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The "true" self-avoiding random walk is defined as the statistical problem of a traveler

who steps randomly, but tries to avoid places he has already visited. %'e show that this

problem is different from the problem of a self-repelling chain (polymer problem). Most
striking is perhaps the fact that the upper critical dimensionality of such a walk is 2.
Renormalization-group theory is applied to compute logarithmic corrections to ordinary
random-walk behavior in two dimensions. The theoretical predictions are confirmed by
computer simulations.

I. INTRODUCTION

Recent literature has created a situation in which
the expression "self-avoiding random walk" is con-
sidered synonymous with the problem of polymer
statistics (chain with excluded volume). This is due
to the fact that this expression has been used uncriti-
cally in a number of bona fide studies of polymer
statistics, ' the underlying implicit assumption be-

ing that the two problems are very intimately relat-
ed, if not identical.

A natural definition of a self-avoiding random
walk may be a walk in which the traveler tends to
make random steps, but avoids regions of space
which he has already visited. In the statistics of a
self-repelling chain one considers instead all possible
configurations of a chain of a given length, giving
them as a weight a Boltzmann factor with a poten-
tial energy proportional to the number of self-
intersections. ' (More precise definitions are given
in the next section. ) We wish to point out in this pa-
per that, contrary to the common belief, these two
problems are different and belong to different
universality classes; in particular, their upper critical
dimensionalities are different. Since the statistics of
the self-repelling chain is equivalent to the n~0
limit of a O(n) symmetric P field theory, ' the
upper critical dimensionality of this problem is 4.
We will show that it is 2 for the self-avoiding walk.

The self-avoiding random-walk problem is de-
fined in Sec. II where it is contrasted with the self-
repelling chain problem. A heuristic identification
of the upper critical dimensionality of the self-
avoiding walk (d, =2) and its comparison with the
Flory result for the self-repelling chain (d, =4) are
expounded in Sec. III.

A continuum approximation to the self-avoiding
walk is introduced in Sec. IV and analyzed in the
following sections. In Sec. V the relevant parame-
ters are identified on the basis of dimensional
analysis; in Secs. VI and VII relevant Ward identi-
ties are investigated. A perturbation expansion is in-
troduced in Sec. VIII, where the upper critical
dimensionality is derived from a Ginzburg-type cri-
terion. A renormalization scheme for this expansion
is proposed and applied in Secs. IX and X to the
determination of the asymptotic behavior of the
walk in two dimensions. These results are compared
with computer simulations in the last section. Ap-
pendixes A and B contain some details of the com-
putation.

II. DEFINITIONS

We define the "true" self-avoiding walk as fol-
lows: Suppose that the walk takes place on a simple
cubic, d-dimensional lattice, with the traveler start-
ing from the origin at step zero. At any step the
traveler may move to any of the 2d nearest neigh-
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bors of the lattice site he is at. The probability of
stepping to site i depends on the number of times n;
this site has already been visited and is given by

2cf

g e '
, (2.l)p; =exp( g—n; )

where the sum. runs over all 2d nearest neighbors of
the current position of the traveler, and g is a posi-
tive parameter which measures the intensity with
which the walk avoids itself.

A few comments should be made concerning this
apparently simple-looking formula. (a) The sum
over i of p; is equal to 1, meaning that the traveler
never stays at the same point. (b) Each time a step
is taken the n; are modified. (c) The p s depend not
only on the point where the traveler is, but on the
entire past history of the walk. The probability of a
given walk of N steps is the product of the p s for
each step. It does not just depend on the configura-
tion of the walk; it also depends on where the start-
ing point is (see the example at the end of the sec-
tion}.

In contrast, the relative probability of a given con-
figuration of a self-repelling chain depends only on
the distribution of n; s in that configuration. It is
simply given by'

8~exp —g'gn;

where i runs over all the lattice.
To see the difference between the two problems

more concretely we consider short walks, of N steps,
in two dimensions in the limit g~aa. In the self-
repelling chain problem, only configurations which
do not intersect themselves are allowed in this limit.
Allowed configurations of equal length have equal
probabilities. (See also note added in proof. )

Self-avoiding configurations with their corre-
sponding statistical weights are shown in Fig. 1.
Only a quarter of the configurations are shown,
since the others might be obtained by a rotation
about the origin. Up to %=3 the number of al-
lowed configurations (up to rotations) is 3(~ " for
either problem, each configuration having weight
3 ' ". The difference appears at N =4. The two
diagrams marked with a star at E =3 generate only
two self-avoiding configurations of the next step,
while all other diagrams generate three configura-
tions each. This is shown in Fig. 2, which shows the
fate of the upper five diagrams of the N =3 column
of Fig. 1. The total number of configurations is
therefore (up to rotations) 2&&2+3X7=25. In the
self-repelling chain problem each such configuration

1

has the same weight, namely». In the self-

r '/

1/g

)(g

1/g

(„) 1/g

1/g

N=2 N=3

1/g

FIG. 1. Self-avoiding walks (up to rotations) with their
statistical weights for N =1,2, 3.
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FIG. 2. Self-avoiding walks generated by the upper
five walks of the N =3 case (Fig. 1) with their statistical
weights.

avoiding walk problem the "starred" configurations
have a weight I/(2)(9) = », while the remaining di-
agrams have a weight I/(3)(9)= —„. One sees,
therefore, that the statistics of the two problems are
already different at N =4.

One may also remark that the first diagram on
the left of the first row of Fig. 2 differs from the
rightmost diagram in the third row of that figure
only by a rotation and by the position of the starting
point. Their weights are different in the self-
avoiding walk problem. Things go in the same way



27 ASYMPTOTIC BEHAVIOR OF THE "TRUE" SELF-AVOIDING. . . 1637

for the second diagram of the first row, and the first
diagram of the fourth row.

The difference which appears in this example is
purely a difference of statistics. There is, of course,
another difference between the two problems in the
g» 00 limit, namely, some self-intersecting configu-
rations are allowed for the self-avoiding walk
whereas they are not for the self-repelling chain. In
fact, since the traveler must move at each step, if he
finds himself at a site whose neighbors have all been
already visited, he will have to move to one of these
sites at the next step. However, in the example we
have shown that such a situation does not arise.

III. HEURISTIC CONSIDERATIONS
ON THE ASYMPTOTIC BEHAVIOR

We now estimate the asymptotic behavior of RN
for large N. If the walk were not self-avoiding
(free), one would, of course, have Rtt ~ N. The num-
ber S(N) of self-intersections of such a walk is of
order N2/RN Henc.e for a free random walk
S(N) ~N2 "~ . In the self-avoiding walk we may
imagine that the traveler makes a detour each time
he would have crossed his steps in a free random
walk. This operation is likely to increase RN. We
obtain, therefore, the following estimate:

Rtt ~N+const[S(N)]=N+const(N "~
) .

(3.1)

The correction due to the fact that the walk is self-
avoiding is asymptotically negligible for d &2 and
inay alter the asymptotic behavior for d &2. Equa-
tion (3.1) gives the correct asymptotic behavior for
d+2.

For the self-repelling chain RN may be obtained
by the Flory argument. In order to obtain R~ one
looks for the ininimum of a generalized free energy

F ~ RN/N+const(N /RN), (3.2)

where the first term is the entropy contribution,
while the second term (proportional to the number
of self-intersections) is the energy contribution.
Thus one arrives at the Flory result RN ~ N +

for d &4. It is clear that the two problems have
rather different properties: Deviations from the free
case are obtained when $(N) oc N~ with a &0 for
the chain problem, while a&1 is needed for the
walk.

IV. THE CONTINUUM APPROXIMATION
TO THE WALK

At very long times the density of visited points in
the lattice approaches a continuous function, with
well-defined gradients at every point. In such a situ-

P[g]d[rt] cc exp — f rt (t)dt d[g] .

(4 2)

The density p(x, t) varies whenever the walk crosses
the point x at time t. Therefore,

p(x, t)=5(x —R(t)) . (4.3)

Typical initial conditions would be

p(x, 0)=0, R(0) =0 . (4.4)

When g vanishes (4.1) and (4.2) describe a free ran-
dom walk The presence of the interaction term
gives preference to the direction in which p de-
creases.

To make contact with the definition of the walk
on the lattice, as given in Sec. II, we consider a
discretization of the above equations. Making
discrete equal-time steps Eqs. (4.1) and (4.2) give the
probability for a step b,R,

P(hR) a: exp[ E(hR+gV—p) ] . (4 5)

hR are steps to nearest-neighbor sites on the lattice;

p is proportional to an average of n over a few sites.
Expanding the square in the exponent we have

P(hR) &x exp —E[(hR) +g (Vp) ]

&&exp( 2Egb, RVp) . — (4.6)

Since
~

hR
~

is fixed, the first factor is independent
of the step chosen. It is absorbed in the normaliza-
tion constant. It is the last factor which will
discriminate among the different possible steps.

The exponent in this factor—b,R V'p—is propor-
tional to the difference of p across the step,

exp[ —It"(pR+ha pR )]

exp( &'p~+as»—
which is related to Eq. (2.1).

V. DIMENSIONAL ANALYSIS

In natural units, p and 5 in Eq. (4.3) have the
same dimensions L ". Hence there should have
been a rate coefficient on the right-hand side of Eq.

ation the walk can be approximated by a stochastic
process of the variable R(t), which develops, as a
function of the time t, in a space of d dimensions ac-
cording to

R(t) = rI(t) gV—p(R, t), (4.1)

where rl (t) is a stochastic d-dimensional vector with
a Gaussian distribution of width D. Namely, the
distribution of g is
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(4.3). This coefficient is absorbed into the units of t
If D is chosen to be dimensionless, comparing the
dimensions of ri in Eqs. (4.1) and (4.2), one finds
that

[t]=L',
as is common in random walks. One is then left
with length as the only scale and with one-
dimensional parameter g. In fact,

(5.2)

Already at this level the special role of d=2 is
transpiring. It is there that the coupling constant
becomes dimensionless. For d & 2, g is relevant, and
it is irrelevant for d &2. This parlance is appropri-
ate, of course, to a local field theory. Here, since we

have not succeeded in constructing such a field
theory, which generates the averages of the various
quantities associated with the walk, it is used some-
what loosely. But, as we shall see, the expansion in
powers of g justifies it.

VI. STATISTICAL AVERAGES
AND A WARD IDENTITY

The typical quantities one would like to compute
in the problem are the time dependence of averages
(over r)) of quantities such as R (t), R (t), p(x, t),
etc. For every distribution of the stochastic vector
rt we have, from Eq. (4.3), the identity for the spa-
tial Fourier transform of p,

p(p, t)=exp[ —ip R(T)] . (6.1)

This is our basic Ward identity.
From (6.1) one has, for each walk,

b, (p, t,g,D) =b(pD'~, t,gD +'~, 1}

Z—(pD'~ t gD +'
) (7.1)

where e =2—d. Using the identity (6.3), one con-
cludes

G~n~(t g D) —D "G~n~(t gD « I)

=DnG'n'(t, gD 2+nl2) (7.2)

VIII. PERTURBATION EXPANSION
AND UPPER CRITICAL DIMENSION

Consider Eqs. (4.1)—(4.3) with D = 1. The formal
expansions of R(t) and of p(p, t) are

R(t) =Ra(t)+gR &(t) yg R&(t)+, (8.1)

P(Pet)=PO(Pet}+gP~(Pet) ~g Pz(pet)+ ' ' '

(8.2)

To prove Eq. (7.1) one makes the transformation

x +D' xorp +D ' p,
R~D'/2R,

g ~D'
D —d/2

The new variables satisfy Eqs. (4.1)—(4.4) with D = 1

nd g gD -'+'"
From (7.1) and (7.2) it follows that the actual ex-

pansion parameter, in a perturbation expansion, is

gD + rather than g. These equations will also
serve as a starting point for our renormalization pro-
cedure, in the absence of an underlying field theory.

[R'(t)]"=(—Vp Vp)"p(p, t)
~ p=o.

Taking averages on both sides, one finds

G(n)(t)=([R (t)]n)

(6.2)

(6.3)

Using (6.1) and (8.1), one has

po(p, t) =exp[ —ip.RO(t)],

P~(P, t) = —iPo(P, t)[P R~(t)],

P2(P t) = —po(p, t)[ p Rz(t) ~ —,(p R&) ]

(8.3a)

(8.3b)

(8.3c)

in which the angular brackets indicate average over

g. We have, in particular,

(6.4)

which will prove quite useful below.

VII. DEPENDENCE ON PARAMETERS

A priori 5 and 6'"' are functions of the variables

p and t, as well as of g and D. In fact, Eqs.
(4.1}—(4.3) imply that this dependence on g and D is
constrained. One has

From Eq. (4.2) we have
t

Ro(t) = f rt(t, )dt, ,

t

po(p, t)=exp ip rt(—t&)dt&

Hence

t
d (ptl (eexp

—i p, f=xl( t, )

=exp( p t)—
(8.4)

(8.5)

(8.6)
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and the Laplace transform with respect to t is

4o(p, p, )=(p'+)u) '. (8.7)

G (t) =2dt,
G' '(p)=2dp

(8.8a)

(8.8b)

Substituting into (6.3) one finds the familiar result
for the free random walk,

At first order Eqs. (4.1) and (4.3) give

t) t)
Ri(t}=—f dti~po[RO(ti), ti]= f dq( —iq) f dti f dtiexp iq f ri(ts)dt3

Substituting (8.5) and (8.9) into (8.3b) and performing the average over rt one has

~i(p, t) =— dq(p q) dti dtzexp[ —p'ti —(p —q) (ti —tz) p(t —t—i)] .
0 0

(8.9)

(8.10)

The Laplace transform reads

2

&i(p,p)= —,, f (q'+p) '.
(p'+~'

The notation f stands for
q

f = f [24 'md~ r( —d)]d q
q

(The powers of the proportionality constant are ab-
sorbed in a redefinition of the coupling constant. )

Up to first order in g one finds

2

&(p,p) =(p'+ p) ' g, —, I(p }(p'+p)'

(8.11)

(8.13)

with

I(p}=f (q +p)
=~-'r(1 —~n)r(1+~a)i -'", (8.14)

IX. RENORMALIZATION OF THE THEORY

The perturbation series can be analyzed, as usual,

by considering the dependence on the microscopic
length —the ultraviolet divergences. The integral I,
in (8.13), has just such a divergence for d & 2. It is
logarithmic at d=2, which is represented by the
factor of e ' in (8.14). In second order in g one
finds both e and e ' singularities (see Appendix
B).

where the integral was computed by analytic con-
tinuation in d. '9 The asymptotic behavior at long
times is determined by the behavior of b,(p,p) for
small p. Hence e =0—two dimensions —separates
between a theory in which h(p, p) is asymptotically
dominated by the free term (d &2, e &0} and by a
nonclassical one (d &2, e &0).

From (8.13}and (6.2) one has for G' ', or (R ),

G (p)=2diu ~[1+2gI(p)]+O(g ) (8.15)

Here again, G' ' behaves asymptotically as p (as
@~0) if d&2. The second term dominates for
d & 2. To reconstitute the dependence on D one em-

ploys (7.1}and (7.2).

1 1 5Dp

(D+5D)p'+p Dp'+p (Dp'+p)'

(9 1)

At first order this is all the renormalization that is
required. A renormalization of D, making 5 finite
to first order, ensures that all G'"'s are finite at this
order, due to (6.3).

At second order one finds that g has to be renor-
malized as well. The explicit calculation of the re-
normalization at second order is outlined in Appen-
dix B. The procedure chosen is minimal subtraction
of the e poles. ' The results can be summarized as
follows:

gD =K uZg ( u ),
D =DRY(u) .

(9.2a)

(9.2b)

In these equations u is a dimensionless renormalized
coupling constant (see, e.g., the end of Sec. VII).
The parameter ~ is arbitrary and has the dimensions

To follow a well-trodden path we proceed to re-
move these ultraviolet singularities by a renormali-
zation of the parameters, and then to derive and
solve renormalization-group equations. Since, how-
ever, we have not been able to find a field theory (or
a path-integral formulation) which would generate
G "' and 5, the procedure we employ is not firmly
established to all orders in g. It is, however, explicit-
ly verified to second order, and it is very plausible
that it applies at all orders.

In attempting to renormalize 6 we turn to Eq.
(7.1). There are three candidates for multiplicative
renormalization: the coupling g, the diffusion con-
stant D, and the scale of b. Equation (6.4) excludes
a change in the scale of b. Hence one is left with
two parameters to renormalize.

The structure of the second term in (8.13) dictates
a renormalization of D, since the only way to elim-
inate a pole in e with residue p (Dp +p, ) is
through
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of p (length ); Z„and ZD are the renormalization
constants. They are given by

One can also derive an RGE for the fluctuations
of G' ' or (R ) . Namely, one can define

Z„=1+ u,5

26
(9.3a) g (G{4) G{2)2)/G{2)2 (10.5)

1
ZD ——1 ——u . (9.3b)

The function

b, tt (p,p, u, Dt{,a) =b,[p(D~ZD), p, a uZ„, 1]

(9.4)

is finite, when considered as a power series in u.

This function is dimensionless and has no
anomalous dimensions. Hence asymptotically, it
behaves like the free ratio, with ln

~

lnt
~

/lnt correc-
tions. The numerical simulation described in the
next section is intended to test two predictions: first,
the behavior (10.4} without the correction A and
second, the behavior of the fluctuations.

XI. COMPUTER SIMULATIONS

X. RENORMALIZATION-GROUP
AND ASYMPTOTIC BEHAVIOR

The functions A~ and G~"' satisfy
renormalization-group equations (RGE). ' " Typi-
cally,

K +p(u } —y(u) GtI (t,u, D~, a ) =0,
BK Bu

with

(10.1)

p(u) =)~ = ——,au+ —,u
Bu 1 5

bare()K
(10.2)

1

y(u) =a. 1nZt) = —,u .
K bare

(10.3)

G~{ (t)-t(lnt)'" 1+2 ln Ilnt
lnt

(10.4)

where the 0.4 is the ratio of the coefficient of u in
y(u} to that of u in p. A is a universal constant,
which depends on the coefficient of u' in p. It has
not been computed.

As has been anticipated from the discussion of
Secs. VI and VIII, the form of p is qualitatively
similar to that of p of a p theory near four dimen-
sions. The long-time behavior of the theory for
e &0 (d &2) is dominated by a nontrivial, infrared
stable fixed point. Above two dimensions it is free,
and at d =2 the walk becomes asymptotically free at
a logarithmic rate. One can then expect logarithmic
corrections to the classical behavior of the walk,
which can be computed exactly.

The solution of the RGE for e =0 has the
form 12 14

In order to test the validity of our predictions [Eq.
(10.4)] we have performed computer simulations on
a square lattice for the self-avoiding walk —as de-
fined in Sec. II—for different values of g. We have
generated walks of N=2' steps starting from the
center of a 1600&(1600 lattice. We have checked
that none of our walks hit upon the boundary of the
lattice. Our program (which was not particularly
optimized) was rather fast, taking about 3 s of cen-
tral processor unit time of a VAX 71/780 to gen-
erate one walk. We have extracted 4000 walks at
g=0. 1, 2000 at g=0.3, 5676 at g=l, and 300 at
g = 00, and we have computed Rz and Rz averaged
over the different walks. We would expect, for very
large N,

ln(R)v/N)-a lnlnN .

However, although our walks are rather long, ln ln2V

only ranges from 0 to 2.3 and it is not easy to ex-
tract the value of u with reasonable accuracy. We
have therefore preferred to check whether the data
are consistent with (10.4), which implies

(R /N)v} —ln(N/N{) )

X [1+2 lnln(N/No)/ln(N/N ) ],
(11.2)

where the prefactor Np is an increasing function of
g. The data for g=0. 1, 0.3, and 1 are shown in
Figs. 3, 4, and 5, respectively. The agreement with
theoretical expectations is rather satisfactory. The
asymptotic behavior is reached for values of E
which increase with g, thus refiecting the increase of
%0. The data for g = 00 are better fit by
R~/N ac in% in the region we have examined. This
is likely to be due to a delayed asymptotic behavior,
but the possibility of an unstable fixed point at
g = oo cannot be ruled out.

We have tested the asymptotic freedom of the
model in the infrared limit by plotting
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2
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3 4 5 6 7 8 9 10 ll 12 13 14 ln2N

FIG. 3. (R&/N) ' vs ln2N for g = 1. Average over 5676 walks. Errors are mean-square deviations.

(2—Q)lnN =u(N), (11.3)

where Q is defined by Eq. (10.5). In an ordinary
random walk Q should be equal to 2; one therefore
expects u(N) to go to a constant for large N if the
distribution of the endpoints of the walk is essential-

ly Gaussian. The results for g =1 are shown in Fig.
6. The errors can be estimated from the scattering

of the points. The data seem to agree with the pre-
diction Q~2+ const/InN.

Note added in proof. Dr. S. Redner has brought
to our attention the paper by M. N. Rosenbluth and
A. W. Rosenbluth [Phys. Rev. 23, 356 (1955)], in
which the difference between random walks and
polymers is recognized. The special features of the
random walk are then suppressed and polymer
statistics are studied.

2
2.5

R

N

g=0.3

I

5 6
I

10
I I

12 13
I

14 In& N

FIG. 4. (R&/N )
' vs ln2N for g =0.3. Average over 2000 walks.
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FIG. 5. (R~/N) ' vs ln2E for g =0.1. Average over 4000 walks.
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FIG. 6. Plot of v =(2—(Rz ) /( R~ )2)lnqN vs In2N for g = l.
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APPENDIX A

In order to obtain the term proportional to u in P one must compute the first nontrivial term in Z„. In or-
der to do this we chose to calculate G' '(p, ) to order g2 (two loops). The structure of the series has the general
orm

G&2l(&)=D~-' Go+ G, (gD '+' )P —' +,G2(g& )P (Al)

The procedure we adopt is to eliminate, by minimal subtraction, e pales with residue 1 and with residue in@.
In (Al) we replace D and g by (9.2) and write

Zg = 1+QgQ

Zg) = 1+QDQ +by)Q

(A2a)

(A2b)
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The result is

Gaz' —Dap,
—z[GO(1+a~u+bDu )+e 'G&u(1+a„u )(1+aDu )(1—, e—In@I&)

+& Gzu (1—elnp, /a)]

=Day z
I GO+u(GcaD+G&e }+u [GpbD+G]e '( a„+aD) +Gz& ]

—[—,G, {a„+aD)+E 'Gz]lnij/~ J + (A3)

where the ellipsis represents finite terms.

The term of order u gives

6)aD=-
Goe

(A4)

26'a„=— —a~ .Q G
(A5)

Expansion of I(u)—Eq. (8.14)—in powers of e gives

1(p)-—p ' +O(1) (A6)

The term of order u, and proportional to In@/a,
gives a„,

A lengthy but straightforward computation (Ap-
pendix 8) gives

Gz ———3+4@+0(e ) .

Inserting (A8) into (AS) one finds

5au=
2E'

(A8)

(A9)

One could proceed to compute bD from the term u

in (A3), but it is of no interest for our present pur-
poses.

APPENDIX 8

Here we indicate a few of the steps involved in the
computation of G' ' to second order in g. From
(8.1) one has

Together with (8.15) one has

Gp ——4+O(e) =Gi,
and hence

ag) =—

(A7)

R (t)= Ro+2gRp. R]+g (R)+2Ro Rz)

+O(g') . (Bl)

Ro is given by (8.4) and R
&

is given by Eq. (8.9).
From Eq. (4.1) it is clear that to compute R to

second order in g we need p(R, t) to first order. This
has two contributions. One can write

p(R(t), t)=po(Re(t)+gR({t)+, t)+gp)(RO(t)+ ' ', t)+O(g )

=po(RO(t), t)+g[Ri ~po(Ro)+pi(Ro)]+O(g') .

Rp is given by Eq. (8.4) and po(R0(t), t ) is, by (8.5),

dd
po(Ro, t)= f dt, f &exp ip f rt(tz)dtz

0 (2~}~

(82)

The function p~ is obtained from (4.4) by expanding the 5 function in powers of the g dependence contained in
R(t). Hence

p&(x, t)= —f dt~R~(t~) f ip exp i p x —f ri(tz)dtz (84)

Inserting (82) in Eq. (4.1) one finds

Rz(t) = —f dt& V'[p&(RO(t&))+R&(t&) Vpo(RO)] . (85)

Inserting (8.9) and (BS) in (81) one can proceed to calculate {R } at second order by computing the average
over g.
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As an example we follow the calculation of the first of the two terms, namely (R1 &. The calculation of the
second term —(Ro R2&—is very similar.

t f3 t) t3
(R', (t)&= —f f (q, q2) f dt, f dt2 f dt, f dt, exp iq1 f rt+iq2 f (86)

There are six possible time orderings of t1, t2, t3, and t4, inside the interval (O, t). They are depicted in Fig. 7.
To the right of each time ordering is the corresponding average, which enters (86).

Clearly, when (a) and (f) are integrated over q; they vanish. The other four terms are convolutions in t;, and
their Laplace transform has a simple form,

I P b 1 O' P's s q1q2
(

2
)(

2 )[( )2+
(R'( )& =(R'( )& = — '

( ) (87)

Note that we have taken D = 1;

«', (i )&, =«', (p, )&,= —p,
-' f f (q, q, )

1

(q1+) )'[(q1+q2)'+el
(8&)

The integrals in (87) and in (88) are dimensional-
ly regularized. Their divergent parts can be ex-
pressed in terms of the integral I, defined in Eq.
(8.14).

Thus

(88)= p I—
where

(810)

(811)

(87)=1u '[I'+p( )]

where the ellipsis represents finite uv, and

(89)
This notation stems from the fact that the reconsti-
tution of D amounts to multiplication by D of the q
in the propagators.

The second term entering G' ' at second order in

, 2

q&

e"P[—q1(t1 —t2) q2(t3 t4)]

t2 t3 t~i
qg+%z

(b) exp[ —q1( 1
—t3)—(q1+q2)'( 3

—2) —q2( 2
—4)]

t~ t2 tl t3
qz+qz qz

(c) P[ —q2( 3 1) 'q2( 2 4) (ql+q2)'(tl 2)]

(d) exP[ —q1(tl —t3)—q 1(t4—t2) —(qi+q2)'(t3 —t4)]

ql.~z qz

(e) exP[ q2(t3 tl ) (ql +q2) (tl t4) ql(t4 t2)]

exp[ —q1(t1 —t2) 'q2(t3 t4)]
2 2

FIG. 7. Six possible time orderings of t ~, t2, t3, and t4, inside the interval (O, t ).
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g is the average of Rc R2—Eq. (Bl). Here we write
only the final result

'2

where the ellipsis stands for uv finite terms and
where d is the number of space dimensions, and

r) I 1 r)I
(Rc R2) =—2' I

QD d BD
+ 1 ~ ~

(B12)

a'I
q4 q2+ —3 (B13)
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