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Solutions of the linearized Landau-Ginzburg equations on networks of thin wires are
studied. We derive linear-difference equations for the value of the order parameter at the
junctions of the net with the use of the explicit form of the solutions on the wires. The tech-
nique is shown to be applicable to the diffusion equation, to harmonic lattice vibrations, and
to the Schrodinger equation and results in equations similar to tight-binding equations. The
equations are solved and the upper critical field is determined for some simple finite nets,
for the infinite square net, and for the triangular Sierpinski gasket. Dead-end side branches
are shown to lead to a mass renormalization. On the square net the equations map on the
Azbel-Hofstadter-Aubry model. When the coherence length is small, vortex cores can be
accommodated in the holes of the net and there is no upper critical field. The equations on
the Sierpinski gasket are solved by an iterative decimation process. The process determines
a new length scale proportional to a power of the bare coherence length. The upper critical
field is studied for a finite gasket and for a lattice of gaskets. With the use of scaling argu-
ments the results are applied to percolation clusters. Far from the percolation threshold the
results are described by a renormalized correlation length of standard form. When this
length becomes shorter than the correlation length for the percolation problem the critical
field is shown to be constant or decreasing as the threshold is approached. Existing experi-
ments are discussed and the importance of high-field-susceptibility measurements is em-
phasized.

I. INTRODUCTION

The purpose of this paper is to obtain a better
understanding of the properties of disordered super-
conductors. We do this by studying behavior near
the upper critical field. The motivation for this is
twofold.

Deutscher et al."' have recently studied the
(zero-temperature) upper critical field of well-

controlled, high-resistivity granular samples for
which the resistivity is described by a percolation
model. " ' Far from the threshold the results are ex-
plained by relating the coherence length to the resis-
tivity in the usual way. They also find a crossover
to a new strongly disordered regime in which H, 2
still increases with the resistivity, but the indices are
different. They suggest that the crossover is due to
the fact that the renormalized coherence length for
superconductivity becomes comparable to the con-
nectivity length of the underlying network.

From a theoretical point of view the study of
upper critical fields has proven very useful in the
past. One studies a ground-state property and thus

avoids many of the difficulties associated with
thermal fluctuations. Such a study should also yield
information on the role of the anomalous short-
distance properties of random systems in determin-
ing macroscopic behavior.

In two recent papers ' de Gennes has studied re-
lated problems. He considers solutions of the linear-
ized Landau-Ginzburg equations on nets of inter-
connected thin wires. de Gennes solves these equa-
tions on a loop with a dead-end side branch and
suggests an expression for the magnetic susceptibili-
ty of a finite cluster in terms of the loop distribu-
tion. The validity of the approximation in Refs. l
and 3 is not obvious and in any case one would like
to have a systematic approach to random supercon-
ductors, which seem to show strange weak-link
behavior.

We follow Deutscher et al. ' and de Gennes and
consider a purely geometric percolation model for
the disorder. We therefore consider de Gennes's
model of a network of thin superconducting wires.
We first develop a formalism, related to standard
electric network technique, which allows us to solve
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the linearized Landau-Ginzburg equations on com-
plex nets and to study their behavior under real-
space renormalization transformations. This allows
us to study the role of dead ends and subsidiary
loops explicitly. Most of the paper is devoted to a
study of specific finite and infinite nets.

The results confirm the relationship to the dif-
fusion constant as long as the renormalized coher-
ence length is large. The most interesting results re-
late to the strongly disordered regime. There are no
consistent solutions of the linearized Landau-
Ginzburg equations in this regime. Thus supercon-
ducting coherence disappears while the local ampli-
tude of the order parameter remains finite. The
characteristic length for superconducting correla-
tions becomes shorter than the connectivity length
of the net and is determined by the anomalous
short-distance properties. It is related to the square
of the bare superconducting coherence length by the
same critical indices which relate the diffusion
length to the diffusion time. It is found that the
coherence 1ength in this regime cannot be interpret-
ed as a renormalized Landau-Ginzburg coherence
length in the usual sense even at T =0. When corn-
bined with geometrical considerations it gives rise to
a weak-link behavior in the strongly disordered re-
gime.

The presence of a hierarchy of loops is crucial in
determining the behavior in high magnetic fields.
When such a hierarchy is present one predicts a
weak-link behavior and a gradual breaking up of su-
perconducting clusters containing smaller loops. If
there are no subsidiary loops, flux quantization
dominates and superconducting coherence cannot be
destroyed by magnetic fields. The nonlinear cou-

pling of amplitude and phase are crucial in describ-

ing this regime, which is quite different from the
low-field situation considered in Ref. 3.

We believe the main features of our results reflect
the anomalous short-distance behavior of the con-
ductance and would show up also in a situation
where localization is dominant. In Sec. II we derive
our basic equations. We solve the linearized
Landau-Ginzburg equations on the strands of a net
using the (complex) junction amplitudes as boundary
conditions. The solutions can then be used to ex-

press the matching conditions at the junctions ' in
terms of these amplitudes. One ends up with a set
of linear equations, similar to electric network equa-
tions, which are easy to handle. We also discuss the
generalization to the inhomogeneous linearized
equations and their relationship to the nonlinear
Landau-Ginzburg equations.

In Sec. III we discuss the relationship between the
equations we derived and those arising in a number
of other problems. We show the close relationship

to the master equation for a diffusion problem, to
electric network equations, and to the Schrodinger
equation on the same net.

In Sec. IV we solve the equations for some finite
nets. We demonstrate the renormalization of the
coherence length for a line with dead-end side
branches and for a ring with such branches. We
also consider the behavior of two coupled loops.

In Sec. V we consider a square lattice. Like the
equivalent electronic problem the equations map on
a one-dimensional tight-binding problem with an in-
commensurate potential. ' We show that the crit-
ical field (H, i) is essentially equal to the bulk critical
field as long as the Landau-Ginzburg coherence
length (g, ) is large compared to the lattice spacing
(a). Beyond a critical value of the ratio (g, ja) of or-
der 1, the net cannot be driven normal by a magnetic
field. This reflects the fact that integral numbers of
flux quanta through each loop can have no effect,
leading to Little-Parks oscillations. "

In Sec. VI we consider solutions on a planar Sier-
pinski gasket. These gaskets have been studied by
Gefen et al. ' (GAMK) as a model for the percola-
tion backbone. They have the interesting properties
that they are self-similar under scale transforma-
tions and have anomalous dimensions and a hierar-
chy of loops. We use an iterative renormalization
procedure, which is in principle exact, to solve the
equations. We study the critical-field conditions for
a finite gasket and for a lattice of equal finite gas-
kets. In a magnetic field an infinite gasket shows
weak-link behavior. Large loops breakup gradually
as the field is increased. It is finally driven normal
at a field determined by the intrinsic coherence
length on the gasket (H, ). For a lattice of gaskets
we find a crossover when the intrinsic coherence
length (A, ) becomes comparable to the lattice spac-
ing. For larger lattice spacings the critical field H, 2

is larger than the field corresponding to flux quanti-
zation and smaller than the intrinsic critical field of
the gasket (H, ). It decreases as the lattice spacing is
increased. We interpret this as a weak-link behavior
and suggest a scaling form.

In Sec. VII we analyze the Skal —Shklovskii —de
Gennes' (SSG) model for percolation which has
dead ends but no loops on a scale small compared to
gz. Using scaling ideas developed elsewhere' we re-
late the local coherence length to the anomalous dif-
fusion length and determine the relevant indices.
We find that this model cannot be driven normal by
a field, beyond the crossover. This is an effect of
flux quantization.

In Sec. VIII we discuss the results and compare
them with the experimental results of Ref. 1. The
weakly disordered regime is nicely described by our
formalism and is not sensitive to the detailed model.
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For the anomalous, strongly disordered regime there
is qualitative disagreement. The SSG model'
predicts no critical field. A model with a gasketlike
backbone' predicts a field which decreases as the
percolation threshold is approached, contrary to the
experimental results. We show that this is expected
to hold even for more realistic models with dead
ends and a probability distribution for the loops. It
is suggested that a backbone model which does not
have a constant ramification number is probably re-
quired if the experiments are reliable.

We also briefly discuss the magnetic susceptibili-
ty. The difference between the low- and high-field
regimes is pointed out. For the low-field situation
the amplitude is constant and the behavior is that
suggested by de Gennes. At high fields the prob-
lem becomes nonlinear and sensitive to the
geometry.

II. THE NETWORK EQUATIONS

On a thin strand the Landau-Ginzburg free-
energy functional can be written

2

F=A~h~ + ,B~b,
~

+—Cu iV A—

(2 1)

where all derivatives (and K} are in the outgoing
direction on the respective branches. The summa-
tion is over all branches irrespective of their other
end. Thus distinct branches terminating in the same
j are counted separately in Eq. (2.6}. We note that
Eq. (2.6} assumes all branches to have the same
thickness and intrinsic correlation length (g, }.

In principle, one can now solve Eqs. (2.2) on each
branch with the boundary conditions (2.5) and use
the result to express the Kirchoff condition (2.6) in
terms of the junction amplitudes (b,;,bj). This is
analogous to writing the electrical network equa-
tions in terms of the junction voltages (eliminating
the currents).

For the problems in which we are interested the
penetration depth is always large. We are therefore
interested only in determining the (low-temperature)
critical field H, 2. For homogeneous systems this is
usually determined by the requirement that the am-
plitude

~

b,
~

vanishes at the critical field. The LG
Eq. (2.2} can then be linearized:

2

—1/g, + i —K
2 . a

S

and the solution with the boundary conditions (2.5)
is

where u is a unit vector tangential to the strand.
This leads to the Landau-Ginzburg (LG) equation

'2

(2.2)

4,q(s) = IJ Ssin(l" —s )/g

sln8IJ

(2.8)

where where we use the notation of Ref. 2,

and

s =(u r), =K(2e/ cir)i(u A), . (2.3} 8;, =l j/g, ,
J

1 &j
— Kids K(jltj ''

I

(2.9)

(2.10)

I/gg ———A /C ~ ( T, —T)/T, DO . (2.4)

As usual, ' we have assumed C proportional to the
diffusion constant on the strand (Do).

To describe a network we have to supplement the
solutions of (2.2) on the branches by matching con-
ditions at the junctions. First, continuity requires

hj(i)=h„, 5; (j)=b, . (2.5)

a
i

I

K,g 6;j(s) =0, — (2.6}

i.e., the order parameter on a branch must have the
right values at the terminating junctions. In addi-
tion, one has a "Kirchoff' matching condition on
the derivatives,

and l j is the length of the branch connecting i and j.
Substitution in Eq. (2.6) gives the set of coupled

linear equations

b,; g (cot8 1 ) /g, + g (—b je "'jig,sin8j ) =0 .

(2.1 1)

Equations (2.11) are the basic network equations
whose solution we shall consider in the rest of this
paper. The formal structure of these equations is
very similar to that arising in other physical prob-
lems on the same net. We shall discuss this in Sec.
III.

The use of the linearized LG equations to deter-
mine a critical field assumes that there are supercon-
ducting states for all smaller fields. These are, how-
ever, states for which the amplitude

~

4
~

is finite
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0/J & VIJ « (2.13)

and the geometry of the net is such that a gradient
expansion of the 6; is justified. One then finds by
expansion of (2.11) or directly from (2.1),

F=aA
~

b,
~

+pC
~
[iV (2e/tie)A]d ~—

(2.14)
i.e., a renormalized free-energy functional where

(2.15)

and should be described by solutions of the non-
linear equations [Eq. (2.2)]. Equation (2.8) cannot
be regarded as an adequate approximation for these
solutions at small fields. We emphasize this point
because we shall find that strongly disordered sys-
tems cannot be regarded as homogeneous in the
usual way. As for arrays of Josephson junctions
macroscopic coherence is destroyed by breaking the
system into incoherent superconducting clusters.
While we shall be able to demonstrate that this
breaking up occurs it is important to realize that the
formalism of Eqs. (2.11) is not adequate in describ-
ing these situations.

It will be convenient to generalize Eqs. (2.11)
somewhat by consideririg the manifold of solutions
of the inhomogeneous linear equations related to Eq.
(2.7) on the branches. Formally, this amounts to re-
placing 1/g, by q:

0&q&1/g, , q =1/g, —e (2.12)

in Eqs. (2.11) and (2.9). This retains the structure of
the network equations and provides a manifold of
solutions (parametrized by q) which go continuously
to the solutions of (2.11). The solutions are related
variationally to the true solutions one would obtain
using Eq. (2.2). In several cases we shall use the in-
homogeneous equations to demonstrate that a net-
work has no critical field or to set a lower bound on
the critical field.

It is useful to try to supplement the network equa-
tions (2.11) by suitable expressions for the free ener-
gy. In principle, the free energy is a property of the
branches. An expression in terms of the junction
amplitudes thus requires the substitution of the solu-
tions of Eqs. (2.2), with proper boundary conditions
(2.5) in the branch free-energy functional (2.1}. In
general, the expressions obtained in this way are
complex and, in particular, are not simply related to
the bilinear functional (in the b,;} from which Eqs.
(2.11) can be obtained variationally. This is true
even for homogeneous systems close to H, z when
the 8;J are not small. One obtains useful expressions
when one can expand the trigonometric functions,
i.e., when

p~ (,r,)/l, j ), (2.16}

and A and C are material constants on the branches
[as in (2.1)]. It can be seen that a represents the ef-
fect of the finite-volume fraction of superconducting
material and p the effect on the diffusion constant
of the fact that one has to go a distance l,j along the
branches to connect points separated by r;J. The
procedure leading to (2.14) can be generalized to sit-
uations where Eqs. (2.11) have to be renormalized
before proceeding to the continuum limit.

III.. MAPPING ON SOME OTHER PROBLEMS

where we have defined a "bond diffusitivity"

d,j ——(g, sin8, J. ) '=lg~ '

and mass

m; =g, g tan(8, J/2) = g (l~j/2),

(3.3a)

(3.3b)

and have defined

(3.4)

The right-hand side (rhs) of Eqs. (3.3) follows for
O,J «1. Thus the de behave like bond conduc-
tances. Similarly m; is proportional to the mass as-
sociated with the vertex i.

Consider first some cases for which rl;l=i. In
the limit g, ~ oo the equations become identical to
those of a resistor network when the b; are replaced
by site voltages (V;). Thus in this limit the d,j. re-
normalize like a bond conductance and are simply
related to the conductivity. We note that this limit
constitutes a fixed point of the equations. If the m;
and y;j are initially zero they cannot be generated by
the renormalization of the equations on any net-
work.

The master equation for a diffusion problem
again has the exact form of Eq. (3.2). An example

We first note that the amplitude fluctuations in
the superconducting state (i.e., for large b) obey
equations which are very similar to Eqs. (2.11) with
the fiuctuation energy

(3.1)

replacing 1/g, . These correspond to a linearization
of Eqs. (2.2) around the constant-amplitude equili-
brium solution. A detailed derivation wiB be
presented elsewhere. '

To bring out the relationship to other problems it
is useful to rewrite Eqs. (2.11) in the form

(3.2)
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would be de Gennes's ant in a labyrinth. ' The 5;
are chemical potentials or, equivalently, site-
occupation probabilities. g, is, e.g., a Laplace-
transform variable (co) with the dimensions of fre-
quency. m; measures the volume associated with
vertex i.
A completely equivalent problem is a resistor net-
work with unit capacitors to ground from all lattice
sites (see, e.g., Ref. 18). One also would obtain the
same equations for the elastic properties of dry gels
when the inertial terms are dominated by the net-
work mass. (In practice, the solvent usually dom-
inates and its mass does not scale. )

For all of these problems one is usually interested
in the low-frequency limit, i.e., in the notation of
Eq. (3.2) in situations where

m/(dg, ) «1 . (3.5)

This is the vicinity of the resistive fixed point
(m =0) discussed above and in Secs. VI and VII.

A second class of problems which can be mapped
exactly on these equations are solutions of the
(single-particle) Schrodinger equations. Replacing

( —2 cotHL, +2 cosy/sinHL )6=0 (4.1)

or

cosgL, =cosy . (4.2)

It is important to recall that the linearized
Landau-Ginzburg equation [Eq. (2.7)] implicitly as-
sumes that the system is driven normal by the field.
Thus the value

HL, L /——g, (4.3)

L/g, =HI &2m . (4.4)

For larger rings the left-hand side (lhs) of Eq. (4.2)
can take all values between —1 and + 1 and the
ring cannot be driven norinal by a magnetic field.
This is of course the usual situation envisaged in
fiux quantization experiments. We note that the
amplitude

~

b,
~

is constant in this case so that the
exact solution of Eq. (2.2) is essentially trivial for all
values of 0 and y. "

is actually the maximum value consistent with the
existence of superconductivity. Thus Eq. (4.2)
predicts a critical field only when

I/g, ~2m' (3.6) B. A ring with a side branch

in Eq. (2.7) gives the Schrodinger equation for free
particles on the strands. The matching conditions at
the junctions are also given by Eq. (2.6) (see, e.g.,
Ref. 19). The only difference would be in the treat-
inent of the boundary conditions at the open ends.
For electrons it is not always appropriate to use
(2.11) there but this is a fairly minor point. The
model is in essence a generalization of the random
Kronig-Penney model in one-dimension (1D) studied
extensively recently because of its relevance to local-
ization in 1D. ' ' We note that it is straightforward
to add a junction scattering potential (see, e.g., Ref.
19).

Very similar equations arise in the electronic
tight-binding model. We note that this approach
emphasizes the geometrical randomness rather than
the potential and thus provides a different approach
to the properties of random systems which may
have advantages. We shall discuss this elsewhere.

—52cotHi2+ hi/sinH iq ——0, (4.5a)

—b i (2 cotHL, +cot8i2) +2k i cosy/sinHI

+&2/»nHi2 ——0, (4.5b)

where

HL, L /gg, 8i2 L——i2/g, , —— (4.6)

and y is proportional to the flux through the loop.
This leads to Eq. (12) of Ref. 2,

When applied to the case considered there one re-
covers the results of Ref. 2. Consider a circular loop
of circumference L with an open side branch of
length Li2 joined to it. There are two junctions-
the point where the branch is connected (b, i) and the
end of the open branch (b q).

Thus from Eq. (2.9),

IV. FINITE NETS

A. A superconducting ring

1

cos81. 2 inol. tan8 ~2
——cosy .

For large g, this becomes

(4.7)

As an illustration it is useful to start by discussing
the trivial problem of a superconducting ring (of cir-
cumference L)." One can formally introduce a ver-
tex on the ring and Eqs. (2.11)become

81 (81 +8i2)=L (L +L i2)/g, =y (4.&)

Thus the critical field is increased. When the L9 be-
come large there is no critical field. The smallest
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value of g, for which there is a critical field is given
by

1

cosgl ——,sin81 tan0&2 ———1 . (4.9)

One notices that this is dominated by the side
branch (8|z) when it is long.

C. A line with side branches

A more general case is that of many open, dead-
end, side branches. This is obviously relevant to
solutions on percolation clusters. We consider a

I

FIG. 1. Line with dead-end side branches.

"transmission line" problem (Fig. 1)—i.e., a string
connecting junctions 0 and X with open side
branches (of length I;) connected at the intermediate
junctions (i = 1, . . . , N —1). Thus at the junction i,

(c—otH;;+ ~+ cotH; ~; )b,; +q;; id' 1/s'nH;, ; 1+r};,;+16,;+~/sinH;;+ ~
——cotH; b„.—b„'(e'&/sinH; ),

b„'cotH; =b; (e '&/sinH; ),
(4.10a)

(4.10b)

where

8;;+)=L;;+)Ig, , 8;=I;/g, ,

and

(mo)„=(mo)„1+m„—m„. (4.15c)

d(~ = (slnH(~ )

Iij = Iji = p 7ij

The ends of the string will have a term

Fo =(cotHo& )ho+A ~rlo~ /slnHo)

= —~o& ~o+oi ('Pod ~1—~o)

(4.12a)

(4.12b}

(4.13)

(4.14)

where Fo represents terms in Eqs. (2.11) resulting
from any other branches attached at 0. We want to
eliminate the 6; from Eqs. (4.11) to obtain an effec-
tive coupling representing the properties of the line.
We notice that, because of the term tanH; in Eq.
(4.12a), Eqs. (4.11) are different from the original
form of Eqs. (2.11). The trigonometric relationships
between the coefficients do not hold and this cannot
be remedied by redefining 0,J.. We start at one end
and successively eliminate the 5;. One finds

~O, n —1 ~n —1,n
~n0 ~On

~O, n —1+~n —1,n Tn —1

(4.15a)

and the g,j are defined analogously. Eliminating
the open-end amplitudes and using elementary tri-
gonometric identities this can be written

m;b„+d;; ((rl;;,6; )
—b,;)

+d;;+)(r};;+)5;+)—5;)=0, (4.11)

where we have defined (as in Sec. III)

m; =tan(8;;+)/2)+tan(8;; )/2)+tanH;,

The phase factors are additive

90m g gi —l, i i

1

(4.16)

These expressions are presented to demonstrate
the role of the dead-end side branches. If one had
no side branches one would obviously find

d„o——(sinHo„)

and the effect of (4.15b} and (4.15c) would be to re-
1 1

place tan( —,Ho ~„&~) by ( —,Ho ~„1~)by tan(Ho„/2) in
the expression for the m; [Eq. (4.12a}]. The implied
phase coherence disappears when there are side
branches.

Consider the case where g, is large, so that the H,l
are small initially. One can then expand in Eqs.
(4.12) and interpret g,„defined by the ratio

I„/d„o (L„/g,„)2—— (4.18)

as an effective coherence length for the line on scale
L„This is, of .course, also the natural expansion
parameter in Eqs. (4.15). One notes that the dead
ends affect the I to zero order [Eqs. (4.15b) and
(4.15c)) and the d only to first order.

There are therefore two effects of the dead ends:

(1) The coherence length is reduced, essentially in
the same way one would find if one included the full
mass density in the Landau-Ginzburg free-energy
functional.

(2) The phase coherence is destroyed.

~n —l~n —1,n
f72~ =7tl~ +

~O, n —1+~n —1,n ~n —1

(4.15b) We demonstrate the importance of these effects in
the example in the next section.
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D. A ring with many side branches

Consider a ring of circumference L with N equal-
ly spaced side branches all of equal length 1 (see Fig.
2). The problem is periodic and the solution of Eqs.
(4.11) is immediate.

One finds

cos[(2n.m +y )/N]

E. A Double loop

A different class of problems arises when one has
interconnected loops. We consider the two-loop
configuration of Fig. 3. There are two vertices (1,2)
connected by three branches (I,II,III) of lengths L&,
LII andLIII respectively.

One has two equations,

=cos(L /Ng, ) —,si—n(L /Ng, )tan(l /g, ), (4.19)

where

y =2m 4/40, (4.20)

where 4 is the flux through the ring and the
relevant solution is

—b,&(cot8t+ cot8»+ cot8»t )

+he(r) s/si»8&+ri»/sin8»

+ 9»I/si»8»I)

5 i(gr /sin8t+ ri»/si»8»+ pi~»/sin8»t)

—52(cot8t+ cot8»+ cot8yg ) =0,

where

(4.24a)

(4.24b)

EJ =b, exp[2mi(mj/N)] . (4.21)
8t =Ltd 8» =L»C 8m =Lute

For N =1 one regains Eq. (4.7). We are, however,
interested in large N. For large N one can expand
(4.19) giving

(4.2S)

(2rrm +y ) =L (L + Nl) /f, ,

which is valid as long as

(4.22) '~u '~m'QI=~ ~ '9n=e ~ 'VIII=~ (4.26)

(2mm +y)/N, L/Ng, , l/gg «1 . (4.23)

This is in agreement with the renormalization of the
coherence length [Eq. (4.18)].

We note that m describes the winding number of
the phase around the ring and is thus related to flux
quantization. An analogous index shows up for the
uniform ring (Sec. IVA). One would, however, ex-
pect that the discreteness of the solutions imposed
by the side branches would modify the hysteretic ef-
fects. This would be even more pronounced when
the side branches are not uniform so that consider-
able configurational barriers appear in transitions
between different branches of solutions.

(N-1)

0

The general case gets quite complicated. Assume
first a symmetrical situation

~I ~III VI VII VII XIII (4.27)

OII «0, 0II «1
one has to choose the plus sign in (4.28),

cos8 ——,sin8 tan(8» /2) =cosy,

(4.29)

(4.30)

similar to Eq. (4.7). Since y is the flux through a
half loop the two halves are in essence independent.
For weak coupling,

The condition for the existence of solutions is

2cot8+cot8» ——+[2(cosy/sin8)+1/sin8»] .

(4.28)

We only discuss the role of the internal branch. For
strong coupling,

FIG. 2. Ring, with equally spaced dead-end side
branches of equal length. FIG. 3. Two coupled loops.
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l~ —8«i &&1

one has to choose the second solution,

cos8+ —,sin8 cot8«/2 =—cosy,

as for a loop with no internal branch.
A second case we want to consider is

(4.31)

(4.32)

y=2m'Ha /4p .

As in the analogous electron problem, we write

=f~(n)e's

Substitution in Eq. (5.2) gives

[—4 cos8+2 cos(yn +q)]fq(n)

(5.4)

(5.5)

8r =8u=8rrj =8

VI VII V~ XII XIII 2V .

The total flux is 3y. Thus

(4.33)
+f~(n +1)+f~(n —1)=0 . (5.6)

Thus the problem reduces to the "incommensu-
rate" 1D tight-binding problem

9cos 8=3+2(cosy+cos2y+cos3y), (4.34) 2 cos(yn +q)f„+f„+i+f„& ef„,— (5.7)

This exhibits an interesting new behavior. The lhs
is monotonic (in cos 8) but the rhs has a minimum
and a maximum. In the range

0.94&8&1.23, —, &cos 8&0.346 (4.36)

there are three critical fields. Superconductivity
disappears at H~ (on the lowest branch), reappears
at H2, and disappears again at H3 (for each half-
period of cosy). In the range

1.23&8&1.37, 0.04&cos 8& —,

there are two critical fields. Finally, for

1.37&8, cos 8 &0.04

(4.37)

(4.38)

which can be written

—,(9cos 8 —1)=2cos y+cos y —cosy . (4 35)

E'=4cos8 . (5.8)

The critical field (H, z) is reached when y is such
that this special solution is equal to e at the band
edge of the spectrum of Eq. (5.7).

The spectrum has been studied in great detail by
Hofstadter. We only note three properties:

(a) There are no eigenvalues outside the range

—4&a&4. (5.9)

(b) The spectrum is symmetric in y (and e).
(c) There is invariance under the transformation

which has been studied by several authors, most
recently by Aubry. ' We note the close relationship
to the behavior of band electrons in a magnetic field
pointed out by Azbel (see also Refs. 7—9). In Eq.
(5.6) we are, however, only interested in the special
solution

there is no critical field. /~/+277 . (5.10)

V. THE SQUARE LATTICE

We consider a square lattice consisting of super-
conducting strands of constant length (a) joined at
the lattice points. For convenience we choose a
Landau gauge

(5.1)

We can multiply the equation by the constant factor
sin8. Thus at the junction nm of the lattice Eq.
(2.11) becomes

Adding a flux quantum per square has no effect.
Because of the above, it is sufficient to consider

(5.11)

For small y we can estimate the position of the band
edge by expanding around the maxima of the
periodic potential [2cos(yn+q)] in Eq. (5.7). This
gives

y n f„2f„+f„+~+f„—~ 4(cos8 1)f„. —— —

(5.12)

0= —46~ m cos8+ 4~ + ) p~ +~n —1,m Or in a continuum approximation

where

and

+e hn, m+&+e hn, m —&
(5.2) [ y(«u) +& d &—» ]f(x)=4(cos8 1)f(x), —

(5.13)

where x =na.
The highest eigenvalue of the harmonic-oscillator

equation on the rhs of (5.13) is at —y leading to
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y=4(1 —cos8) . (5.14)

Overlap terms between the harmonic-oscillator func-
tions on adjacent extrema are small, so one expects
the approximation to be fairly reliable over most of
the range (see, however, below).

Equation (5.14) can be written

H, (2a)=(44O/ira )sin (a/2g, ), (5.15)

i
4cos8

i &e, . (5.17)

There is no critical field. The origin of this is the
periodicity in y which reflects flux quantization.
Adding one flux quantum per square leaves the
equations invariant.

At the critical value one has

where we have substituted the definitions of 8 [Eq.
(5.3)] and y [Eq. (5.4)] in Eq. (5.14). Expanding the
rhs (a/2g, «1) gives

H, 2=(@p/i', ){1—O[(a/g, ) ]J, (5.16)

i.e., the continuum result.
The behavior predicted for large values of a/g, is,

at first sight, surprising. The harmonic-oscillator
solutions we have considered lose their meaning
when a/g, becoines too large. This results from the
fact that the bandwidth of Eq. (5.7) is periodic in y
with period 2' [see (c) above]. There is therefore a
minimum bandwidth —say, 2e, . It follows that Eq.
(5.6) has solutions for all values of y when

driven normal by a magnetic field. As we have not-

ed repeatedly the superconducting solutions are then
not described adequately by the linear approxima-
tion. The calculation of H,'2 and 8, is, however,
correct.

The generalization of the above to a three-

dimensional lattice is straightforward and essentially
trivial. As in the continuous case variation of the
order parameter parallel to the field can only in-

crease the free energy and is therefore unfavorable.

VI. THE TRIANGULAR SIERPINSKI
GASKET

Gefen et a/. ' have recently suggested a model for
the backbone of percolation clusters which seems to
give reasonable results for the diffusion constant and

for the density of the backbone. The idea is to study
the properties of self-similar structures with

anomalous diinensions as a model for the backbone
of the infinite cluster at p, . The properties of finite
clusters or of the infinite cluster for p ~p, are then

determined by introducing suitable crossovers. The
model has the additional attraction that it contains a
hierarchy of loops and should therefore avoid the
anomalies associated with the unique loop size
which we encountered in Sec. V. We shall therefore
solve the linearized Landau-Ginzburg equation on a
plane triangular Sierpinski gasket. The gasket is
described in Fig. 4.

)'='Y H 2=7 @o/2iru

cos (a/g, )=(e, /4)
(5.18)

and

yc =0.83m (5.19)

e, =6 7, 8, =(a/g.g), =0.87.

Finally, combining Eqs. (5.18)—(5.20),

(H, 2), = 1.724O/mg, =0.44O/a

(5.20)

(5.21)

where y, is the value of y for which the bandwidth
is minimal (eo). From the results of Ref. 9 (Fig. 1)
and (5.18) one finds

A. Iteration procedure

The basic unit of the construction is an equilateral

triangle with bonds connecting the centers of the

edges. Three such triangles are then used to con-
struct a new triangle of twice the size with a hole in

the middle. The procedure can be continued (see

Fig. 4). We want to solve Eqs. (2.11) on such a net-

work. The basic procedure is to eliminate at each

stage the junctions at the centers of the edges and

obtain a new set of effective equations in terms of
the b, at the vertexes of the triangle. These can then

which is somewhat larger than the bulk critical
field. Since Eq. (5.15) predicts a critical field which
is always smaller than the bulk field it is obvious
that the approximation is no longer accurate. This
can also be seen from the structure in the position of
the band edge in Fig. 1 of Ref. 9.

Physically, the predicted behavior is thus similar
to that of a ring (Sec. IVA). When 8, exceeds the
value indicated in Eq. (5.20) one should observe
Little-Parks" oscillations but the net cannot be

FIG. 4. Triangular Sierpinski gasket. The labeling of
the vertices is that used in Secs. VI and VIII.
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—2t F12 g13

123 921 923

f31 f32 —2t

(6.2)

be used in the next stage of the iteration. The pro-
cedure can be carried out exactly. The three equa-
tions at the vertices of an equilateral triangle (e.g.,
123 in Fig. 4) can be written in matrix form

PT1236=F, (6.1)

where T takes care of all terms in the relevant equa-
tions resulting from internal branches and F de-
scribes all the other terms (e.g., those related to cou-

pling between vertex 1 and the external vertices II
and III). If we know T for the smallest triangles we
can use it to eliminate the internal vertices and cal-
culate an effective T involving only the external ver-
tices of these triangles.

Consider first a single triangle (apexes 1,2,3).
Equations (2.11) and (6.1) define a matrix

nI"2 nr"3

Un 9II1 O g II3 ~

n n
9 III1 9 III2

(6.8)

Solving (6.6b) for t)' and substituting in (6.6a) gives
the iterative expression

Tn+1= CN( UN~N UN 24—1) (6.9a)

un+1=I'. ~cn (6.9b)

The proportionality factor (C„) should be such
that

rt~+'=expiyj+' (y real) . (6.10)

and

9n —explyn =/12/23/31 (6.11a)

The calculation is immediate but somewhat
cumbersome. It is convenient to define renormal-
ized fluxes

where

o ot Ir-
to COSH g J QJ

—e 'j (6.3)
In eXP~yn / I3132 92I

n n n n n n
I II1 I 1393II 9 II29 219 1II (6.11b)

are initially defined as in Eqs. (2.9) and (2.10). Also

po
——(sin8) (6 4)

Note that the factors (sin8) ' in Eqs. (2.11) can be
factored out. In the limit t =g=1 they scale like
the bond resistances.

To iterate we consider a triangle with bonds con-
necting the edge centers. We define two vectors,

Initially one has

o ~v 3a'a
yp

——yp
——2m@ /4p ——

24p
(6.12)

where 4 is the flux through the smallest triangles
(of edge a). We assume a uniform field and yo is
obviously gauge invariant. We also define

a„=16t„—1+4t„cosy„+cos(y„+y„), (6 13)

(6.5) b„= /b„/e

where Roman numerals label the apexes (b, ) ande(6 ) describes the edge centers so that b& is the
center of II-III, etc. (Fig. 4). The equations for the a
vertices can now be written

=16t„—1+4t„(2e "+e " "
)

r, +2
—~r„+r„~

and the determinant of A„[Eq. (6.7)],

(6.14)

F= U„b,'—2t„h', (6.6a) detA„= 64tn —12tn —2 cosy„.

One finds

(6.15)

Anh'= U„A, (6.6b)

where, as in Eqs. (6.1), F describes all terms in Eqs.
(2.11) due to bonds not belonging to the triangle
considered. For the other three (c) vertices, one has

t„+,=(t„de&„—a„)/
~ b„~,

p„+&
——(

~
b„~ IdetA„)p„,

(6.16)

(6.17)

and we have defined

n
= —T123+2tnI

(I the unit matrix) and

(6.7)

and for the phase factors,
n+ ~ n+1

where

(6.18)
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n+1 n n
XIII YI3+ Y3II 0n

n+1 n n
'YuIII ='YII1+T1In —0'n ~

n+1 n n
YIII I YIII2+ Y2I 9 n

so that

'Yn+1=3'Yn+'Yn 3f'n ~

r.+i=4""up+3 g 2" 'm.

= —,(4"+ 'yp+4y„) +3y„

(6.19)

(6.20)

(6.21)

t„=cosH„= 1 —8„/2,

rt„=1+iy„—y„/2,

(6.26a)

(6.26b)

regime in the following discussion. We note, how-
ever, that this fixed point is of interest near the band
edges in the electronic problems discussed in Sec.
III. The fixed points of (6.22) are, we believe, the
only fixed points of the renormalization process de-
fined by Eqs. (6.16}—(6.21).

Consider now the behavior near the t=l fixed
point. If 8 and y are initially small (on the scale a)
one can expand

Thus the effective flux through the corner triangles
is reduced [(6.20)] but the flux through the central

triangle is increased [(6.21)]. The net effect is that
the effective flux through the renormalized triangle

is smaller than its geometrical value, but is still pro-
portional to the area because of the flux trapped in
the central triangle (y).

t„+, t„(4t„——3), — (6.22)

B. Fixed-point expansions

It is useful to start by considering the situation in
the absence of magnetic fields. Equation (6.16) be-

comes

with an analogous expansion for r7„. Substituting in
Eq. (6.14) gives

2 1fn= 3'Yn+ 5'Yn ~ (6.27}

and from (6.20),
2

'Yn+1='Yn+ 5 'Yn

and from (6.21),

4n+ 1

Xn+1=
2

Xo+ —,en+2m

(6.28a)

(6.28b)

In essence, this shows that corrections to y„are not
important. It is straightforward to solve Eq. (6.27)
and obtain explicit expressions for y„and y„ in
terms of yp. It is, however, found that

and from (6.17),
rn =ra =4"Xo (6.29)

p„+i/p„= (2t„+1}/(4t„+1)(2t„—1) . (6.23)

There are two fixed points to Eq. (6.22} at t=O and
at t=1. Both are unstable. One has a power-law
behavior close to the fixed points, but for sufficient-

ly large n, t always becomes large and increases ex-
ponentially with the dimensions

2t„+i-4t„, p„+i=pn/4ts ~

so that

The detailed numerical factors are not interesting.
We therefore use the approximation (6.29) below.

Expanding Eq. (6.16) one finds

2 2 37& 2
~n+1 5~n 45p Yn

as long as O„and y„are both small, i.e., in the vicin-
ity of the t=l (8 =y =0) fixed point. The effect
of y„ in Eq. (6.30) is to increase the instability of the
fixed point.

logtn = —logP„= 2n . (6.25} C. A finite gasket

We mentioned in Sec. III that the t= 1 fixed point
is relevant to the resistor network and to low-
frequency diffusion. It is also the only fixed point
we shall discuss here. It describes situations where
8p is small. In principle, one could of course also
have situations for which the t=O fixed point plays
a role initially (e.g., Hp-n. /2). For special values of
tp one can also cross over from one fixed point to
the other. The crossover regime is, however, com-
plicated and extremely erratic. For most initial
values (tp, yp) the crossover from the vicinity of the
t= 1 fixed point to the large-t regime [Eqs. (6.24}
and (6.25)] is rapid and not interesting. We there-
fore disregard the t=O fixed point and the crossover

Consider now a finite gasket of size

L =2"a . (6.31)

The gasket is renormalized to a ring (or single trian-
gle) and one has the condition

detTn ———8tn+ 6tn+ 2 cosyn ——0 (6.32)

for the existence of solutions. There are no solutions
(for any y„) outside the range

—1 &t„&1 . (6.33)

Assume first that this inequality holds We can
then write
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i„=cos0„,

and (6.32}becomes

(6.34) ply replaces 8p by 81 in Eq. (6.46) one obtains iden-

tically,

cos30„=cosy„. (6.35}

Moreover, we have to be close to the fixed point, i.e.,

8„(8L )=1,
and from (6.38),

(6.44}

O&0„=5 00 &1.
Expanding (6.35) one finds

(6.36}

(6.38)

HI. =H (L) ~4p/L g &ql. ~ (6.45)

independent of g, . This would be the critical field
closer to T, when g, =qr '. It is obviously a lower
bound on the critical field.

We can also set an upper bound from the critical
field of clusters of size A,(g, ) [Eq. (6.41)],

where we have defined a renormalized coherence
length

P. "(5)"O'=L '0' (6.39)

where

H, =H(A, g) ccC)p/A, g . (6.46)

Any cluster larger than A,, consists of smaller sub-
units of this size. Thus H, is a field at which any
cluster larger than (A,, ) becomes completely normal,
and

8=(lnS)/(ln2) —2=0.32 . (6.40)
Hl &H, (L) &H, . (6.47)

The implied requirement that g, should be, at
least, comparable to L(-2") is obviously very re-
strictive. It is convenient to define a length from
(6.36). We have

&, =&(g, /a) (g, /a)' "+ '. (6.41)

~s gL (6.42)

There are, obviously, low-field solutions on any gas-
ket (in mean field). Thus superconducting coher-
ence disappears at some critical field for which the
local amplitudes

~

b,
~

are still finite. Superconduc-
tivity disappears because long-range order (on the
scale L) is destroyed, and not because 6 goes to
zero locally. We have thus found that, because of
the anomalous fractal structure of the gaskets they
have a peculiar anomalous regime when g, becomes
small, so that (6.42) holds.

%e can set a lower bound on the critical field in
this regime by considering solutions of the inhomo-
geneous LG equations on the gasket. The size L de-
fines a maximum value of 8(8L, ):

0L =/La L (6 43)

This is the maximum curvature consistent with or-
der on the scale L. In a thermodynamic theory it
would enter into the finite-size effects. If one sim-

A,, is analogous to a diffusion length for "time"
It is the range of correlations in b, on the infi-

nite gasket for solutions of the linear equations. As
noted in Sec. III, A,, is also, except for numerical
factors, the coherence length for fluctuations in the
superconducting state on the infinite gasket. %e
have shown that there are no solutions to the linear-
ized equations for large gaskets when

/i, , =f(H/H, ) (H/H, )' '2 Y'. (6.48)

We note that gH is the maximum loop size con-
sistent with field H and that it decreases as H is in-
creased. A different way of writing (6.48) is

H ~(c'p/gH)(gH/)(, , )", 0&y &2 (6.49)

Qualitatively, one can also see how the critical
field is determined. The transition to the normal
state results from the competition between the kinet-
ic energy of the supercurrents induced by the field
and the free energy of the superconducting state.
Up to a distance A,, the amplitudes are strongly cou-
pled. For larger clusters the fact that the current
distribution is necessarily nonuniform becomes im-
portant. Thus all the currents associated with the
closed loop ABC in Fig. 4 have to pass through these
points (A,B,C) Aregi. on of size A, near point A

therefore experiences a higher current density than a
similar region near the vertex I and will be driven
normal at a lower field. Such points whose origins
are essentially geometric therefore act as weak links.

One therefore expects a large gasket to breakup
into successively smaller units as the field is in-
creased, until it is finally driven normal at a field H,
when the largest connected gaskets are of size A, (g, ).
For the infinite gasket this implies that an imposed
field (H) determines a maximum loop size (gH). Up
to the scale gH one retains the gasket structure. On
a larger scale one has either separate clusters or a
treelike connection with no loops. At the upper lim-
it H, the magnetic length gH becomes equal to A,,
and gaskets of this size are driven normal uniformly.
It is therefore natural to postulate a scaling behavior
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where we have used the inequalities (6.47) in setting
the limits on y.

Intuitively, it seems somewhat surprising that we
are attributing physical significance to large fields
which can become much larger than the limit set by
flux quantization through the dominant loop of size
gH(40/gH ). Since there is a hierarchy of loops, in-
creasing the field beyond this limit has a real effect
and there is no reason to expect that the structure
will remain eonneeted up to H, .

The critical index y requires a better calculation
and cannot be determined from the linearized equa-
tions we have used. We shall discuss this else-
where. '

D. A lattice of gaskets

Alternatively, one could consider the gasket as a
local structure connected into a lattice at some scale.
L. ' We ignore the geometric details and assume
that one can use the iterated gasket values (t„,y„) in
a lattice model of the type considered in Sec. V. In
the scaling regime [Eq. (6.30)] we have

81 5"80 (L——/a) +——80, (6.50)

tion demonstrating this would of course be prefer-
able.

An important result is that H, 2 is a decreasing
function of L in this regime. The inequality (6.47)
requires y & 2 in Eq. (6.53). As the field is increased
the largest surviving loops become smaller. We
shall argue in Sec. VIII that this is a general proper-
ty of a large class of models for the structure of per-
colation clusters.

VII. APPLICATION TO THE SSG MODEL

We want to apply these results to percolation clus-
ters taking proper account of their scaling properties
and emphasizing the importance of dead ends and
loops. In this section we shall discuss predictions
for the Skal —Shklovski —deGennes (SSG) model'3
which has dead ends but no loops on a scale smaller
than gz. It will be seen that the results are in many
ways similar to those we found for the gasket model
of Gefen et al. ' Important differences do, however,
show up because the field cannot have any effect
once coherence is destroyed on the scale gz (there are
no loops) and when flux quantization is considered.

where 8 is defined in Eq. (6.40), i.e.,

8r'. =(L4s)'&1 ks=L "'gs (6.51)
A. The bare backbone in the SSG model

and using (5.14) with 81 replacing 8,

H, 2 ~ 40/gg cc L 4O/g, . (6.52)

As in Sec. VI C the renormalized correlation
length g, cannot become smaller than L. This
shows up explicitly through the fact that Eq. (5.6)
has no solution when we replace cos0 by t„and
t„&1. [This follows from property (a) of the solu-
tions. ] Thus condition (6.33) also holds for a lattice.
This determines a crossover when L becomes equal
to the intrinsic correlation length of the gasket
[A,(g, )] defined in Eq. (6.41). When L becomes
larger we have a situation similar to that we dis-
cussed for the finite gasket in Sec. VIC. The criti-
cal field is determined by the destruction of loops on
the scale L and depends on the properties of the gas-
ket at all smaller scales. Thus setting gH L in Eq. ——
(6.49),

y =2irHg~/4p

in analogy to Eq. (5.4), and

8=1~/g, ,

where l& is the SSG string length'

lz ~ (p —p, ) ~, g=t —(d —2)v .

(7.1)

(7.2)

(7.3)

Thus for small 8 one finds, instead of Eq. (5.16),

H, 2 ~ (lp/(p) @0/mg, .

For large 8,

(7.4)

For completeness we first consider a bare back-
bone with no dead ends. We emphasize, however,
that the dead ends are crucial for percolation clus-
ters in the linear regime (as they are for the analo-
gous diffusion problem). '

One can use the results of Sec. V. One has

H, 2(L) ~ 40/L (L/A, , ), L)A, (6.53) 0&~, (7.5)

The index y cannot be determined from the cross-
over behavior (at L =A,).

We have identified the macroscopic critical field
of the lattice (as determined, e.g. , by the resistive
transition) with the field at which loops on the scale
L are disrupted. This seems natural and almost
inevitable in a scaling model. An explicit calcula- g, =(g~/I~)g, (7 6)

and this behavior breaks down and there is no criti-
cal field. Adding a flux quantum per loop has no
effect. Another way of formulating this result is to
say that the coherence length is reduced by a
geometric factor
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because of the tortuous shape of the one-dimensional
links.

For a random system one would expect the
Little-Parks oscillations" to be damped out and
probably some shift in the specific crossover value
compared to the lattice result [Eq. (5.20)].

B. The SSG model arith dead ends

where the mass (mz) on a scale gz is

(p p. ) 0,'=—(p p,)—
Thus, instead of (7.4} one predicts

(7.8)

(7.9)

The condition for the validity of this expression is

We have seen that the dead ends are important.
Assume first that g, is sufficiently small. One can
use the results of Sec. IVC. Setting d„=lz ' and
L„=g& in 4.18 gives

g, =g, (g~/1~m~)'~ =g, (p p, )—" ~'~, (7.7)

the scale g~ in terms of a string of "beads" of size
The underlying idea is that one has a hierarchy

of dead ends. ' Short dead ends will be incorporated
into the backbone mass while long ones (on a scale
A, ) do not matter. In essence, A,, is the depth to
which superconducting coherence is established
around the backbone. We are interested in the im-
plications for the propagation of coherence along the
backbone. We can use the formalism of Sec. IVC.
We return to Eqs. (4.11),

m(~s)~i+[I/l(~s)](hatt, t i~t i+rl;, t+i~tii
—2h; )=0 . (7.16)

We rewrite this in the form

(1/l)( 2th—;+rl;; i5; i+rt;, ;+id;+i)=0,
(7.17)

and use an iterative procedure to eliminate the inter-
mediate (say odd) sites in favor of their neighbors.
This is more convenient than an explicit use of Eqs.
(4.15).

One finds
2/(2+8)

where'

(?.10) 2t„+)=2t„—1,
I„+]——2t„l„,

(7.18a)

(7.18b)

8=(t P)/v . — (7.11)

This is in reasonably good agreement with the re-
sults of Ref. 1 in the small gz (small-resistivity) re-
gion. Equation (7.7} is also the result one would ob-
tain if one were to use the infinite cluster diffusion
constant cc (p —p, )' ~ (see Refs. 14, 18, and 23) in
the standard expression for g, ."

Consider now the situation close to p, when (7.10)
does not hold. As in Sec. VI C [Eq. (6.41)] we define
a length

p 2/(2+8)sobs (7.12)

analogous to the diffusion length. ' Up to the scale
the renormalized coherence length is always

small compared to the relevant l,j. Thus on a scale
A,, one will have

m(k, }=A,, (7.13)

and

and a simple multiplicative relationship for the rl.
The initial behavior near the t =1 unstable fixed
point of (7.18) reproduces the additive solutions we
considered in Sec. IV C [e.g., Eq. (4.20)]. Equations
(7.18) are, however, very similar to Eq. (6.21). As n
increases there is an erratic crossover regime and
eventually, for large n one reaches a regime

2t„+)-t„, t„g&1 . (7.19)

The coupling between the junction points on the
backbone decreases exponentially with L ( =2"). We
treat this along the same lines as we did in Sec.
VID. We argue that large

nq-L/l(A, , ) »1 (7.20)

implies large tL and would be inconsistent with
long-range order. Since we have already used a
similar consistency argument in defining A,, one is
lead to a condition

1(Z, )=a~'", (7.14) g, /gp -&, /gp -1 . (7.21)

d =d —P/v (7.15)

and the length index g is defined in Eq. (7.3).
We now try to compute the coherence length an

where the anamalous dimensionality of the cluster
1S12

This should be regarded as a condition on the max-
imum curvatures consistent with the homogeneous
linearized solutions.

As in the discussion of Sec. VIC, A, (g, ) is the
relevant coherence length in the scaling regime (i.e.,
below g~). Beyond this range amplitude correlations
decay exponentially.
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H, 2(gp) &@pipe, (7.23)

from the value of H, 2 for some larger value of g, for
which A, would be equal to gz. As in Sec. VI we ar-
gue that decreasing g, cannot decrease H, 2. It is
straightforward to justify this with the use of the
solutions of the inhomogeneous LG equations in a
variational argument along the lines of the argument
in Sec. VID.

Since there are no subsidiary loops there is no
analog of the field H, in this model. A treelike clus-
ter of size A,, is not affected by a magnetic field.

Having no subsidiary loops also has another
consequence. Adding a flux quantum to the flux
through a loop cannot have any physical effect. We
are thus led back to the results of Sec. V (and VII A)
for the square lattice. The critical field cannot be
larger than $0jg&. Combining this with the lower-
limit set in Eq. (7.23) one concludes that there can-
not be any true critical field in the SSG model when

(7.24)

This does not exclude the possibility of important
hysteresis effects at higher fields in this model.

The results for finite clusters are analogous. Clus-
ters with no loops are not affected by the field. If
the cluster has a single loop (of size L) it can be
driven normal by a magnetic field if

(7.25)

The renormalized coherence length is then given by

(7.26)

in analogy to Eq. (7.7), and

One thus predicts two regimes. For small gz,

(7.22)

and H, 2 is given by Eq. (7.9). For larger values of
gz we can set a lower limit on H, 2,

geometrical structures in considerable detail. The
results for the weakly disordered regime confirm the
intuitive expectations. One finds that the diffusion
constant shows up here in the same way it does in
dirty superconductors. The renormalization of the
coherence length derived in this way also seems to
give predictions which are in reasonable agreement
with experiment. The explicit derivation from a
master equation emphasizes the fact that dead ends
are important and that one has to renormalize both
the mass and the diffusivity. We believe it is at least
conceptually important to emphasize this point.
The predictions for this regime follow from general
scaling considerations and are not sensitive to the
details of the model assumed for the short-range
structure. One notes that dead ends are definitely
important and the general theorems for fixed ampli-
tude spins are not applicable. (Even for spin sys-
tems they do not apply if the strands have a width of
several spins. )

We have shown that there is a crossover when

gr &A, , (8.1)

follows from general scaling consideration. An
equivalent quantity should, therefore, show up also
in disordered systems which are not described by a
percolation model. Thus one expects a similar
crossover behavior near the metal-insulator transi-
tion when the electronic localization length becomes
large.

As mentioned repeatedly A,(g, ) is analogous to the
finite time diffusion length (L cc t'/' + '). It is cu-
rious to note that the same arguments predict locali-
zation of the electronic eigenfunctions

where ge is the connectivity length and A,, is, in
essence, the superconducting coherence length in the
anomalous short-distance regime. We saw that its
relationship to the bare coherence length,

(8.2)

H, (L) ~ (@DILLY, ) =(@0/'g,L' ') (7.27) L ~ (inc) —i/(2+ei (8.3)
Larger loops should exhibit Little-Parks oscilla-

tions. " We note that the oscillations should cancel
out in a magnetization measurement because of in-
terference effects between loops of different size for
large fields. It seems obvious that one needs a better
treatment of the loop distribution to get meaningful
predictions of critical fields and susceptibilities.

VIII. COMPARISON %'ITH EXPERIMENT
AND IMPLICATIONS FOR THE STRUCTURE

OF PERCOLATION CLUSTERS

The formalism we have developed in Sec. II has
allowed us to study superconductivity on complex

with the use of Eq. (3.6). This implies that it would
be easier to localize the high-energy states. Since
purely geometric disorder of the type we are consid-

ering is presumably important in many materials
this may be relevant to the understanding of real
physical systems. This is of course a local effect,
i.e., A, is related to the "mean free path" and not
directly to the localization length.

We believe this is an important point for the
understanding of properties of disordered systems in
situations controlled by the fixed point of the disor-
der (i.e., for large g~). There are two length scales.
The smallest scale which can show up in macroscop-
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H, 2 0(: (8.4)

ic properties is gz. On the other hand, local proper-
ties depend on the intrinsic scale A, which can be
very short. This can have important effects in suit-
able experiments. For the effect of magnetic fields
on superconductors the important point is that nei-
ther gz nor A,, can be used as a renormalized correla-
tion length in a Landau-Ginzburg equation. There
is, therefore, a qualitative difference between the
properties of strongly disordered superconductors
and that described by such an equation. While A,, is
the correlation length locally, the macroscopic prop-
erties predicted depend on the geometrical model
and in particular on the distribution of loops. This
becomes obvious when one compares the results of
the SSG model in Sec. VII with those of a model
with a gasketlike backbone related to our analysis in
Sec. VI. We shall argue below that one probably re-
quires a considerably more sophisticated model.

We have considered two models for the
anomalous structure of percolation clusters. Taking
the SSG model literally we found (in Sec. VII) that
it should behave like a net with a large mesh when

gz becomes sufficiently large. The only length scale
is gz and the intrinsic length A,, only shows up in
determining the crossover point. It seems unreason-
able to take the model literally in a context where
subsidiary loops are obviously important.

For the gasket model we found a "weak-link"
behavior due to the interference of the hierarchy of
loops. %'e were also able to set an upper bound on
the critical field. This led us to an apparently plau-
sible picture for the behavior of the infinite gasket in
a magnetic field. As the field is increased the size of
the largest loops that are still continuously super-
conducting (gH) decreases. We expressed this by a
scaling assumption [Eq. (6.48)]. It also leads to the
prediction that, beyond the crossover, the critical
field should decrease as one approaches the percola-
tion threshold.

It should be emphasized that a proper analysis of
the large-gasket situation cannot be carried out in
the framework of the linearized Landau-Ginzburg
equations. We were therefore not able to calculate
the index [Eq. (6.53)] y or even to demonstrate that a
gasket actually shows the weak-link behavior
described. A proper analysis of this situation will be
presented elsewhere. ' We do, however, believe that
the heuristic arguments presented in Sec. VI are con-
vincing.

There is a qualitative disagreement between the
predictions we obtained with both models and the
experimental results. Deutscher et al. ' find a clear
crossover but the critical field still seems to diverge
with g~:

where x is a positive number. The experiments also
seem quite convincing. This result should be com-
pared with the prediction of Sec. VI, e.g., in the scal-
ing form of Eq. (6.53) with y(2. We believe this is
a real discrepancy and would like to comment on
the implications for the structure of percolation
clusters assuming that the analysis of Secs. VI and
VII and the experimental results of Ref. 1 are reli-
able.

In any scaling model H, 2 must be related to the
disruption of loops (of size g~) on the critical infinite
cluster at p, . To fit the experiments one needs a
model for which large loops are somehow more
stable than small ones.

The gasket model is obviously an oversimplifica-
tion. There are two obvious corrections. First, one
needs dead ends. As we have seen this would
change A,, and the critical indices. The qualitative
features of the argument in Sec. VI (for a gasketlike
backbone) still hold. The second point concerns the
distribution of loops. The gasket has loops on all
length scales with probability 1. One would like to
replace this by a self-similar statistical distribution
for which the probability of forming loops is scale
invariant but different from unity.

For a gasket (Fig. 4) this would mean that only a
fraction (say, q) of triangles of the size shown are
connected at al/ three points ABC. Similarily,
among triangles of the size IAC only this fraction
(q) is connected at all three points of type II, III, IV,
etc. The probability q must be defined as the loop-
forming probability. Among clusters of size I. only
a fraction q has loops with an area proportional to
I. . Other clusters are treelike on this scale but will
in general have smaller loops. The relationship of q
to the local probability of forming a junction, say at
A, is complex and not relevant here. This leads to a
much richer weak-link structure.

Consider first the properties at the scale A,, which
one expects to dominate the properties close to p, .
Since A,, is still the correlation length, clusters of
this size will be driven normal uniformly by a field.
There is, however, a distribution of these critical
fields presumably dominated by the largest loops in
the specific cluster. One guesses

p(H)=p(H/Hg) 0: (H, /H)', l &1, H &Hg

(8.5)

where H, [ cc I/A, (g, )] is still defined as in Eq.
(6.46). Consider now the implication for larger
loops, say of size I.»A, The loop will, in general,
contain a distribution of "weak links" of size A.,
both for geometric reasons (as in the full-gasket Sec.
VIC) and because of the distribution in the critical
fields for such regions [f(H)—Eq. (8.5)]. The loop
will be disrupted when the weakest link becomes
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normal. Since the critical field is necessarily large
(compared to Po/L ) this is predominantly a local
effect. Supercurrents through large loops are re-
duced (by flux quantization) and may even be unim-
portant compared to the effect of the distribution
(8.5). One ends up with a probability distribution
for disruption of large loops determined by f(H)
and by the distribution of regions of size A,, on the
circumference of the loop. The critical field (H, 2) is
then determined by the requirement that some criti-
cal fraction of loops of size gs is disrupted.

Altogether this model seems more realistic than
the gasket model. Nevertheless it still predicts a
critical field which decreases with gs. The probabil-
ity that a loop of size L has a sufficiently weak link
to be disrupted at a field H( &H, ) must increase
with L in any reasonable model of this type. We be-
lieve this reflects the fact that we have started with
a fractal geometry with a constant ramification
number. For such a geometry large loops are open
and renormalize to a ring. This seems to lead to a
change, at the crossover which is too dramatic, from
a latticelike geometry with a ramification propor-
tional to Ld ' on a scale larger than gs to the loop-
like short-range geometry. One would guess that a
fractal short-range structure with a ramification
number proportional to some power of L would give
a smoother transition and might be consistent with
the experimental results. We are, however, not
aware of any models which would be suitable for
checking this conjecture.

Finally, we would like to comment on the mag-

netic susceptibility discussed by de Gennes. For the
low-field situation below P, (H «HL, H, ) one can
neglect the changes in the superconducting ampli-
tude (

~

b,
~

). In this limit the problem is linear. In
essence only the size distribution of loops is impor-
tant, as suggested in Ref. 3, and the problem maps
exactly on that of a metallic net in a time-dependent
magnetic field. Stephen has recently used this re-
lationship. The susceptibility is dominated by the
largest loops. It is important to realize that this
completely neglects the effect of supercurrents on
the amplitudes. ' Close to p, one expects important
critical-field effects on the loop distribution, analo-
gous to those which showed up in the discussion of
H, 2. These should show up in the field dependence
of the magnetic susceptibility below p, (when

gs & A,,) and also have H, 2 in the connected regime.
Measurements of magnetic field dependence of the
susceptibility and specific heat would therefore be of
great interest, and should give much more detailed
information on the cluster geometry than the low-
field measurements.
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