b)
g3 T N2

o
—f

in the Gross-Neveu regime. We expect Eq. (3.19) to
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FIG. 15. Lattice size N times phonon order parameter
vs N on a log-log plot for the SSH model, n=1. (a) MC
results for the case w=1. The lines are expected to be-
come horizontal at the transition point. (b) Exact results
for the static case, for comparison.

be valid even in regions where the correlation length
is larger than the lattice size.

In Fig. 13 we show In(NAy) vs 1/g? for lattices of
size N=L =24, N=L=12, and N=L=8. It is
difficult to obtain the gap directly from the MC
simulation, so we obtained it from the phonon order
parameter through the relation

A=4gm, . (3.20)

This relation is valid in the static limit and also in
perturbation theory to the one-loop order. We show
in Fig. 13 MC results for o=1 (a) and exact results
for the static case (b) for comparison. If the lattice
was infinite, we would obtain straight lines for the
small coupling constant of slope

T

m = (3.21a)

in the static case, and

T
T 2n—1)

if we are in the Gross-Neveu regime. Although the
curves in the case =1 appear steeper, it is difficult
to determine whether (3.21a) or (3.21b) holds. The
reason is that for small g, finite-lattice effects set .in
and the slope becomes smaller than (3.21), while for
large g one is outside the scaling regime and the ex-
ponential behavior for the gap no longer holds [the
slope becomes larger than (3.21b) in the static case].
A better indication of the different behavior is given
by measuring the horizontal distance between two
curves for different N. In the static case this dis-
tance is given by Eq. (3.19a) for small g, and it be-
comes somewhat smaller for larger g presumably
due to irrelevant operators, as seen in Fig. 13(b). In
contrast, for the w=1 case we find the distance for
small g to be given approximately by (3.19b), indi-

(3.21b)
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cating that we are in the Gross Neveu regime. For
larger g the distances become larger in this case,
presumably because the dominant irrelevant opera-
tor is produced by the finite mass, and it causes the
behavior to approach the M = « behavior.

We now discuss briefly the spinless case n=1.
According to the results of the preceding section, we
expect here a transition from an undimerized state
at a finite value of the coupling constant g. Again
we concentrate on one particular case, o=1. We
computed space and time correlation functions on
different size lattices, and obtained the phonon order
parameter from the time correlation functions by
the procedure discussed previously. We find the
electronic charge-density wave to reside always on
the bonds. Figure 14 shows the phonon order
parameter times the lattice size versus coupling con-
stant. For clarity, we show only the statistical errors
of the MC points for g=1.2. The relative error in
the MC data increases somewhat as g is decreased.
Assuming finite-size scaling [Eq. (3.13)] to hold, and
if the relation between the gap and the phonon order
parameter m,, is given by Eq. (3.20), we expect for
m,, on a finite lattice the behavior

1

m,= NgF(NA‘”) . (3.22)
Therefore, curves of Nm, vs g should come together
at the transition point, where A _ vanishes. From
Fig. 14 we see that the curves come together some-
what below g=0.8 for w=1. We also show for
comparison the exact results for the static case.
Here, even though the transition occurs at g=0, the
curves appear to come together somewhat below
g=0.4 because we are dealing with an essential
singularity. Much larger lattices would be needed to
notice the difference between the curves below
g=0.4. Nevertheless, the difference between the

cases =1 and w=0 is evident, although it is diffi-
cult to estimate the precise location of the transition
point.

In Fig. 15 we have plotted the same data in a log-
log plot versus N for various g. In the ordered re-
gion the slope of these curves should approach unity
as N becomes larger than the correlation length.
But even before that happens, the curves will have a
positive slope in the ordered region. At the transi-
tion point, Nm, becomes independent of N. Again
from the MC data plotted in this form it appears
that the system undergoes a transition for g some-
where between 0.6 and 0.8. Again we show the stat-
ic results for comparison, which show a positive
slope for all g.

While this paper was in the process of being writ-
ten, we became aware of a longer version of the pa-
per of Campbell and Bishop [Nucl. Phys. B 200 297
(1982)]. In this paper they found, independently
from our result, that the polaron disappears from
the spectrum as M —O0 in the spin-% model via the
connection with the Gross-Neveu model.
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