d-orbital theory and high-pressure effects upon the EPR spectrum of ruby

Zhao Min-Guang

Physics Department, Sichuan Teachers' College, Chengdu 610066, China

Xu Ji-An

Physics Department, Columbia College, Columbia, Missouri 65201 and Institute of Physics, Chinese Science Academy, Beijing, China

Bai Gui-Ru

Physics Department, China University of Science and Technology, Hefei, China

Xie Huong-Sen Institute of Geochemistry, Chinese Science Academy, Guiyang, China (Received 16 October 1981)

At the present time there is no satisfactory theory of d-d transition in ruby which relates its spectrum to its crystalline parameters; consequently a theoretical problem of predicting high-pressure EPR effects seems far from solution. In the present paper a quantitative relationship between crystalline parameters and spectra is established. The calculation results agree well with experimental findings.

I. INTRODUCTION

The spectra of Cr^{3+} in Al₂O₃ had been analyzed by Sugano *et al.*^{1,2} and others³⁻⁹ on the basis of crystal-field parameters determined from experiments. However, at the present time there is no satisfactory theory of *d-d* transition in ruby that relates its spectrum to its crystalline parameters. Consequently, a theoretical prediction of highpressure zero-field splitting of ruby is not available. In this work we will investigate the theoretical difficulty on the basis of an analytical approximation of Watson's *d* orbit. The calculated results agree well with experimental findings.

II. *d*-ORBIT MODEL FOR *d*ⁿ CONFIGURATION

For the d^n configuration, the *d* electrons can receive the Coulomb action of the nucleus and also the electrostatic actions of electrons of various inner shells. In the central-field approximation, this effective potential consists of the spherical shell potential, the Coulomb potential, and the potential arising from the uniform electric charge distribution, and can be expressed by

$$V_i(r_i) = C_0 + C_1 r_i^{-1} + c_2 r_i + C_3 r_i^2 + \cdots, \quad (1)$$

where the first two terms on the right-hand side are the Condon-Shortley equivalent potential.¹⁰ The exponential function of the double-zeta type satisfies the physical requirement expressed by Eq. (1). This will be proved as follows.

In a central field, the wave equation of a single d electron is approximately given by

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + 3r^{-2} - V(r) - E\right] r R_d(r) = 0 \qquad (2)$$

in atomic units. Here the configuration admixture is neglected.

The double-zeta exponential function is

$$R_{d}(r) = a_{1}N_{1}r^{2}\exp(-\xi_{1}r) + a_{2}N_{2}r^{2}\exp(-\xi_{2}r) ,$$

$$N_{j} = \left[\frac{(2\xi_{j})^{7}}{6!}\right]^{1/2}, \quad j = 1,2 \quad (3)$$

$$a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2} \left[\frac{2\sqrt{\xi_{1}\xi_{2}}}{\xi_{1} + \xi_{2}}\right]^{7} = 1 .$$

Substituting Eq. (3) into Eq. (2) and solving the effective central potential, we have

$$V(r) = \frac{3}{r} \frac{a_1 N_1 \xi_1 \exp(-\xi_1 r) + a_2 N_2 \xi_2 \exp(-\xi_2 r)}{a_1 N_1 \exp(-\xi_1 r) + a_2 N_2 \exp(-\xi_2 r)} - \frac{1}{2} \frac{a_i N_1 \xi_1^2 \exp(-\xi_1 r) + a_2 N_2 \xi_2^2 \exp(-\xi_2 r)}{a_1 N_1 \exp(-\xi_1 r) + a_2 N_2 \exp(-\xi_2 r)} - E .$$
(4)

©1983 The American Physical Society

Expanding Eq. (4) into a series, we have

$$V(r) = -\frac{3a_1N_1a_2N_2(\zeta_1-\zeta_2)^2}{(a_1N_1+a_2N_2)^2} - \frac{1}{2} \frac{a_1N_1\zeta_1^2 + a_2N_2\zeta_2^2}{a_1N_1+a_2N_2} - E + \frac{3}{r} \frac{a_1N_1\zeta_1 + a_2N_2\zeta_2}{a_1N_1+a_2N_2}$$
$$-\frac{a_1N_1a_2N_2(\zeta_1-\zeta_2)^2}{(a_1N_1-a_2N_2)^3} [a_1N_1(\zeta_1-2\zeta_2) + a_2N_2(\zeta_2-2\zeta_1)]r$$
$$+ \left[\frac{1}{4} \frac{a_1N_1a_2N_2(\zeta_1-\zeta_2)^3}{(a_1N_1+a_2N_2)^3} (a_1N_1-a_2N_2)(\zeta_1+\zeta_2) - \frac{1}{2} \frac{a_1N_1a_2N_2(\zeta_1-\zeta_2)^4}{(a_1N_1+a_2N_2)^4} (a_1^2N_1^2 + a_2^2N_2^2 + 4a_1N_1a_2N_2)\right]r^2 + \cdots, \quad \xi_1 > \xi_2.$$
(5)

This expression is consistent with Eq. (1). From this it can be seen that the adoption of the exponential function of double-zeta type as the radial dorbital function is reasonable. Now, with Eq. (3) as d-orbital function, several problems are to be noted.

A. Spin-orbital coupling coefficient

The Hamiltonian operator of spin-orbital (so) interaction of an N-electron system is given by

$$\mathcal{H}_{so} = \sum_{i=1}^{N} \mathcal{H}(i) \tag{6}$$

with

$$\mathscr{H}(i) = \zeta(r_i) \vec{1} \cdot \vec{S} , \qquad (7)$$

$$\zeta(\mathbf{r}_i) = -\frac{e}{2m^2c^2r}\frac{d}{dr}V(\mathbf{r}_i) \,. \tag{8}$$

For a *d* orbit, the so coefficient is

$$\begin{aligned} \xi_d^0 &= \hbar^2 \langle R_d \mid \xi(r) \mid R_d \rangle \\ &= \frac{-e\hbar^2}{2m^2c^2} \left\langle \frac{1}{r} V(r) \right\rangle \,. \end{aligned} \tag{9}$$

In units of cm^{-1} , the so coefficient becomes

$$\begin{aligned} \xi_{d}^{0} = 5.844167 \left[\frac{9}{8} \left[\frac{a_{1}^{2}N_{1}^{2}}{\zeta_{1}^{3}} + \frac{a_{2}^{2}N_{2}^{2}}{\zeta_{2}^{3}} + \frac{16a_{1}N_{1}a_{2}N_{2}}{(\zeta_{1} + \zeta_{2})^{3}} \right] \\ + 12a_{1}N_{1}a_{2}N_{2}\frac{(\zeta_{1} - \zeta_{2})^{2}}{(\zeta_{1} + \zeta_{2})^{5}} \right]. \quad (10a) \end{aligned}$$

Considering the correction of Blume and Watson,⁷ we have

$$\zeta_d = \zeta_d^0 - 3M^0(dd) + \frac{6}{7}M^2(dd) .$$
 (10b)

B. Racah electrostatic parameters

The Hamiltonian operator of the electronelectron repulsion interaction can be written as

$$\mathscr{H}_{e} = \frac{1}{2} \sum_{i \neq j}^{n} \frac{e^{2}}{r_{ij}} , i, j = 1, 2, 3, \dots, n$$
 (11)

The contributions of the electron-electron interaction to levels of the d^n system can be described in terms of Racah parameters,¹¹⁻¹³

$$A_{0} = F^{0} - \frac{49}{441}F^{4} ,$$

$$B_{0} = \frac{1}{49}F^{2} - \frac{5}{441}F^{4} ,$$

$$C_{0} = \frac{35}{441}F^{4} ,$$
(12)

where

$$F^{k} = e^{2} \int_{0}^{\infty} \int_{0}^{\infty} R_{d}(r_{1})^{2} \frac{r_{<}^{k}}{r_{>}^{k+1}} R_{d}(r_{2})^{2} \times r_{1}^{2} r_{2}^{2} dr_{1} dr_{2} .$$
(13)

By using the formula

$$J^{k}(\alpha,\beta) = \int_{0}^{\infty} \int_{0}^{\infty} r_{1}^{6} r_{2}^{6} \frac{r_{<}^{k}}{r_{>}^{k+1}} e^{-\alpha r_{1}} e^{-\beta r_{2}} dr_{1} dr_{2}$$

$$= \frac{(6+k)!}{\beta^{7+k}} \left[\frac{(5-k)!}{\alpha^{6-k}} - \sum_{m=0}^{6+k} \frac{\beta^{m}}{m!} \frac{(5-k+m)!}{(\beta+\alpha)^{6-k+m}} \right] + \frac{(6+k)!}{\alpha^{7+k}} \left[\frac{(5-k)!}{\beta^{6-k}} - \sum_{m=0}^{6+k} \frac{\alpha^{m}}{m!} \frac{(5-k+m)!}{(\alpha+\beta)^{6-k+m}} \right],$$
(14)

the parameters F^k in Eq. (13) can be calculated.

III. ANALYTICAL APPROXIMATION OF WATSON'S d ORBIT

By following previous works^{8,14} and introducing three mathematical conditions governing overlap, $R_d(r) \approx R_d^W(r)$ (W denotes Watson) ($r \le 0.3$ a.u.),

$$[\langle R_d(r) | R_d^W(r) \rangle]^{1/2} \approx 1 \text{ and } (\langle R_d | r^{-1} | R_d \rangle)^{1/2} \approx [\langle R_d^W | r^{-1} | R_d^W \rangle]^{1/2},$$

then the analytic approximation of Watson's⁶ self-consistent field d orbit is given by

$$R_{d}(r) = 0.591474 \left[\frac{9.3232^{7}}{6!} \right]^{1/2} r^{2} \exp(-4.6616r) + 0.6014980 \left[\frac{3.3052^{7}}{6!} \right]^{1/2} r^{2} \exp(-1.6526r) , \qquad (15)$$

which is a parametrized wave function. Using an IBM-130 computer, we find

$$A_{0} = 150 \, 848, \quad \langle r^{2} \rangle = 2.4843 ,$$

$$B_{0} = 920.48, \quad \langle r^{4} \rangle = 16.4276 ,$$

$$C_{0} = 3330.71, \quad \langle r^{-3} \rangle = 3.0841 ,$$

$$\zeta_{d} = 240, \quad \mathscr{P} = g_{e}g_{N}\beta_{e}\beta_{N}\langle r^{-3} \rangle = -0.0033 ,$$

(16)

where A_0 , B_0 , C_0 , ζ_d , and \mathscr{P} are in cm⁻¹ units, and $\langle r \rangle$ values are in a.u. Here \mathscr{P} is the hyperfine con-

stant of the nucleus of Cr. Comparison of theory with experiment is given in Table I.

IV. d-d TRANSITION IN RUBY

Ruby $(Al_2O_2:Cr^{3+})$ is an important material for lasers. There are many precise experimental data accumulated on its level study that lend ruby very favorably to theoretical study. In ruby, Cr^{3+} is surrounded by six O^{2-} ions, its stereostructure belongs

Гerm	J	Energy levels (cm ⁻¹)	
		Theoretical values	Experimental values ^{a,b}
⁴ F	3/2	0	O ^a
	5/2	200	235.8ª
	7/2	480	555.6ª
	9/2	840	945.6 ^a
⁴ <i>P</i>	1/2	13 749	14059, ^a 13640 ^b (17)
	3/2	13 871	14 177.1ª
	5/2	14 343	14 471.3 ^a
^{2}G	7/2	14 998	15 051.8, ^a 14 660 ^b
	9/2	15 363	15 401.6ª
^{2}P	3/2	18 548	19 438.6, ^a 18 400 ^b
	1/2	18 620	19 519.2 ^a (15.16)
$^{2}D2$	3/2	20455	20 649.9, ^a 19 930 ^b
	5/2	20 469	20 664.3ª
^{2}H	9/2	20 523	21 065.9. ^a 20 590 ^b
	11/2	20 790	21 320.7ª
² P	7/2	33 448	34 262.8ª
	5/2	33 590	34 555.7ª
² D 1	5/2	51 846	52 975.3ª
	3/2	51 995	53 142.0 ^a
		Trees correction ^c : 75 cm ^{-1}	
		kacan correction [*] : -131 cm ⁻¹	

TABLE I. Spectrum of free Cr³⁺ ion.

^aReferences 16 and 17.

^bReference 18.

^cReferences 11, 12, and 15.

to the C_3 point group³; $\alpha_1 = 63.1^{\circ} \pm 1^{\circ}$, $R_1 = 1.857 \pm 0.015$ Å, $\alpha_2 = 47.7^{\circ} \pm 1^{\circ}$, $R_2 = 1.966$ ± 0.015 Å. Under the O_h approximation, we have⁹ $E({}^{4}A_2) = -1.2\Delta$, $E({}^{2}E_a) = -1.2\Delta 9B + 3C$, $E({}^{2}E_b) = E({}^{2}E_a) + \Delta + 5B$,

$$\begin{split} E(^{2}E_{c}) &= E(^{2}E_{a}) + 14B + 3C + \Delta ,\\ E(^{2}T_{1a}) &= E(^{2}E_{a}) ,\\ E(^{2}T_{1b}) &= E(^{2}E_{a}) + \Delta ,\\ E(^{2}T_{1c}) &= E(^{2}E_{a}) + \Delta + 6B ,\\ E(^{2}T_{2a}) &= 158 + 4C - 1.2\Delta , \\ E(^{2}T_{2a}) &= E(^{2}E_{a}) + \Delta ,\\ E(^{2}T_{2c}) &= E(^{2}E_{a}) + \Delta + 10B ,\\ E(^{4}T_{2}) &= -0.2\Delta ,\\ E(^{4}T_{1a}) &= -0.2\Delta + 12B - Y ,\\ E(^{4}T_{1b}) &= 0.8\Delta + 3B + Y ,\\ E(^{2}A_{1}) &= -0.2\Delta + 24B + 3C ,\\ E(^{2}A_{2}) &= -0.2\Delta + 24B + 3C , \end{split}$$

with

$$\Delta \approx \frac{5}{3} N^2 \left[\frac{e^2 \langle r^4 \rangle}{R_1^5} + \frac{e^2 \langle r^4 \rangle}{R_2^5} \right],$$

$$Y \approx 36B^2 / (\Delta - 9B + Y),$$

$$B \approx N^4 B_0,$$

$$C \approx N^4 C_0,$$

$$N^2 = (N_\pi^2 + N_\sigma^2) / 2,$$

$$N_\pi^{-2} = 1 + 4\beta_\pi S_\pi + \beta_\pi^2,$$

$$N_\sigma^{-2} = 1 + 4\alpha_\sigma S_\sigma + \alpha_\sigma^2,$$
(18)

where α_{σ} and β_{π} denote covalent bonding coefficients (two empirical constants), $\alpha_{\sigma} = -0.7104$, $\beta_{\pi} = 0.1770$, S_{σ} and S_{π} denote the overlap integral between the 3*d* orbit (Cr³⁺) and 2*p* orbit (O²⁻), and

$$R_{2p}(O^{2-}) = STO(1.725)$$
, (19)

where STO denotes Slater orbital. Comparison of theory with experiment is given in Table II.

V. ZERO-FIELD SPLITTING AND TRIGONAL FIELD SPLITTING

With consideration of the combined effects of trigonal-field and spin-orbit coupling and the utilization of the third-order perturbation theory,⁹ the zero-field splitting of ruby in the ground state is given by

TABLE II. d-d transition in ruby.				
Transition	Theoretical frequency ^b (cm ⁻¹)	Experimental frequency ^a (cm ⁻¹)		
${}^{4}A_{2g} \rightarrow {}^{2}E_{a}$	14 440	14433, 14447, 14418		
$^{2}T_{1a}$	14 440	15 105, 14 957, 15 169, 15 190 15 038		
${}^{4}T_{2}$	17 505	18 000		
${}^{2}T_{2a}$	21 434	21 139, 20 993, 21 068, 21 357 21 139		
${}^{4}T_{1a}$	24 707	24 800		
${}^{2}A_{1}$	28 174	29 700		
${}^{2}T_{2b}$	31 946	31 000		
${}^{2}T_{1b}$	31 946	32 300		
² <i>E</i> _b	35 582	34 300		
$^{2}T_{1c}$	36 309	36 800		
${}^{4}T_{1b}$	38 717	39 000		
${}^{2}T_{2c}$	39 2 1 8	40 500		
$^{2}A_{2}$	42 700	42 300		

^aReferences 2-4.

 $^{b}O_{h}$ approximation.

1519

Transition	Theoretical values ^b (cm ⁻¹)	Experimental values ^a (cm ⁻¹)
$\overline{{}^{4}A_{1} \rightarrow {}^{4}E({}^{4}T_{2})}$	17 399	18 000
${}^{4}A_{1}({}^{4}T_{2})$	17 806	18 400
${}^{2}E({}^{2}T_{2a})$	21 286	20993-21357
${}^{2}A_{1}({}^{2}T_{2a})$	21 737	
${}^{4}E({}^{4}T_{1a})$	24 361	24 400
$\frac{4}{4}A_{2}(\frac{4}{1}T_{1a})$	25 399	25 200
${}^{4}A_{2}({}^{4}T_{1b})$	38 612	39 000
${}^{4}E({}^{4}T_{1b})$	38 928	39 400
$B(\pm \frac{1}{2}) - E(\pm \frac{3}{2})$	0.37	0.383

TABLE III. Trigonal- and zero-field splitting.

 ${}^{b}C_{3v}$ approximation.

$$E(\pm \frac{1}{2}) - E(\pm \frac{3}{2}) \approx N^{6} \zeta_{d}^{2} V \left[\frac{4}{9[E(^{4}T_{2}) - E(^{4}A_{2})]^{2}} - \frac{4}{9[E(^{2}T_{2b}) - E(^{4}A_{2})]^{2}} \right] \\ + N^{6} \zeta_{d}^{2} V' \left[\frac{4\sqrt{2}}{3[E(^{4}T_{2}) - E(^{4}A_{2})][E(^{4}T_{1a}) - E(^{4}A_{2})]} \right] \\ + \frac{2\sqrt{2}}{[E(^{2}T_{2a}) - E(^{4}A_{2})][E(^{4}T_{1a}) - E(^{4}A_{2})]} \\ + \frac{2\sqrt{2}}{3[E(^{2}T_{2b}) - E(^{4}A_{2})][E(^{4}T_{1a}) - e(^{4}A_{2})]} \\ + \frac{2\sqrt{2}}{[E(^{2}T_{1a}) - E(^{4}A_{2})][E(^{4}T_{1a}) - E(^{4}A_{2})]} \right].$$
(20)

Γ

In the range of experimental error, we have chosen the best values (α measured in deg and R in Å) as

 $\alpha_1 = 62.7, R_1 = 1.857,$ $\alpha_2 = 46.7, R_2 = 1.966,$ (21)

and using the *d* orbit in Eq. (15), we find (in units of cm^{-1})

$$N^{2}V \approx N^{2}(3D\sigma - \frac{20}{3}D\tau) = 903 ,$$

$$N^{2}V' \approx N^{2} \left[\sqrt{2}D\sigma - \frac{5\sqrt{2}}{3}D\tau\right] = 587 , \qquad (22)$$

$$E(\pm \frac{1}{2}) - E(\pm \frac{3}{2}) = 0.37 .$$

(P=0 kbar). Comparison of theory with experiment is given in Table III. It follows from Table III that the calculation results agree well with experimental findings. This removes "a long-standing theoretical difficulty."^{19,20}

VI. HIGH-PRESSURE EFFECTS UPON *d-d* AND EPR SPECTRA OF RUBY

According to the work by Drickamer *et al.*,²⁰ we have

$$\frac{d}{dP}(V/V_0) \approx -3.175 \times 10^{-4} ,$$

$$\frac{d\alpha}{dP} \approx 1.587 \times 10^{-3} ,$$
(23)

measured in kbar⁻¹ and deg kbar⁻¹, respectively. By using the Eqs. (17), (18), and (20) - (23), the high-pressure *d*-*d* and EPR spectra may be computed. Comparison of theory with experiment is given in Table IV.

In the calculation, the trigonal-field parameters are given by

^aReferences 2-4 and 19.

Transition	Theoretical frequency (cm^{-1})	Experimental frequency ^a (cm ⁻¹)
	(6111 /	(0111)
$\nu_1({}^4A_1 \rightarrow {}^4E({}^4T_2))$	1 kbar	
	$v_1 = 17399, \Delta v_1 = 0$	$\Delta v_{\perp} = 0$
	63 kbar	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	$v_1 = 17963, \Delta v_1 = 564$	$\Delta v_{\perp} = 600$
	128 kbar	,
	$v_{\perp} = 18601, \Delta v_{\perp} = 1202$	$\Delta v_{\perp} = 1100$
$v_{11}({}^{4}A_{1} \rightarrow {}^{4}A_{1}({}^{4}T_{2}))$	1 kbar	
	$v_{ } = 17806, \Delta v_{ } = 0$	$\Delta v_{ } = 0$
	63 kbar	
	$v_{ } = 18385, \Delta v_{11} = 579$	$\Delta v_{ } = 600 - 900$
	128 kbar	
	$v_{ } = 18790, \Delta v_{ } = 1164$	$\Delta v_{ } = 1100 - 1400$
$E(\pm\frac{1}{2}) - E(\pm\frac{3}{2})$	1 kbar	
	0.37	0.38
	63 kbar	
	0.42	0.43
	128 kbar	
	0.454	

TABLE IV. High-pressure *d*-*d* and EPR spectrum.

^aReferences 19 and 21.

$$D\sigma = -\frac{3}{7} \left[(3\cos^2\alpha_1 - 1)\frac{e^2 \langle r^2 \rangle}{R_1^3} + (3\cos^2\alpha_2 - 1)\frac{e^2 \langle r^2 \rangle}{R_2^3} \right],$$

$$D\tau = -\left[\frac{1}{28} (35\cos^4\alpha_1 - 30\cos^2\alpha_1 + 3) + \frac{\sqrt{2}}{4}\sin^3\alpha_1\cos\alpha_1 \right] \frac{e^2 \langle r^4 \rangle}{R_1^5} - \left[\frac{1}{28} (35\cos^4\alpha_2 - 30\cos^2\alpha_2 + 3) + \frac{\sqrt{2}}{4}\sin^3\alpha_2\cos\alpha_2 \right] \frac{e^2 \langle r^4 \rangle}{R_2^5}.$$
(24)

It follows from Table IV that the theoretical difficulty for high-pressure zero-field splitting²⁰ can be removed by using the analytical approximation of Watson's d-orbit and empirical molecular orbital theory.

ACKNOWLEDGMENTS

We wish to thank the colleagues of the Department of Physics, University of Missouri-Columbia, especially Professor S. A. Werner. The preparation of this manuscript was supported in part by National Science Foundation Grant No. NSF-DMR 77-27247.

- ¹S. Sugano and M. Peter, Phys. Rev. <u>122</u>, 381 (1961).
- ²S. Sugano and Y. Tanabe, J. Phys. Soc. Jpn. <u>13</u>, 880 (1958).
- ³D. S. McClure, J. Chem. Phys. <u>36</u>, 2725 (1962); <u>38</u>, 2289 (1963).
- ⁴J. Ferguson and D. L. Wood, Aust. J. Chem. <u>23</u>, 861 (1970).

⁵Lin Fu-Zheng et al., Acta Physica Sin. <u>21</u>, 608 (1965).

- ⁶R. E. Watson, MIT Technical Report, No. 12 (unpublished).
- ⁷M. Blume and R. E. Watson, Proc. R. Soc. London Ser. A <u>270</u>, 127 (1962); <u>271</u>, 565 (1963).
- ⁸Xu Ji An and Zhao Min-Guang, Sci. Sin. <u>24</u>, 721 (1981).

- ⁹R. M. MacFarlane, J. Chem. Phys. <u>39</u>, 3118 (1963); <u>47</u>, 2066 (1981).
- ¹⁰E. U. Condon and G. H. Shortley, *The Theory of Atom*ic Spectra (Cambridge University Press, London, 1953).
- ¹¹G. Racah, Phys. Rev. <u>62</u>, 438 (1943); <u>62</u>, 367 (1943).
- ¹²J. S. Griffith, *The Theory of Transition-Metal Ions* (Cambridge University Press, London, 1961).
- ¹³Car J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).
- ¹⁴Zhao Min-Guang, Xu Ji An, and Bai Gui Ru, Sci. Sin. <u>25</u>, 862 (1982).
- ¹⁵D. R. Rosseinski and I. A. Dorrity, Coord. Chem. Rev. <u>25</u>, 31 (1978).
- ¹⁶J. O. Ekberg, Phys. Scr. <u>7</u>, 55 (1973).

- ¹⁷W. J. Lotz, J. Opt. Soc. Am. <u>57</u>, 873 (1967).
- ¹⁸C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Circ., 467 (1952).
- ¹⁹H. M. Nelson, D. B. Larson, and J. H. Gardner, J. Chem. Phys. 47, 1994 (1967).
- ²⁰J. O. Artman and J. C. Murphy, *Paramagentic Resonance*, edited by W. Low (Academic, New York, 1963), Vol. 2, p. 634.
- ²¹H. G. Drickamer *et al.*, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic, New York, 1966), Vol. 19, p. 135.
- ²²D. R. Stephens and H. G. Drickamer, J. Chem. Phys. <u>35</u>, 427 (1961).