
PHYSICAL REVIEW B VOLUME 27, NUMBER 1 1 JANUARY 1983
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A detailed study of the mixed state of the ferromagnetic rare-earth compounds RRh+4,
A„Mo6S8, and R„Mo6Se6 is presented. The saturation effect of the magnetic moments is

taken into account. Depending on the parameters, there are many types of phase transitions

between the type-II/2, type-II/1, and type-I mixed states and the paramagnetic Meissner

state, ferromagnetic Meissner state, spin-periodic Meissner state, and the self-induced vortex

state. It is predicted that the magnetization can exhibit a variety of unusual modes.

I. INTRODUCTION

The discovery of the magnetic transition from the
superconducting state to the ferromagnetic state in
ErRh48q (Ref. l) and Hoi 2Mo6Ss (Ref. 2) has
motivated many physicists to examine in detail the
mechanisms at work in such magnetic and super-
conducting systems. In a previous paper we
presented a model where the superconducting elec-
trons are the 4d electrons of Rh or Mo, and the
rare-earth ions carry the magnetic moments which
interact among them through the indirect coupling
induced by the 5d and 6s electrons of rare-earth
ions. The spin-dependent interaction between the
superconducting electrons and the rare-earth ions is
known to be relatively weak. In this model, the
electromagnetic interplay between the superconduct-
ing electron system and the magnetic spin system
becomes important; the ferromagnetic nature of the
spin system and the diamagnetic nature of the su-

perconducting system compete through the elec-
tromagnetic interaction. The diamagnetic nature,
arising from the Meissner current, tends to shield
the spin magnetic moment, while the ferromagnetic
nature tries to correlate the localized spins. Many
phenomena can be understood in terms of these two
effects and several predictions have been made; these
are the presence of the spin-periodic phase, '" super-
conducting domain wall, ' self-induced vortices, '
spontaneous surface magnetization and the oscillato-
ry penetration of the magnetic field, "and the strong
shielding of the forward neutron scattering. ' The
Meissner-type shielding of spin fluctuation can be
verified by the measurement of ultrasonic attenua-
tion. ' Experiments of this kind have been success-
fully performed. '

As for the possible phase in the bulk system, it
was pointed out that, even at H =0, the paramagnet-
ic Meissner state, the ferromagnetic Meissner state,
the spin-periodic Meissner state, the self-induced
vortex state, and the ferro- (or para-) magnetic nor-
mal state are possible, depending on the choice of
the parameters. ' ' In the mixed state, there is a
tendency of a type-II/2 superconductor changing to
a type-II/l (or to type-I) superconductor with de-
creasing temperature, since the magnetic ions
enhance the attractive interaction. '

In the previous paper, we used an approximation
in which the saturation effect of the magnetic mo-
ments is neglected. However, the latter effect be-
comes important at lower temperatures and can,
under certain circumstances, induce spontaneous
magnetization. In this paper, we take into account
the saturation effect of the localized spina in the
mean-field approximation and also present the more
detailed formalism, used in the analyses in Refs. 5,
9, 11, and 15. Several typical phase diagrams in the
H-T plane will be presented. '7

We calculate the electromagnetic field created by
vortices in the mixed state using a Maxwell-type
equation. Multivortex effects are taken into account
through the nonlinear intervortex interaction, the
strength of which can be determined from a thermo-
dynamical argument. Our analysis covers the entire
domain of the applied field, i.e., H, ) (H (H, 2. If
the s finteraction is c-omparable with the elec-
tromagnetic interaction, one should also consider the
pair-breaking effect of Cooper pairs and the spin po-
larization effect on the conduction electrons. Since
the s-f interaction is known to be weak, we may ap-
proximately include these effects through a renor-
malization of the various parameters, assuming that
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temperature dependence of the renormalization is
mild. A detailed estimation of the correction due to
s-f interaction is in progress.

The outline of the present paper is as follows: In
Sec. II, starting with a microscopic Hamiltonian, we
derive the Gibbs free energy of magnetic supercon-
ductors and the basic equations which determine
electromagnetic properties. The approximation
method used in this paper is explained. In Sec. III, a
simplified approximation is introduced. Various
critical fields are discussed in Sec. IV. Section V is
devoted to a discussion of the numerical calcula-
tions. Section VI summarizes the main results of
this paper.

II. THE FREE ENERGY
AND THE BASIC EQUATIONS

F( —i V } is defined through its Fourier transform:

F( —iV)exp(ik. x)=F(k)exp(ik x) . (2.l)

When the Fourier form of a function g(x) is given

by

g(x)= f d ke'"'"G(k}, (2.2}

the F( —iV)g(x} and F '( —iV}g(x}are abbrevia-

tions for

F( —iV)g(x)= f d ke'"'"F(k)G(k),

(2.3a)

F '( iV—)g(x)= f d ke'"'"F '(k}G(k),

(2.3b)

In order to make the present paper self-contained,
we present in this section a brief account of a deriva-
tion of the Gibbs free energy and a summary of the
basic equations.

In the present paper, we use the derivative opera-
tor notation such as F( i V)—The. operation of

I

respectively. We also use the notation

(x lF( —i V')
l y&

f d kF(k)exp[ik. (x —y)],
(2n. )'

which gives

(2 4)

F( —iV)g(x)= f d y 3 f d kF(k)exp[ik (x —y)]g(y)= f d'y(x lF( i V)
l

—y&g(y) .
(2n )

(2.5)

This shows that derivative operators act as nonlocal
form factors.

Since the purpose of this paper is to consider the
saturation effects of the spin system, we begin with
the microscopic Hamiltonian. As will be shown
later, the ground-state energy in Ref. 3 will be ob-
tained from this microscopic Hamiltonian in the
lowest-order approximation. In the present paper,
this approximation is avoided.

The Hamiltonian is given by

H(x) =g (x)eI i [V+(ie—/Ac)A(x)]}f(x)
—A,g, (x)g, (x)f,(x)f,(x)

W~(x)= B (x)—B(x) M(x)
8m'

——,M(x) yo( i V )M(—x), (2.8)

situated at the lattice point R„. The spin-spin in-
teraction yo is mediated by exchange interactions
other than the dipole interaction. (The temperature
dependent of yo will be neglected. }

For the purpose of computing the ground-state
energy, it is convenient to separate (2.6) into two
parts. The magnetic energy W (x} is given in the
Hartree approximation by

+ B (x)—B(x).M(x)
8m

——,M( x ) yo( i V )M( x ) . — (2.6)

while the electronic energy W, ( x } is defined by

));(x)=(0 () (X)x —i ()+ A(x) P(x)

Here e( k ) is assumed to be parabolic, e( k )
=(fi /2m)(k —kF), A(x) is the vector potential,
B(x) [—:V XA(x)] is the magnetic induction field,
and M( x) is the magnetic moment given by

M(x }=gps g S„5(x—R„), (2.7)

with S„being the localized spin, of magnitude J,

—kg, (x)g, (xHP;(x)Q, (x) Ol .

(2.9)

In (2.8) and (2.9), B(x), M(x), and A(x) are under-
stood to be c-numbers in the Hartree approximation;
they correspond to the vacuum expectation values

«lB(x}lo& «lM(x) lo& and «lA(x) lo&,
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respectively. When certain topological objects (such
as vortices) are induced, the electron field carries a
phase factor exp[if(x)]. Such objects are stable in
the superconductive state. (They are unstable in the
normal state. ) By extracting this phase factor from
g(x), one sees that A(x) and f(x) always appear in
the combination Af(x)=A(x) —(fir/e)Vf(x) in
the expression for the ground-state energy. This is a
result of gauge invariance. Quite generally, we can
write W, ( x ) in (2.9}in the following manner:

fV, (x)= —8'o+ J(Af(x}) Af(x)
2c

Z~(y) =sinh y
2J+1

2J
1

sin (2.14)

Here J is the spin of rare-earth ions. The fields
B(x ) and M( x ) satisfy the following equations:

V'XB(x)= J(Af(x)}+4vr V'XM(x),
C

TS(x)=TS,+ksTElnZJ((gpsJ/ksT)
~

H (x)
~

)

—H~(x) M(x), (2.13)

where S, is the entropy of the electrons and

+Ecore( (2.10)
(2.15)

where Wo is the condensation energy, J A(f(x)) is
the electric current, and E„„(x)is the remaining
part of the electronic energy density. We note the
following:

(i) Wo corresponds to W, for Af ( x ) =0.
(ii) The bilinear term of Af(x) appears only

through the J(Af(x)} term.
(iii) E„„(x) contains only terms higher than

second order in Af(x).
The term in linear A~ in the current J(Af(x)},

which we denote by j (Af( x }},has the form

I
M(»

I =gI s~&J((gl sI/4T)
I
H (» I }

M(x)((H (x) . (2. 16}

Equation (2.15) is the Maxwell equation. The elec-
tric current J (Af ) is given by (2.11) in the linear ap-
proximation. In Eq. (2.16), Bz is the Brillouin func-
tion. In the derivation of Eq. (2.16) use was made of
the mean-field approximation. The magnetization
M(x) and the mean field H~(x) should be parallel
to each other.

%hen the vortex lattice structure is specified and
the vortex density n is given, the free-energy density
becomes a function of n:

j (Af(x))= —AL (t)C( i V)Af(x)—,
C

(2.11)
Fr(n)= —f d x[8'~(x)+ 8', (x)—TS(x)] .

H~(x)=B(x)+yo( —iV)M(x) . (2.12)

The entropy S(x) of the system in the mean-field

approximation is thus given by
I

where A,L is the London penetration depth and
C( —iV) is a nonlocal kernel which is obtained
from the photon self-energy; t is the reduced tem-
perature T/T„with T, denoting the superconduct-
ing transition temperature. When C(k) is calculat-
ed in the one-loop approximation, it reduces to the
well-known BCS kernel, while the multiloop contri-
bution, evaluated in Refs. 18—20, includes a contri-
bution from the collective mode and leads to a gen-
eralized Pippard-type kernel referred to as the c
function.

We see, from (2.6), that the mean field experi-
enced by the magnetic moments is given by

Since

W~(x}—T[$(x)—S, ]

(2.17)

B(x) H(x)+-M(x). B(x)
8m.

—f dB'(x) M'(x),

with M'(x) related to B'(x) through (2.12) and
(2.16), a linear approximation for B '(x) and M'(x)
leads to the result

W (x)—T[S(x)—S,]= B(x).H(x),
8m'

which was used in the calculation of the magneto-
static energy in Ref. 3. When we eliminate
J(Af(x)) from W, (x) [cf. (2.10)] by means of the
Maxwell equation (2.15), F,(n ) in (2.17) is rewritten
as

F,(n)= —f d x n(x)P H(x)+ —,H (x) M(x) —ksTNlnZJ((gpsJ/ksT)
~

H (x)
~

)

H,
+Ecore( x }

Sm
(2.18}



27 MIXED STATES IN FERROMAGNETIC SUPERCONDUCTORS 161

where we have used integration by parts. The
second and third terms in (2.18) arise from the non-
linearity of spins and exhibit saturation effects.
Those terms become important especially when
spontaneous magnetization is induced. The quantity
n( x)P is given by

n(x)p= VXVf(x), (2.19)

with P being the unit flux hc/2e, H(x) is a local
magnetic field defined by

H(x}=B(x)—4n M(x), (2.20)

and H, /8m (=—Wp+ TS, ) is the condensation energy
obtained from the BCS theory. (Note that the s-f
interaction is neglected. } When a vortex is situated
at the origin along the third axis, f(x ) is given by

[P];i=5;J—(V;VJ/V ) . (2.25)

+y( —i V)M(x), (2.27)

Note that n(x}P is transverse. Then H(x) and
H (x) are given by

AL C( —iV)
[X]H(x) = n(x)P—V +AL C( i—V)

AL C( i —V)
4n— [W]M( x ),—V +EL C( i—V)

(2.26)

Ag C( i V—)
H (x)=

2 n(x)P—V +EL, C( i V—)

f(x)=tan '(xi/xi),
which leads to

VX Vf(x)=pe35(xi)5(x2) .
e

(2.21)

(2.22)

with

y( i V)—=y( i V)—

AL C( i V )——4~, , [~],—V +AL C( —i V}

The relation 7 X Vf (x)&0 manifests the topologi-
cally singular nature of the vortex. When the vor-
tices form a lattice and their positions are denoted
by g; =(g;i,g;2, 0), n(x) is given by

n(x)= g e35' '(x —g;) . (2.23)

When the current J(Af(x)) in the Maxwell
equation is approximated by the linear current
j(Af(x)), B(x) is obtained from (2.11) and (2.15)
as

C( i V )—
B(x)= n(x)P—V +AL, C( —i V)

4 p2
[W]M( x ),—V +AL C( iV)—

(2.24)

where [W] is the transverse projection operator and
is given by

y( i V)=—yp( i V)+4—n [W] .

(2.28}

(2.29)

Here we made use of Eq. (2, 12).
The exchange interaction in the normal state,

which we denote by y(k) [see (2.41)], is usually
parametrized as

(2.30)

where ec is the Curie constant given by
(gpB} J(J+1)/3kB. Since y(k) and the staggered
susceptibility X(k) of the normal state are related
through

X(k)=
T —e,y(k) T T+Dk—

then T~ is the Curie temperature of the normal
state and D the stiffness constant. When (2.26) and
(2.27}are considered, (2.18) gives

F,(n)= —I d x n(x)P.1 3 1

V v 8m

AL, C( i V) —H,
n(x)P — +E„„(x)+—,M(x) y( i V )M(x)——V +AL C( —i V)

(2.31)

The free-energy expressions of Eqs. (2.18} and
(2.31) imply the following two interpretations of the
mechanisms at work in the magnetic superconduc-

I

tors. On the one hand, Eq. (2.18) shows that the
vortex interaction is given by the magnetic field
H(x) and that the induced magnetization further
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reduces the free energy of the system. The latter ef-
fect permits in certain cases the formation of a self-
induced vortex state. On the other hand, Eq. (2.31)
shows that the spin-spin interaction is modified to
y( i—V ) by the shielding effect of the spin fluctua-
tions due to the Meissner current. An important
difference of this system from the fictitious homo-
geneous system with spin interaction y( i'V—) is
that the field

AL C( i V—)
b0(x) = n(x)P—V +AL C( iV—)' (2.32)

is no longer spatially invariant.
To calculate H(x) and E„„(x)in (2.18) including

all of the nonlinear effects of A/(x) is quite a diffi-
cult task. In order, therefore, to calculate the n

dependence (n is the vortex density) of the free ener-

gy from n =0 to n =n, (at H, 2), a certain simple ap-
proximation method is needed. Our approximation
method is formulated as follows: Suppose that we
know B(x) and E««(x) for a single vortex which
we denote b, (x) and e'«„(x), respectively. Owing
to the flux quantization, b, (x) is a well-localized
function. Therefore, when the vortices form a lat-
tice, we can approximate B(x) by

B(x)=g b, (x —g;) . (2.33)

The contribution from E„„,(x) to the free-energy
density is given by the integration in a unit cell of
the vortex lattice

nE„„(n)=— d x E„„(x).
Q n

(2.34)

Here it was considered that 1/0 is the vortex densi-

ty n. In the limit 0~ ao, the result is the core ener-

gy of a single vortex:

E„„(0)=J d xe'„„(x)=Ei . (2.35)

When Q&co, since E„„(x)is a functional of B(x),
we can expand E„„(x)in powers of b;„(x) defined

by

b;„(x)=g b, (x —g;),
i+0

(2.36)

5E„„(x)
E«„(x)=e,'„,(x)+ J d y

'
b;„(y)

5B(y)

+ t ~ ~ (2.37)

Since b, (x) is a well-localized function [i.e., b, (x)
is very small for

~
x

~
&g], e'„«(x) is also well lo-

which is the magnetic induction due to the vortices
outside the cell 0:

calized. Therefore, 5e'„„(x)/51,(y) can be rough-
ly approximated by a 5 function. Performing the
spatial integration of E„„(x),using the above ap-
proximations, we see that E«„(n) has the following
expansion

E«„(n)=Ei Eg—g b, (g;)+
i+0

(2.38)

Thus we see that the E2 term represents the non-
linear effect of multiple vortices. When the vortex-
lattice length is larger than g, we may ignore the
higher-order terms represented by the ellipses in
(2.38). We determine E2 by the requirement that the
phase transition at H, q is second order. In this way
the evaluation of the free energy is reduced to the
calculation of E~ and b, (x). [In Ref. 3, h, (g;), the
magnetic field, is used instead of b, (g;) in the
evaluation of the core energy. The above argument
shows that (2.38) is more appropriate, since b, (x)
damps exponentially while h, ( x ) does not.]

The argument until now holds true for any ap-
proximation method, provided b, (x) is well local-
ized with the well-known asymptotic form
Jta(r/AL ) for

~

x
~

&&g. Therefore, the detailed
quantitative differences between various approxima-
tion methods [such as the Gor'kov equation with the
random-phase approximation (RPA), the boson
method, etc.] originate from the behavior of b, (x)
(and therefore, of the single-vortex current) at

~

x
~

&g. The linear single-vortex current j given

by the boson method shows a reasonable behavior in

the sense that (a) it vanishes at the vortex center and

(b) it increases smoothly with increasing
~

x
~

until

it reaches a maximum at
~

x
~
=g, reflecting the ef-

fect of the collective mode. Therefore, we expect
that the b, used in the boson method should lead to
reasonable results in the evaluation of the free ener-

gy. The linear single-vortex current given by the
Gor'kov equation, with RPA, diverges at the center
because its kernel C(k) is the BCS kernel, which is

calculated only to one-loop approximation, and
therefore does not take into account the effect of the
collective mode. This indicates that the nonlinear
effect is of vital significance. When the nonlinear
terms of A/ are considered, the behavior of J for
the single vortex becomes rather similar to that of
the linear current j of the boson method (though
the increase of J at

~

x
~

& g at T=O is much
steeper than that of the current j calculated in the
boson method). Therefore, we expect that the b,
used in the boson method and that of the Gor'kov
equation with RPA should lead to qualitatively
similar results in the evaluation of the free energy.

Admittedly the evaluation of E~ has been crude
and semiphenomenological. ' However, since it has
led to a reasonable oualitative —frequently, quant-
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itative —agreement between theoretical results and
experiments for nonmagnetic superconductors, '
we use the same Ei in the present study of magnetic
superconductors.

In summary, the free energy is given by (2.18) and
the basic equations are (2.15) with (2.11) and (2.16)
with (2.12). The nonlinear effect of the vector po-
tential in the electronic energy E„«(x} is evaluated

by (2.38).
We now derive the free energy in the normal state.

In the normal state, the internal magnetic field is
equal to the external magnetic field:

H(x)=H . (2.39}

Therefore, the magnetization satisfies the usual
self-consistent equation

IMa I
=gI aJ&i[(g'paJ/kaT) I

H
I ] (240)

M(x) =mp+m(x),

H(x)=hp+h(x) .

(3.1b)

(3.1c)

Here n is vortex density. We now make use of the
linear approximation and consider only the lowest-
order effects of the deviations. In the following, we
assume that all fields are along the third axis, so
that we omit the arrows which indicate vectors. We
require that the average values satisfy (2.16):

mp =gpa JQP& I (gija J/ka T)[ng +y( 0 )m p] I . (3.2)

In this sense, the nonlinear effect (and therefore the
saturation effect) is considered only for the averaged
values np, mp, and hp. When we consider only the
linear terms in m, h, and b, (2.16) leads to

m (x)=X( i V—}h (x)

with

H~ =H+y( i V—)MII, (2.41)

where B=H+4m Ma is used and y( —i V) is given
by (2.30). The free energy of the normal state is
obtained from (2.17) by putting J ( x ) =0,
H, /8n. =0, E„„(x)=0,and B=H+4mM&. The
result is

where

X( i V) b( )
I+4m X( i V )—

X(—iV)=
T —ag Tm —uJDV

(3.3b)

(3.4)

H
F„(H)= — +F~(y, H)+ H B, (2.42)

ag ——[3J/(J + 1)]8~

XI(gpaJ/kaT)[ng+y(0)mp]j . (3.5)
where

F~(y, H) = —,y(0)MH

—kg TN lnZJ

x[(gpaJ/kaT} IH+y(0'MH I]
(2.43)

When (2.15) with (2.11) and (3.3b} are used, we ob-
tain

[ I+4m X( i V )]EL—C( i V, )—
b(x)= —V + [I +4m X( i V )]A,L

—C ( i V)—
We have

y(0)=T /ec. (2.44}
and

)& [n (x)P nP], — (3.6)

In this paper we neglected the weak s finterac--
tion (or assumed that the s finteraction -could be ap-
proximately included through a temperature-
independent renormalization). When the s-f interac-
tion is considered, II, /8m. , the c function, and
yp( i V)shou—ld b'e modified accordingly. A study
in this direction is now in progress.

III. THE APPROXIMATION

In solving the basic equations (2.15) and (2.16)
presented in Sec. II, we separate each field into its
spatially averaged value and its deviation as

B(x)=nP e3+ b(x), (3.1a)

AL C( i V')—
h(x)= —V' + [I+4~X(—i V)]A, CL( i V )—

)&[n(x)P nP] . — (3.7)

When we define the effective single-vortex field by

hg(x)= fd ke'"'"
(2m )

AL C(k)
k +[1+4mX(k)]EL, C(k)

(3.8a)
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(2.23) gives

[I+4@X(k)]AL C(k)
k +[1+4nX(k)]iLL C(k)

(3.8b)

F,(n)= [nP+h(0)]+F (y, n)
8+

H,' +nE„„(n},
8m

where

F~(y, n) = —,y(0)mo

(3.10)

h(x)= + gh, (x —g;},1+4irX 0
(3.9a)

—kg TiV lnzg

~ t (gV'B~IkB T}[nt) +y(0)mol j

b(x)= gb, (x —g;) —nP . (3.9b)

'x 5'"x— a x

With our approximation, the free energy (2.18) can
be calculated up to the second order in b, h, and m.
The contributions of b, h, and m to the second term
on the right-hand side of (2.18) compensate those to
the third term. Calculation of the first term in
(2.18) yields

—f d x n(x)P H(x)1 3 1

V 8m

(3.11)
and E„„(n)is the core energy defined in (2.34). Ac-
cording to (2.38), we have

E«„(n)=Ei —Ezb'"'(n) .

Here'

Rc P P 1

32e gz gz 8n. 4m

b'"'(n)= g b, (g;),
i+0

(3.12)

(3.13)

(3.14)

and, as discussed in Sec. II, E2 is determined ther-
modynamically. Finally, we have

H(x=0)
8a

[nP —4mmo+h (0}],
8m

2

F,(n)= g(n)+F (y, n)
ny
8m

m

g (n) =nP+h (0)+ei e2b'"—'(n),

(3.15)

(3.16)

where we have chosen one of the lattice points as the
origin of the coordinate system and used the periodi-
city of the spin lattice. Note that y(0) =yo(0) ac-
cording to (2.28) and (2.29). Then the free-energy
density is obtained as follows:

1

Q I8m' &~2 4m
'

plgn.(3.17)

When the vortices form a lattice, the lattice sum in
h(0) and b'"'(n) can be rewritten in terms of the
sum over the reciprocal lattice:

A,L C(K)
h(O)=ny g

g~o %2+ [1+4irX(K)]AL, C(K)
(3.18)

[1+4m.X(K)]&r, 'C(K)
b'"'(n) =nP 1+ z

—b, (0)
g~o K'+[1+4irX(K)]&l. C(K)

(3.19)

The approximation used in this section will be re-
ferred to as the linear approximation.

IV. CRITICAL FIELDS

2

G, (n)= g(n)+F (y, nP)—nP a,
8m 8~

nP
4a

(4.1)

The Gibbs free energy of the mixed state with an
applied field H is a function of vortex density n and
is given by

In particular, n=O leads to the free energy of the
Meissner state. Note that the Meissner state is not
necessarily homogeneous, since the periodic phase
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G~ ——F~ (y(P ),0)—H, /8m. ,

with

F~ (y(P), 0)= —,y(P)m p

—k~ TN lnZJ

(4.2)

which maximizes y(k) with respect to k (and there-
fore minimizes the free energy) is possible as was
pointed out in Refs. 5 and 6. In the isotropic case,
this periodic phase is the spin-spiral phase. A
strong anisotropy may change this to the spin-
sinusoidal phase. When the spin-spiral phase in the
Meissner state (n =0) appears, y(0) and mo in (3.11)
should be replaced by y(P) and mp, where P is the
value of k which maximizes y(k}. Then, the free
energy is

The result is

H(n)= —, 1+n g(n) —4n.m(y, n),1 C)

Bn

m (y, n) =gp&JNB&

(4.10)

X [(gpsJ/k~T)

&&[nP+y(0) m(y, n)] j . (4.11)

Note that y(0} and y(0) are related to each other
through

y(0) =y(0)+4~ .

The magnetization is obtained as a function of H
from (4.10) and

&([(gpss J/ks T)y(P)mp], (4.3)
4vrM(n) =nP H(n—) . (4.13)

y(P) =maxy( k ),
k

mp gpss JN—B—J [(gps J/ks T)y(P}mp] .

(4.4)

(4.5) A. Upper critical field H, 2 and E'2

This state appears below the critical temperature Tp
given by

T =Bey(P)

We require that, at the upper critical field H, 2,
the phase transition is of second order. This leads to
the conditions

Dp' 4m.ec A,L, 'C(P)
=Tm 1—

P +AI. C(P)

(4.6)

aG,

BH n,

C)Gn

aa a„'

G, (n, ) =G„(H,2), (4.14)

Below TI, there is the possibility that the spiral
alignment of the spins may be intertwined with the
vortex flux in the mixed state for certain values of
H. However, this possibility is not considered in
this paper. GM in (4.2) with P=0 is the free energy
of the homogeneous Meissner state.

The Gibbs free energy of the normal state is ob-
tained by use of (2.42) as

or

n, P =H, 2+4vrmH, ,

(4.15}

m (y, n, P ) =mH (4.16)

where n, is the critical flux density, i.e., the flux
density at H, q. From (4.12) and (4.11), one can see
that

HG„=— +F (y,H)
8m

(4.7)
Thus the two conditions (4.14) and (4.15) can be
written as

with

F (y,H) = —,y(0)mH

—kg TN lnZJ

H, 2
—n, y[g(n, ) —n, kl,

n, P= —, 1+n, g(n, ),1 a

One

(4.17)

(4.18)

X [(gp~J/k~T}[H+y(O)m~] j, which determines n, and e2 simultaneously. The
upper critical field is determined by

mH gp, sJNBz[(gp&J/——k&T)[H+y(0)mH) j .

(4.8)

(4.9)

H, 2 n, P 4m.m(y, n——,g) . —

B. The critical field H,

(4.19)

The relation between H and n is obtained by
minimizing G, (n) with respect to n: BG,(n)/Bn =0.

The critical field H,' which is the boundary be-
tween the Meissner state and the normal state is ob-
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tained from

G„(H,*)=GM . (4.20)

Note that H,' is different, from H, which is defined

by the condensation energy (condensation energy is
equal to H, /8n. ). From (4.2) and (4.7), we have that

—F (y,H,')+F (y(P), 0) .
8m. 8m

(4.21)

Since F (y,H,') & 0 and F (y(P), 0)=0 for T & Tp,
H,

*
is always less than H„since the magnetic effect

reduces the critical field.
At temperature TM which satisfies

II =F (y(P), 0)—F (y, O), (4.22)m

H(0) = —,g(0)—4m-m (y, O) . (4.27)

When T & Tp [and therefore, m(y, 0)=0], g(0) is
given by h(0) + e& [see (3.16)]. Then we have

r

H(0) = —, k dk
Ar C(k)

k +[1+4|rXp(k)]EL C(k)

(4.28)

where Xp(k) denotes X(k) for n=0

C. Lower critical field H (n =0) and H, i

The magnetic field H(n=0) at which a single
vortex appears is obtained from (4.10) by taking the
limit n —+0:

we have that H,*=O. Since F~(y, O) must be nega-
tive, this happens below T (the Curie temperature
of the ferromagnetic phase),

TM (Tm ~

ec
Xp(k) =

T —T +Dk
(4.29)

At this temperature, the spiral Meissner state (in the
case Tp& TM) or the paramagnetic Meissner state
(in the case of Tp & T~) makes the phase transition
into the ferromagnetic normal state; Tsr is the reen-
trant temperature. Note that, when the phase tran-
sition at H,* takes place, the system behaves as a
type-I superconductor and the phase transition is
first order.

When T~ ——0, (4.22) leads to

(1—Jp),
m 2ec

Because of our approximation, H(0) here is the same
as the one in Ref. 8, implying that no saturation ef-
fect is considered. When the temperature comes
close to Tp, the expression (4.28), which is obtained
using the linear approximation, is no longer reliable
due to the appearance of the spiral phase (this is
manifested by the appearance of zero point in the
denominator of the integrand).

In order to go beyond the linear approximation in
the calculation of H(0), we return to the expression
(2.31). When the integrand in (2.31) is denoted by
F(x;n), the Gibbs free energy becomes

where M is the saturation value of the magnetization
(M =gIJ,sJN) and Jp is defined by Jp
=y(P)/y(0)=y(P)/(T ec). Eqs. (2.28) and (2.30)
give

Dp~ 4m ec Ai C(P)
(4.24)

Tm Tm P +A,l C(P)

G, (~)= gM(n)+G, (0)— H,np np
8~ 4m.

where

g~(n)= f d x[F(x;n) —F(x;0)]
8~

(4.30)

(4.31)

8
& (1 —Jp) .

C
(4.25)

In order that a positive T~ exist, the following con-
dition must be satisifed:

and 0 is the unit cell of the vortex lattice (note that
n = I/O). Then a calculation similar to the deter-
mination of (4.10) leads to

When the magnetic anisotropy energy is large as
in ErRh484 and HoMo6S6, the magnetic ordering
favors the sinusoidal rather than the spiral ordering.
In this case, Eq. (4.21) is replaced approximately by

2 42a, a, —F (y,H,")+-,F (y(P), 0).

H(n) = —, 1+n g~(n),
1

8n

which gives

H(0) =
& gM(0) .

(4.32)

(4.33)

(4.26) Note that gl(0) is the free energy of single vortex:
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g~(0)= f d'x 5"'(x)bo(x)+E„„(x)+—,M(x)y( —i V)M(x)
Sm Sm

—kiiTNlnZ~[(gpsJ/AT)
~

H (x)
~ } F—(y, O) (4.34)

where bo( x ) is the induction field created by a single bare vortex,

AL C(k)
bo(x)= f d ke'"'"

(2' ) k +XI. C(k)

The magnetization M ( x ) satisfies the nonlinear equation

M(x )

=gpss

JNBJ I (gp&J/k&T)[bo(x )+y ( i V—)M(x)] I .

Considerations outlined in Sec. II give the result that

f d xE„„(x)= ei
Sm'

(4.35)

(4.36)

(4.37)

for a single vortex. This leads to

g~(0)=bo(0)+ei+ f d x{—,'M(x) y(x)M(x) —ksTNlnZJ[(gpsJ/k&T) ~H~(x)
~ }—F (y,O)) .

(4.38)

The comparison calculated from (4.28) and (4.36)
with (4.38) will be made in the next section.

When the superconductor is of the type II/1, H(0)
is not the lower critical field H, ~. In this case the
critical flux density n„at H, i is obtained by the
largest value satisfying the equation

equal, then all three are equal:

if H, 2
——H,*, then H, 2

——H, ~, . . . .

D. The critical field Hp

(4.42)

G, (n, i)=G, (0) (—=G~) . (4.39)

+81T[F (y n iP ) —F(yp 0)].
(4.40)

Then H, i is obtained from (4.10)
r

1

H, )
———, 1+n, )

Bn,
&

g(n, i) —4irm(y, n, i) .

(4.41)

When (4.40) has a solution other than n, i
——0, the

first-order phase transition from the Meissner state
to the mixed state occurs at H, ~, implying a type-
II/1 superconductor. Equation (4.40) shows that the
presence of the magnetic moments tends to help the
system become type II/1, since the right-hand side
of (4.40) does not exist in the nonmagnetic case.

From (4.14), (4.20), and (4.39), we can see that, if
two of the three quantities H, z, H,*, and H, &

are

Substituting (4.10) into (4.1), this condition is given
by

2 Bg(n, i)
n, iP =4irn, imam (y, n„)

Bn,
&

In the above analysis, we assumed that all fields
were along the third axis, that is in the direction of
the applied field. However, for T & 'rz, a periodic
perpendicular component can appear when the ap-
plied field is sufficiently weak. The critical field
Hp, where the conical spin alignment (spiral vortex)
changes into parallel spin alignment, occurs at the
same value of H for which the instability in the per-
pendicular spin susceptibility appears. Since
H

~ ~
M, the perpendicular components of spins

should satisfy

mp X H i+ M& X [ho+ y( 0 )mo] =0, (4.43)

which leads to the equation

Imoy( i V ) —[n—P+y(0)mo]}Mi ——0 . (4.44)

Here H was given in (2.27).
When y(k) g[nP+y(0)mo]/mo, we have that

Mz ——0. Therefore, a nonvanishing solution of Mz
appears only for n (np, with np determined by

y(P) =[npP+y(0)m(y, n P)p]/ (ym, npP),

y(P)=maxy(k) . (4.45)
k

Then Hp is determined from (4.10).
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V. NUMERICAL CALCULATION tt =gati JN/[p /l t (0)] . (5.15)

Numerical calculations are performed by assum-
ing that vortices form a triangle lattice with lattice
constant a. Other possible lattice structures are not
considered in this paper. The vortex density n is
then given by

n =(2/v 3)la i . (5.1)

The magnitude of the reciprocal-lattice vectors is
given by

K=2nma(l +m —lm )'/ (5.2)

where I and m are integers.
The nonlocal kernel C(k) depends on gu (the

coherence length at T=O) and VN(0) with V being
the BCS coupling constant and N(0) the density of
states at the Fermi level. When we have
0.2 & VN(0) (0.4, C(k) is approximately given by

The temperature dependence of H, (t)/H, (0) is cal-
culated from

H, (t)

H, (0}
A(t)
b, (0}

2m 2

3

'2
2t'—

1.764 6g (())

oo g2+ E2
X f dE fE

The last parameter signifies the strength of the mag-
netic moment in terms of the unit fiux. Notations
of the physical parameters and the dimensionless
parameters are summarized in Table I.

Scaling the magnetic field by [P/At, (0)], H, /8m

is given by

(5.16)
H, 3as H, (t)
8ir 16m. s H, (0) jLL (0)

C(k) =expI v[k/Ir—(t)]"],
k=

i

k
i At (t),

(5.3)

(5.4)
(5.17)

ir(t) =[1/y(t))[AL (t)/AL (0)jirs,

v = —0.4257VN(0)+0. 559,

rt = —0.7857VN(0)+2. 207,

(5.5)

(5.6)

(5.7)

y(t) =1+at "l(1—t)

a = —0.0536VN(0)+0. 3719,

n =0.3714VN(0)+3.846,

m = —0.0414VN(0)+0. 550 .

(5.8)

(5.9)

(5.10)

(5.11)

The temperature dependence of the London penetra-
tion depth, AL(t)DL(0), on t (=T/T, ) is calculated
from the relation

A,L (0) r)fE=1+2f de (5.12)
A,L t BE

where irs is AL (0)/go and t is the reduced tempera-
ture T/T, with T, denoting the superconducting
transition temperature. The function y(t) is given
by I', (or T, i)

TC2

Tp
TM

Tm

e,
J
N
A,L(0)
g(0)

Superconducting transition temperature
Reentrant temperature
Periodic phase transition temperature
(Fictitious) reentrant temperature
from Meissner to normal state
(Fictitious) Curie temperature
of the normal phase
Curie constant
Stiffness constant
Spin of rare-earth ions
Density of the rare-earth ions
London penetration depth at T=O K
Coherent length at T=O K

Dimensionless parameters

To make our problem concrete, we consider
ErRh4B4 and HoMo6SS. The experimental values of
relevant physical quantities are summarized in Table
II. Some of the values show a certain amount of

TABLE I. Notations of physical parameters and di-
mensionless parameters.

Physical parameters

where f@——[exp(PE)+ 1 ] ' with E= [e2
+5 (t)]'/, and b(t) is the fermion gap.

As a unit of length, we choose A,L (0). The mag-
netic field is scaled by P/A, L (0). Then we have fol-
lowing dimensionless parameters:

(5.13)

(5.14)

tp

tm

Kg

d

T/Tc
Tp/Tc
TM /Tc
T /T,
Landau parameters [g(0)/At, (0)]
4aec/Tm
D/T A,,'(0)
gtj, sJN /[P /)I. L, (0)]
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Crystal structure

J(free)

P(free)

p(elf)

Tcl
TC2

Single

'Reference 23.
Reference 24.

'Reference 25.
Reference 26.

'Reference 27.
Reference 1.

TABLE II. Experimental values.

ErRh4B4

Tetragonal'
a=5.30 A
c =7,39 A

N=9.64y10 /cm
15

2

9.59
5.6 (neutron)'
8.4 (Mossbauer)'
9.62 (J ', high T)
7.65 (g ', high field)"
8 7 Kf, ll, l

0.93 K (warming)'
0.87 K (cooling)'

0.775 K (warming)"
0.710 K (cooling)"

3'Reference 2.
"Reference 28.
'Reference 29.
'Reference 30.
"Reference 31.

HoMo6S8

Rhombohedral
a =645 A

a -89.5'

N =3.726)(10 /cm
8

10.60
9.06 (neutron)

6.0 (high field)I'

10.85 (g ', high T)
1.82 Kg'
0.668 (warming)'
0.612 (cooling)'

scatter, depending on the sample and the experimen-
tal method. In Table III, we present our tentative
choice for the values of the various physical quanti-
ties. Since the discrepancy among the observed sa-
turation moments is not fully understood, we make
use of the values of the magnetic moment of free
rare-earth ions. The detailed nature of the transition
mechanism around the reentrant point T,2 is not
completely resolved although it is known to be first
order. Furthermore, most of the experimental
values in Table II are obtained from polycrystalline
samples, while our theoretical analysis is based on
the assumption of a single crystal. From Table III
we obtain the values of theoretical parameters given
in Table IV. Parameters d and u cannot be deter-
mined unless we know the stiffness constant D of
the staggered susceptibility in the normal state and

TABLE III. Parameters used in calculation.

ErRh4B4 HoMo6S8

the London penetration depth A,L (0). In the most of
present analysis, d and u are determined in such a
way that a particular value of tt* ( =Tp/T, ) and tM

are obtained. With tp and tM fixed, d and u are no
longer free parameters. A signal of periodic order-
ing in the neutron scattering has been observed in
ErRh4B4 (Ref. 32} around 1—0.7 K and in HoMo6Ss
(Ref. 33) around 0.7—0.6 K. Both exhibit a strong
thermal hysteresis. This seems to indicate the oc-
currence of a spin-sinusoidal order in HoMo6Ss and
ErRh4B4. '

Before presenting various phase diagrams in the
H Tplane, it is w-orthwhile to point out a need of
careful calculation of H(n =0) at t-tp. The value
of H(n =0}obtained from the linear approximation
[i.e., (4.28)] will be called Ht(0), while that obtained
from a self-consistent calculation using (4.33} to-
gether with (4.36) and (4.38) will be called H, (0).
As was pointed out previously, Ht(0) obtained from
(4.28) is the same one given in Ref. 3 and is not a
good approximation when T is close to Tp,' as a

Tcl
T,2 (=TM)
Tp
T
J
gJ
N
8,

8.7 K
0.93
1.2 or 0.7
1.4
15

2

9
9.64 &( 10
0.184 K

1.82 K
0.67
0.7
0.8
8

10
3.726 X 1023

0.087 K

tM

fp

~m

C

TABLE IV. Reduced parameters.

ErRh4B4

0.11
0.14 or 0.08
0.16
1.6

HoMo6S8

0.37
0.38
0.44
1.4
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in y( k ) is approximated by Ck, we used the form
(5.3) for the c function in bo(x) in (4.36). The self-
consistent calculation is performed at forty points

matter of fact, Ht(0) goes to —ao as T approaches
Tp. Therefore, when T is close to Tp, we must solve
the nonlinear equation (4.36) which includes the sa-
turation effect. Equation (4.36) can be solved by ap-
proximating y(k) as

r

0.8

—4a
k+k c

--=T- Dk
y(k) = exp=e, Tm J =75

c = 1.5
0,6

tm =o2
= 0.022(5.18)

Q, 4
K

U)

0.2

u = 0061
where k=

~

k
~

and Kf3 = 2.0
= 0.2

1
Ck —— , n =0.4468 .

1+a[k/a. (t)]
(5.19)

Here and in the following, we use VN(0) =0.2635,
because the results are relatively insensitive to our
choice of VN(0) and because the choice
VN(0)=0. 2635 simplifies the calculation [it gives

rl = —, in (5.3)]. The approximation (5.18) enables us

to make an exact calculation of the kernel y( —iV')
in configuration space, which considerably simpli-
fies our numerical calculation. Although the C(k)

I

2.0
I

1.0
I

3.0
-0,1

0 4.0

0.06
xlo 3

2.0—

0.04
Ol D

0.02

Z

1.0

-1.0

3.0
-2.0

2.0

I I

1.0 2.0

r/xL (o)

0.12—
I

3.0
-0.01

0H p(0) 4.0

0.08—

0.04— J = 7.5
c = 1.5

0.20—Z
Q)

Ch

0.10

O

heal

-0.04—
r

= 0.2
d = 0022
u = 0.061

KB = 2.0
= 0.4

0
0J =75

c = 1.5
1.0 2.0 3.0 4.0

- 0.08—
tm =02

= 0.022
Hs

0.12—
u = 0.061

KB = 2.0- 0.1 2 0
AU

o.oe

0.04

I
I
I
I
I

1 )

0.2 0.3

t(= T/Tg)

- 0.16—

1

0.40.1 0.5

FIG. 1. Comparison of the linear approximation and
nonlinear approximation (self-consistent calculation) for
the calculation of H(n =0) as a function of the reduced
temperature. The HI(0) denotes the linear approximation
which is the same one in Ref. 3 while H, (0) denotes the
self-consistent numerical calculation. The difference
comes from the saturation effect. Parameters are chosen
as VN(0)=0. 2635, ~& ——2.0, J=7.5, c=1.5, t =0.30,
d =0.022, and u =0.061, which give tp ——0. 15 and

t~ ——0. 10.

0
0 1.0 2.0

r/XL (0)

3.0 4.0

FIG. 2. Spatial dependence of the magnetic field and

magnetic moment due to a single vortex. The subscript l
indicates the linear approximation which is the same one
in Ref. 3, while s indicates the self-consistent calculation
including the saturation effect. (a) is at t =0.2 and (b) is

at t =0.4. Parameters are the same as those in Fig. 1.
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between r/A, L ——0 and 8. In Fig. 1, the calculated
H, (0) and Ht(0) are presented for the parameters
VN(0)=0. 2635, tts ——2.0, J=7.5, c=1.5, t~ =0.2,
tp =0.15, and tM =0 10. (in this case 1=0.022 and
u =0.061). Note that Ht(0) is obtained by the same
approximation as in Ref. 3 [see (4.28)]. The corre-
sponding spatial dependence of M(x) and H(x) is il-
lustrated in Fig. 2(a) (t=0.2) and Fig. 2(b) (t=0.4).
The subscript I refers to the results of the linear ap-

proximation, while s refers to the results of the self-
consistent calculation. The results show that the
linear approximation is qualitatively reasonable pro-
vided t is not close to tp. The H, (0) is finite at Tp,
though Ht(0) is negatively infinite. Therefore, in
the following we use only the linear approximation
and avoid the very small domain of t around tp. At
t =tp, we calculate H, (0). In this way we can study
the overall behavior of H(n =0) as a function of t

0.7 1.2—

1.0— J = 7.5

0.5—

04—
ol J

0.3—
x

D
04 D

0.6—

X
0.4—

0.2— 0.2—

0.1—

H

0 I

0 t
"

0.2 0.4 0.6
t ( = T/Tc)

(a)

O.B 1.0

0
0 t

"
0.2 0.4 0.6

t ( = T/Tc)

(b)

O.B 1.0

2.4—

2.0

1.6O

1.2z

O,B

0.4

0
0 ', & 02 0.4 0.6

t( = T/Tc)

O.B 1.0

( )
FIG. 3. Critical fields as a function of the reduced temperature for tp ~ tM case with low t . Parameters are chosen as

VN(0)=0. 2635, J=7.5, c=1.6, t =0.16, tr ——0.14, and tM ——0.11. (d, u) are calculated for each scq. The bars indicate
the various phase transition points. (a) is for try =1.4, d =0.01168, u =0.07496, and H (0)/[P/At. (0)] at tp= —0.037.
(h) is for vtt ——1.75, d=0 008867, u=0. 093.70, and H, (0)/[P/)(t. (0)] at tp= —0.089. (c) is for tran

——2.5, d=0.006009,
u =0.1339, and H, (0)/[P /At. (0)] at tp —0.189. ——
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( =T/T, ). As the vortex density n is increased, the
linear approximation, mentioned in Sec. IV, is ex-
pected to improve.

As is seen in Fig. 2(a), the attractive dip of H(r)
around r =1.5A,L (0) is of the order 10, while the
repulsive tail near r/Ai(0)-3. 0 is of the order
10 . To understand the significance of this small

0.6

repulsive tail, we note that the attractive dip in non-
magnetic superconductors such as Nb is only of the
order 10 in units of P/A, L(0), although it is
strong enough to make Nb a type-II/1 superconduc-
tor.

In Figs. 3—7, we present several examples of
phase diagrams in the H-T plane. In each figure,
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0.8

was not recognized in Ref. 3. Figures 3 and 4 are
for smaller values of t . Figure 3 is for tp)t~
while Fig. 4 is for tp&tM. Figure 5 is for rather
larger values of t and tt &tM Figures .6 and 7 il-
lustrate some examples in which no reentrant tem-
perature t exists; Fig. 6 is for the smaller values oft, while Fig. 7 is for the larger values of t . The
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(1+4mX)H, 2 B,2 for T= T——, , —(5.20)

where 7 is the static susceptibihty.
In most examples in which the reentrant phenom-

ena takes place (i.e., Tst & 0), H, 2 decreases with de-

parameters are chosen from Table IV. All the ex-
amples considered here have critical temperature tp,
although it may not be observable when tp +t~ or
when some phase other than the spin-periodic phase
is favored. There are choices of parameters, for
which tp does not appear, although no example of
this kind is presented. The behavior of the critical
fields in this case is very similar to the ones for
which tt &t~. In the calculation in Ref. 3 we did
not consider t &t, since the linear approximation
used in Ref. 3 would have been inappropriate in the
consideration of normal state at t g t . Since tp and

t~ are always smaller than t~, those critical tem-
peratures are only meaningful, in the comparison of
the free energies, when the nonlinear (or saturation
effect) is considered.

As one can see from Figs. 3 and 4, the overall
behavior of the critical fields, other than H,', is not
sensitive to the ordering between tp and t~. Howev-

er, the behavior of H,' for tp & tst is quite different
from that for tp & t~. As is seen from Figs. 3(a) and

6, the H,* curve has a positive curvature below tp
and a negative curvature above tp, i.e., tp is an in-

flection point. The values of H,* below tp and t~ in-

dicated in Figs. 3—7 are calculated using the isotro-
pic approximation, that is for the spiral phase. The
decrease of H,* with decreasing temperature is
caused by the decrease of the free energy of spin sys-
tem in the normal state. When tp) t~, the spin-
spiral ordering appears in the Meissner state below
tp. As a result, there appears a change of slope of
H,* at tp and the decrease in H, is reduced. When
the system favors the spin-sinusoidal structure, H,*

is determined approximately using Eq. (4.26). For
the same parameters (d, u, and c) the H,' curve
below tt in Fig. 3(a), for example, is reduced, as
shown in Fig. 8.

While the value of tt is sensitive to the value of d
chosen, this is not the case in the behavior of H, 2

provided d &0.1. Therefore, the choice of parame-
ters, tp gt~ or tp) t~, does not greatly affect the
overall behavior of H, 2.

The critical field H, 2 is considerably reduced by
the magnetic effects, which depend on t, u, and Kg.
However, the modification of n, P due to the mag-
netic moment, which is denoted by 8,2 in the fig-
ures, is much milder than that of H, 2. Briefly
speaking, when T=T„B,2 is not much different
from its value for the nonmagnetic one, while the
upper critical field H, 2 is considerably modified by
the magnetic moment by the relation
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Kg

[I+4~X(t)]' ' (5.21)

Therefore, when 7 is large enough to satisfy
v~&1/v 2 for t=t, (this happens, for example,
when T~ is very close to T, ), the superconductor be-
comes type I at T near T, . This is the case for Fig.
7. When the temperature is reduced, the critical
vortex density n, and the polarization of the local-
ized spin 4m-M, 2 increases, resulting in decrease of X.
Then, according to the scaling relation (5.21), Kz in-
creases and the superconductor changes into a type-

creasing temperature in the low-temperature
domain. The reduction of H, 2 is enhanced for
larger values of u. However, there are exceptions.
When the competition between 8,2 and 4mM, 2 is in-
tricate, the curve of H, 2 ( =B,2

—4~M,—2) sometimes
shows a dip and bump [Fig. 5(c)].

When ~z is small, the transition from the type II
to type I is observed with decreasing temperature
[Figs. 3(a), 4(a), 5(a), 5(b), and 6].3 Figure 6 shows
an example of the behavior of H," when the reen-
trant phenomena does not take place and the super-
conductor becomes type I at low temperature. In
some rare cases (Fig. 7},the transition from type I to
type II is also possible with decreasing temperature.
The mechanism for this can be understood in the
following way. As was discussed in Ref. 27 at T
near T„ the effect of the magnetic moment is
roughly taken into account by the rescaling of Kz ..

II superconductor.
Let us now consider those cases in which the sys-

tem is of type II for t=t, . As was discussed in Ref.
3, the effect of the spin fluctuation X(k) enhances
the attractive interaction of the intervortex interac-
tion. This tends to favor a first-order transition in
the magnetization. The transition from a type-II/2
to type-II/1 superconductor occurs at a certain tem-
perature in all the examples considered. This tem-
perature corresponds to the sudden appearance of
8, ~

which also corresponds to the boundary between

H, &
and H(n=0) indicated by the vertical bar in

Figs. 3(a)—3(c), 4(a)—4(c), 5(a)—5(c), and 6. For
lower ~q, this transition temperature is higher, since
the lower value for az favors the type-II/1 behavior.
When this attractive interaction becomes strong
enough, the superconductor makes the phase transi-
tion into a type-I superconductor. This is seen in
Figs. 3(a), 4(a}, 5(a), 5(b), and 6. When ~~ is in-
creased, the ratio B,2/4vrM, 2 also increases. When
this ratio becomes unity, reentry to the normal state
at H =0 through the mixed state takes place [Figs.
3(b), 4(b)]. In this case, the reentrant phase transi-
tion is second order. When ~z is further increased,
the system is a type-II superconductor in the entire
temperature range below T, (i.e. type-I phase does
not appear), and H, 2 has a minima in the low-
temperature region [Figs. 3(c), 4(c) and 5(c).

In the case of Figs. 6 and 7, the system is super-
conducting at H =0 in the entire temperature range
below T, ; i.e., T~ does not appear. Depending on
whether a type-II —+type-I transition occurs or not,
the phase transition to the normal state is either first
or second order for fixed H with changing tempera-
ture.

As was pointed out previously, variation of the
critical flux density B,2 due to the magnetic moment
is much weaker than the variation of H, z. In fact,
there is practically no change in B,2 at T near T„as
was pointed out in Ref. 35. However, near the point
where the type-II-+type-I transition takes place, B,2

shows a considerable reduction [Figs. 3(a}, 4(a), 5(a),
5(b), and 6].

It is worth pointing out that the H, 2 curve in Fig.
3(a) or 4(a) has a behavior very similar to the one ob-
served in ErRh4B4 (Refs. 28 and 36) and that of Fig.
5(b) resembles the one observed in HoMo6Ss. To
see if these resemblances are meaningful or not, we
need to know the real values of various physical
parameters, in particular the value of ~q.

Figure 9 shows typical examples of the magneti-
zation curve. In Fig. 9(a), we consider a particular
case as a model for ErRh4B4. In this case we have
tp Q t~. A similar case with tp Q tjt/I is presented in
Fig. 9(b). The points at which the dotted lines begin
indicate the transition from the mixed state to the
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the dotted lines begin indicate the transitions from the
mixed state to the normal state. The first-order transition
from the Meissner state to the mixed state (i.e., type II/1)
is indicated by the horizontal bars.

normal state. The first-order transition from the
Meissner state to the mixed state (i.e., type II/1) is
indicated by the horizontal bars. The observed tem-
perature behavior of the magnetization for ErRh&84
is very similar to the curve shown in Fig. 9. As
was mentioned in Ref. 3, the increase in the magnet-
ization near H(0) is very rapid even in type-II/2 re-
gion. [See Fig. 9(a), t=0.8,0.6.] Despite the oc-
currence of the type-II/2~type-II/I transition at
t=0.4 in Fig. 9(a), it is very difficult to distinguish
between the t=0.6 and t=0.4 cases. This suggests
that it may be difficult to identify the transition
from type II/2 to type II/1 experimentally from the
magnetization measureinent, unless one studies the
hysteresis properties.

The original type-II/1 magnetization curve ob-
tained consists of wavy curves as shown in Fig. 10.
This wavy behavior is a result of the oscillatory na-
ture of the intervortex interaction h(r) in Fig. 2.
Figure 9 shows the results for an infinite system and
in this case, the wavy behavior disappears and a
first-order transition appears. When one considers
the demagnetizing effect of the finite sample, this
wavy behavior of the magnetization curve may be-
come observable. [Even in the nonmagnetic case for
small a (& 1/v 2), this kind of behavior may exist
but is very small. ]

When H, ~
becomes zero with decreasing tempera-

ture, the self-induced vortex state is realized without
any external field (i.e., H=O). This example is
shown in Fig. 4(b). In Fig. 11, the magnetization
curve for this case was illustrated. The transition to
the self-induced vortex state through decreasing
temperature is usually a first-order transition. The
appearance of the self-induced vortex state can be
understood intuitively by the mechanism in which
the spin polarization supports the vortices in a
manner similar to the external magnetic field. The
criterion for the stability of this state at T=0 is ex-
amined in Ref. 9 (see also Refs. 10 and 37).

Although in most cases the transition to the self-
induced vortex state is first order, there exists the
very slim possibility for a second-order transition.
The second-order transition into the self-induced
vortex state is possible, when and only when H(0) is
smaller than H, ~ at the transition temperature.
Here H, i denotes the critical field at which the
first-order phase transition takes place from the
Meissner state to the mixed state. H(0) must vanish
at the transition temperature, below which H(0) is
negative. In the context of our approximation, it is
hard to decide whether or not H(0) could be nega-
tive, since a very precise calculation of H(0) at t=tp
requires a much better calculation than our self-
consistent calculation. The fact that our self-
consistent calculation gives a negative value for
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H, (0) [Figs. 3(a)—3(c)] is therefore not conclusive.
We point out that, when H(0) is smaller than H, &,

a first-order jump in the magnetization can appear

FIG. 12. Magnetization curve for the first-order tran-
sition from the mixed state (type II/3). Parameters are
VN(0) =0.2635, J=7.5, c =1.6, t =0.16, tp ——0.14,
t~ ——0.11, ~& ——2.5 (d =0.006009, u =0.1339), and
t =0.15.
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FIG. 13. The free-energy behavior of type II/3.
Parameters are VN(0) =0.2635, J=7.5, c =1.6,
t =0.16, tp ——0.11, t~ ——0.11,~& ——2.5, and t=0. 15. The
solid line is for the mixed state and the dashed line is for
the normal state.
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T„ the dependence of B,2 on the parameters is prac-
tically negligible. At lower temperatures, however, a
mild dependence becomes observable. This numeri-
cal result is consistent with Ref. 35 in which the re-
scaling procedure of K~ was proposed.

VI. CONCLUSIONS
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FIG. 14. Behavior of the critical Aux 8,2 as a function
of the reduced temperature. The ~& is fixed to be 2.0.

in the middle of the mixed state as is seen from the
result for the t =0.15 case in Fig. 12. The behavior
of the free energy is also illustrated in Fig. 13. In
general, when the first-order transition from a
mixed state takes place, we call such a superconduc-
tor type II/3. This transition is caused by the oscil-
lation of the intervortex potential. Note that this os-
cillation is enhanced when T is close to Tp.

Finally in Fig. 14, we show the B,2 behavior for
various parameters for the same value of as ( =2.0).
As can be seen from the figure, the parameter
dependence is milder, although H, 2 depends drasti-
cally on the choice of parameters. At T, very near

Here we summarize the main results of this paper:
(1) We found many types of phase changes in the

magnetic properties. %ith decreasing temperature,
depending on the parameters, we have
(a) type II/2~type II/1 —&type I~reentrant [Figs.
3(a), 4(a), 5(a), 5(b)],
(b) type II/2~type II/1 ~self-induced~reentrant
[Figs. 3(b), 4(b)],
(c) type II/2 —+type II/1 ~self-induced (no reen-
trant) [Figs. 3(c), 4(c), 5(c)],
(d) type II/2~type II/i~type I (no reentrant)
(Fig. 6),
(e) type II/2 —+type II/1 (no reentrant) (not shown
in figures),
(f) type I~type II/1 (no reentrant) (Fig. 7).

(2) For certain choices of the parameters there
appears a periodic phase in the Meissner state.
[Such a phase, for example, appears in Fig. 3(a) but
it does not in Fig. 4(a).]

(3) The reentrance to the normal state from the
superconducting state is first order when it is from
the Meissner state and second order when it is from
the mixed state (i.e., from the self-induced vortex
state).

(4) A typical magnetization curve, showing the
temperature dependence of the magnetization, is
presented in Figs. 9(a) and 9(b).

(5) A possibility of the type II/3 is pointed out.
(6) It is shown numerically that, when the sfin--

teraction is neglected, the parameter dependence
(other than as) of the critical flux B,z is rather mild.
However B,z diminishes considerably at the tem-
perature around the transition type II~type I.
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