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The effects of a vortex-unbinding phase transition on the properties of a square lattice of
superconducting weak links are discussed. Formulas relating bulk static quantities such as
the penetration depth and transition temperature to single-junction parameters are given, as
well as formulas for the current- and temperature-dependent resistance. Except for tem-
peratures very near the transition temperature, these results can differ significantly from the
continuum results of Halperin and Nelson, and thus may be more appropriate for descrip-

tion of junction arrays and some granular films.

I. INTRODUCTION

A large number of recent experimental and
theoretical papers have been devoted to the
superconducting-to-normal phase transition in two
dimensions.!~'? This work is largely in response to
theoretical work!"> which noted that the Kosterlitz-
Thouless'>'* vortex-unbinding picture of the transi-
tion, which was originally applied to experiments on
neutral superfluids, should apply to two-dimensional
superconductors as well, provided that the perpen-
dicular penetration depth A, is larger than the sam-
ple width and length.!

Most of the experimental work to date has been
on thin high-resistance films,>~!? which were taken
to be analogous to the neutral superfluid. All of the
workers have noted difficulties which are presum-
ably due to sample inhomogeneity. In spite of a
large amount of care in both measurement and sam-
ple preparation, it is not certain that the vortex-
unbinding picture completely describes the transi-
tion in the samples measured to date.>®

Although the problems inherent to the thin-film
experiments will probably be overcome, a number
of workers have made large two-dimensional (2D)
arrays of superconducting weak links'>~!° to study
the problem in its lattice version. This method de-
pends on making large numbers of weak links with
nearly identical characteristics, which may be easier
than making a uniform thin film. Voss and Webb!’
have made arrays of tunnel junctions, taking advan-
tage of the large IBM effort to make identical junc-
tions for a superconducting computer.’’ Resnick
et al."® and Abraham et al.'® are using S-S'-S and
S-N-S junctions which, because of their relatively
large characteristic dimensions (micrometers), can
be made with good reproducibility.

In view of the importance of these measurements
and the necessity for distinguishing between vortex
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unbinding and other effects in the interpretation of
results, we have worked through the vortex-
unbinding theory of the resistive transition in arrays
of weak links. This makes it possible to compare
experiment directly with an appropriate theory,
rather than with an empirically modified continuum
theory. In addition, most thin films which have
been studied have been granular, and are perhaps
better described by a lattice than a continuum.

In Sec. II we discuss static properties such as the
transition temperature, penetration depth, and
coherence length. Although many of the results of
this section have been derived elsewhere, a unified
treatment which clarifies what is exact and what is
approximate is worthwhile. We also point out that
some of these results have no adjustable parameters
and are thus excellent tests of the theory.

In Sec. III the temperature and current depen-
dences of the resistance near T, are calculated. We
find that, although the results are similar to the con-
tinuum case arbitrarily close to T, some of the for-
mulas appropriate to the lattice are significantly dif-
ferent from the corresponding continuum formulas
over the temperature range usually studied in experi-
ments. (In this paper we will refer to equations
which do not have a lattice spacing built in and
which assume a Ginzburg-Landau temperature
dependence for the superfluid density as continuum
formulas.) In addition, we are able to place bounds
on some of the coefficients, which should help to
rule out fortuitous agreement between theory and
experiment which can occur when unreasonable
values of the coefficients are used.

II. STATIC PROPERTIES
Consider two superconducting islands connected
by a single weak link which has a superconducting

interaction energy?*!
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E=E,(T)[1—cos(¢,—¢)], (1)

where ¢, —¢, is the difference in the phase of the
order parameter on the two islands. Associated with
this coupling energy there is a supercurrent??2!

i=i (Tsin(,—,) , 2)

where i.(T)=e*E;(T)/#, with e*=2e. In the ab-
sence of thermal fluctuations the parameter i, would
have the physical significance of a critical current,

that is, a maximum current without voltage. Strict-

ly speaking, however, for any T >0, there is always
a nonzero voltage for any applied current because of
thermally activated phase-slip processes, so the ob-
served “i,” will depend on sensitivity and will not
coincide exactly with the parameter i, which charac-
terizes the coupling strength.

In a square array of superconducting islands con-
nected by weak links, Eq. (1) can be summed over
the islands to give a Hamiltonian

H= 3 E;(T)[(1—cos(¢;—¢;)], (3)
(i,j)

where the sum is taken over nearest-neighbor pairs
with each pair counted once. Equation (3) shows
that an array of weak links is isomorphic to the XY
model, with a temperature-dependent coupling ener-
gy, and that the partition function for the sys-
tem depends on the dimensionless parameter
T'=kT/E/(T).

To compare the lattice model to the more familiar
continuum model in the long-wavelength limit, we
require that the characteristic energies of vortices in
the two systems be the same. First consider a vortex
in a uniform film. The superfluid velocity at a dis-
tance r, far from the core, is given by v, =#%/m*r for
particles of mass m*, so that the total kinetic energy
in a region bounded by r; and r, is given by

o )
U= f'l (5m*vsng (T)2mr dr
=1Tn;'(T)ﬁ*ln(r2/r1) , 4)
m

where n;(T) is the areal superfluid pair density.

The energy of a vortex on a square lattice can be
calculated in a similar way. At distance r, far from
the vortex center, ¢; =tan~!(y; /x;) and, from (1),

E,'j E(Ej/z)(¢i —¢j )2 .
To calculate the coupling energy per island, we look
at the interaction with the islands to the right and

above; this prescription avoids double counting.
Then

bix =tan"[y; /(x; +5)]

and
¢y =tan"'[(y; +5)/x;],

where s is the lattice spacing. For x; >>s and y; >>s
(which will be true for most islands as r — «),

bix—i=5y;/ (xi2 +J’i2 )
and

¢,y —¢,' =8X; /(Xi2+yi2)

so that
E;=(E;/2)[(¢; —¢i)2+(¢iy —¢:)]
=(E;/2)(s*/r?)
is the energy per island. Thus
nEys? 1
U= . —2—;7s—2277r dr=7wE;ln(r,/ry) . (5)

An important distinction must be made before we
proceed. While (4) is general, (5) ignores the effects
of the fluctuations associated with the Kosterlitz-
Thouless transition; in the language of the renormal-
ization group, E;(T) [or i.(T)] is a “bare” or un-
renormalized quantity. The corresponding unrenor-
malized quantity in the continuum model is called
no(T). Roughly speaking, ng(T) is the superfluid
density which would exist without the vortex fluc-
tuations and can be identified with the Ginzburg-
Landau estimate of the pair density. The Kosterlitz
renormalization procedure'* shows how to obtain
ni(T) from n§(T); that is, it “renormalizes” ng(T)
into ny (T).

The proper procedure, then, is to define an effec-
tive bare superfluid density ng(7T) for a lattice of
weak links by equating the result (4) [with n)(T) re-
placed by ng(T)] with (5):

ng(T)=m*E (T)/#=m*i (T)/tie* . (6

Equation (6) is the first example of the difference
between a lattice model and a Ginzburg-Landau
continuum model. In the latter the superfluid densi-
ty is assumed to vary linearly with T,,-T, where T,
is the Ginzburg-Landau transition temperature,
while (6) shows that the effective unrenormalized
superfluid density in a lattice can have a different
temperature dependence, depending on how i, varies
with T. The result (6) is essentially equivalent to the
result Berezinskii?»?* obtained by comparing a Bose
lattice gas to a magnetic XY model. Equations (5)
and (6) are changed by a multiplicative constant if
the lattice is not square.

Renormalized quantities are the macroscopic
quantities measured in experiments. The appropri-
ate measurable quantity for an array is the kinetic
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inductance per square Lgn(7), which measures the
superfluid density. Its definition allows us to define
an effective (renormalized) superfluid density n.(T)
for an array by

nS (T)=m*/Lgn(T)e*?* . M

[This result and others in this paper involving mac-
roscopic measured quantities (such as Lgp) are also
true for thin films.] At sufficiently low temperatures
n}(T)=n3(T) which, with (6) and (7), produces the
correct low-temperature result

L T)=ﬁ/e*1c(T)ELJ(T) >

the kinetic inductance per square equals the induc-
tance of a single junction L;(7T) (Ref. 21) at low
temperatures in a square lattice.

The last two equations allow us to calculate static
quantities such as the transition temperature and
penetration depth using continuum formulas from
the literature. Since the penetration depth for per-
pendicular fields is given by?® ‘

A(T)=m*c?/4mnfe*? ,
we obtain
A(T)=Lgo(T)c* /4w =Dyc /87%,.(T) , (8)

where ®y=hc /e* and in the last part of (8) it is as-
sumed that n(T)=ng(T). (This is not a bad ap-
proximation for T <T,.?’) The last result was ob-
tained previously by Hebard.?

Two properties of (8) are worth noting. First, the
temperature dependence of A(T) is determined by
i.(T) and thus can differ from the standard thin-
film dirty-limit form. For example, if T, is the
transition temperature of the islands and the weak
links are S-N-S junctions® with length d and
normal-metal coherence length £y (T),

i(T)oc(1=T/T,)% —d/Ey(T)

near T, so that A, has a temperature dependence
which is quite different from the conventional
(1—T/T,o~! thin-film dependence. Second, if the
critical current i.(7) and normal-state resistance 7,
of a junction are related by

_ wA(T)

i(Tr,= o tanh 2;(?

(as for ideal tunnel junctions®®) we obtain the stand-
ard dirty-limit result?"!
Dle*?r, -

A(T) anh A(T)
16m*%A(0)

AlT)= A(0) 2kT

An array of ideal tunnel junctions has the same
penetration depth A(T) as a dirty film with the
same energy gap A(T) and with Rp=r,. We note
that (8) is the general result; (9) is a special case.

In the continuum the transition temperature 7T, is

implicitly determined by!®1427:31,32

kT, =w#nl(T,)/2m* (10a)
or

n¥(T,)/m*T,=17.9029x 10°7 (10b)

in units of (gcm?K)~!, which, combined with (6)
and (7), give

W wh .
ch:—%LKDI(TC)EEe—*zC(TC) (11a)
or
Lgo(T,)T.=1.2323%x 1078 (11b)

in units of HK and
i,(T,)/T,=26.706 (11c)

in units of nA/K, where we have again set
ngy(T)=n;(T) in (11c) and in the last equation of
(11a). Equations (11) have been obtained previous-
ly."” It appears that (11c) may overestimate T,
when compared to experiment.'®

The last equations are important from an experi-
mental standpoint. Equation (11b) predicts a
discontinuity in the kinetic inductance; when
Lir(T) reaches the value given by (11b), it jumps to
infinity. Unfortunately, Lgn(7) cannot be measured
directly, but must be unfolded from measurements
of the sample’s total impedance, which is deter-
mined by the kinetic inductance, plus geometrical
inductance, normal-state resistance, junction capaci-
tance, etc. Measurements of Lgn(T) are further
complicated by nonlinear effects due to nonzero
measuring currents.'® Hebard and Fiory’s Lg(T)
data* have a sharp change near T, which could be a
smeared-out discontinuity. We would estimate from
their graph that

0.7X1073 H-K < Lg(T,)T, <1.4x10"* H-K ,

which is consistent with (11b), but further measure-
ments are needed to provide a more accurate test of
this result.

The approximate result (11c) is useful because it
may not differ substantially from the more rigorous
result (11b) (Ref. 27) and because i.(7T) is simpler to
measure than Lgn(7). Nonetheless, we note that
since i.(T) is the critical current of a single junction
in the absence of fluctuations, it cannot be directly
measured. It must be inferred from the I-¥ curves
for single junctions, measured at low temperatures



and extrapolated to higher temperatures, extracted
from the low-temperature critical-current data of an
array,19 or calculated theoretically.

From the definition of A {T) and (10) we obtain

®F
kT, =
¢ 3272 M(T,)

(12a)

or
A(T,)T,=0.9807 (12b)

in units of cm K. These are identical to the dirty
thin-film results,! even though we have not assumed
that the weak links are ideal tunnel junctions,
demonstrating the universality of relations based on
macroscopic measured properties of the supercon-
ducting state.

The correlation length for an array of junctions is
similar to the correlation length for the lattice XY
model'*33; it is given by

& (T =csexp{[c, /(T —T.)]'?}, (13)

where ¢; and ¢, are of order unity'#*} and we have

again defined a dimensionless temperature T’
=e*kT /#i (T), as in the discussion following Eq.
(3). The correlation length is the size of fluctuations
associated with the phase transition; that is, it is the
average distance between unbound vortices. The
prefactor, which is called &, in Ref. 2, is proportion-
al to the lattice spacing s here, as would be expected
in a lattice model.

III. RESISTIVE BEHAVIOR

Consider a square lattice of junctions with lattice
spacing s. When a current flowing along the length
L of the sample causes free vortices to move across
the width W of the sample, there will be an end-to-
end voltage difference given by

# do
V= o ar’ (14)
where the phase difference 6 along the length in-
creases by 27 each time a vortex crosses the width
of the sample. If the areal density of free vortices is
denoted by ny, then

do
(—d—t—>=217-Lvdnf , (15)

where the angular brackets denote time average and
vy is the average vortex drift velocity across the
sample. This drift velocity is given by s /7, where 7
is the average time for a vortex to cross one junc-
tion. If i is the current through one junction and I is
the total current, then /W =i /s so that (14) and
(15) lead to
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o)~ . (16)

To use (16) we need to determine 7 and ny. We
show in the Appendix that, to a good approxima-
tion,

1 e* -2

—=———r,[{o(E;(T)/10kT)]~*, (17)

it 2mh
where Ij(x) is the hyperbolic Bessel function of or-
der zero and r, is the normal-state resistance of one
of the junctions in the array. Equation (17) assumes
that the junctions are small compared to the Joseph-
son penetration depth and the normal-metal coher-
ence length, but makes no assumption about the re-
lation between r, and E;.

The density of free vortices is proportional to
£7% so that

np=bs Zexp{ —[b,/(T'—T;)]"/*} (13)

where b; is of order unity,>* b,=4c,, and

T'=e*kT /#i (T) is the temperature measured in
the appropriate reduced units, as in (13). Combining
(16)—(18) we get the final result

Ro=b,[I,(E,(T)/10kT)]*
Xexp{ —[b, /(T =TV, . (19)

Sufficiently close to T, [where E;(T)
=FE;(T,)=const], this has the same form as the
Halperin-Nelson result’

Ro=byexp{ —[by(T.o—T.)/(T—T.)]'*}Rg, ,
(20)

where T, is the BCS transition temperature of the
film and b; and b, are of order unity?; but there are
significant differences between (19) and (20), in both
the prefactor and the exponential factor.

Consider first the prefactor: In contrast to
the constant b; in (20), the prefactor
by[I,(E;/10kT)]~2 is temperature dependent. If,
however, (11) holds, then the argument of the Bessel
function ranges only from O to 2/107 for T> T,
which causes the prefactor to vary by less than 1%.
The smallness of this effect at first appears surpris-
ing, since in a single isolated junction the analogous
factor gives the exponential disappearance of the
resistance™ r=r,[Io(E;/kT)]~% which dominates
the resistive transition. If one applied this latter for-
mula to a single junction embedded in an array, one
would find that its resistance would have dropped
much more, to 0.82r,, as T dropped down to the T
of the array. The much smaller effect at the same
temperature in the array can be traced back to the
smaller activation energy in the lattice, as found in
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the Appendix. The effect of the other junctions in
the lattice, then, is to suppress the single-junction
temperature dependence of the resistance in favor of
the exponential factor in (19) (which reflects the
variation of the free vortex density with tempera-
ture). In particular, it makes the zero-current resis-
tance strictly zero (as opposed to exponentially
small) for T < T,, where the number of free vortices
vanishes. In an array, resistance results from over-
coming fwo barriers—the first to nucleation of a
vortex, which is infinite for T < T,, and the second
to vortex motion, which is relatively small in an ar-
ray. By contrast, a single junction has only the bar-
rier opposing phase slip, with no cost for nucleation.

Turning now to the exponential factor, here there
is a more significant difference between (19) and
(20). It arises from the distinction between 7' and
T, since i,(T) can vary appreciably with tempera-
ture. [The appropriate dimensionless temperature
for the continuum case, close to T,y Iis
T/(T,o—T,), which is proportional to T.] For ex-
ample, when the data in Ref. 19 are plotted accord-
ing to (19) and (20), the best fit to (19) gives b; =3,
while the best fit to the form (20) gives b;=100.
Since both of these factors are supposed to be of or-
der unity, the fit to (19) is clearly more reasonable.
From this perspective it is interesting that the pub-
lished fitting parameters of Wolf et al.” can be com-
bined to give b3 = 1000, Bancel and Gray’s® parame-
ters yield b3 =220, and the data plotted in Resnick
et al.'® give, according to our rough estimates,
b3 =440 and 150 for their samples 5 and 6. The
value that we infer from the data and fits of Voss
and Webb! is b3 =2.5—14, depending on what value
is used for Rp,. It is interesting that in the last
case, where b; is of order unity, T, << T, so that
E;(T)=E;(0)=const, which makes (19) and (20)
equivalent for fitting purposes. The difference be-
tween (19) and (20) might explain the large values of

b; which characterize many samples, but we could
not test this conjecture by calculating b; for these
samples because data on i,(7) were not available.
[It is worth noting that, while the theoretical results
should apply only in a narrow temperature region
close to T, numerical simulations> and experiments
seem to fit the asymptotic-limit formulas (13) and
(19) reasonably well over a wide range.]

By comparing the continuum and lattice versions
of formulas, we obtain the correspondences listed in
Table I. This table allows us to “translate” addi-
tional formulas from the continuum to the lattice
language. With the use of Egs. (36)—(38) in Ref. 2,
we can, for example, obtain the current-voltage
characteristics below T, for a lattice of weak links.
This procedure gives

7V=xr,,[Io(EJ(T)/10kT)]‘2 (i /i)

21

where we have dropped a multiplicative factor of or-
der unity and the value of x depends on whether the
vortex density is dominated by thermal or finite-
current effects:

x =max(xy,x;) (22)
with
LKD(Tc)Tc ic(T)Tc
xp=4|————-1|=4 | ———1],
Lgo(TT i(T,)T
(23a)
T T 172
Xp=4T |—— ) (23b)
b,
x;=1/In[i (T)/i] . (23¢)

TABLE 1. Guide to the equivalence between a uniform 2D superconducting film and a
square array of superconducting weak links. Symbols are defined in the text.

Uniform film

Array of weak links

“Bare” superfluid density n§(T)

Renormalized superfluid density n.(T)

Vortex core size &, =& (T,)
Normal-state sheet resistance Rp

T
Tc()_‘ Tc

m*i(T) _ m*E(T)
fie* — #

*
L (T)
e

Lattice spacing s

rn [IO

e*kT
#i (T)

#im |7

10e*kT

i
=Y
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The second half of (23a) is approximate because it
assumes that no(T)=ny(T), while (23b) holds very
close to T,; note that the same constant b, appears
in (19) and (23b).**

For small I, V«I°T, Equations (19) and
(21)—(23) imply that a(T._)=3 and a(T,, )=1;
that is, there is a jump in a(T) at T,, just as in the
continuum case.> This discontinuity will be smeared
by a nonzero current, but the experimental effort to
find it would be worthwhile in order to test the
theory. Empirically, any real superconductor will
have Vo« I%? with a(T)=1 somewhat above the
nominal T, and a(T)>>1 somewhat below the nom-
inal T, and will thus pass through a(T)=3 (or 2 or
4 or 5.7, for example) at a temperature not very far
from the nominal T,. It is detailed agreement with
(19) and (21) that identifies the Kosterlitz-Thouless
transition.

IV. CONCLUSIONS

We have discussed the vortex-unbinding transition
in a discrete lattice system. Predictions for the con-
tinuum case have been “translated” to the lattice
language to provide expressions which can be com-
pared directly to data from 2D arrays of weak links.
For example, the association between n; and Lgp
gives an exact relation between Lgxq and T, as a
direct consequence of the Nelson and Kosterlitz
universal jump in the superfluid density at 7,. By
examining vortex motion in a lattice of junctions, we
have shown how the interaction between junctions
suppresses the Ambegaokar-Halperin temperature-
dependent resistance of an isolated junction, leaving
the free vortex density as the dominant
temperature-dependent factor in the expression for
the array’s resistance. Perhaps the most important
result for the evaluation of experimental data is the
need to adopt an appropriate dimensionless tempera-
ture parameter, T'=e*kT/#i (T), which differs
from the one [T /(T,y—T,)] used in the continuum
case, because i.(7T) can have a strong temperature
dependence near T,.
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FIG. 1. Three positions for a vortex center in an array.
Points @ and ¢ are equivalent; both have minimum ener-
gies. To get from a to ¢, point b must be crossed, which is
a position of maximum energy.

APPENDIX

In order for a vortex center to move from point a
to point ¢ in a square array (see Fig. 1), it must cross
a potential barrier of height Ey, at point . In an
isolated zero-dimensional junction the barrier height
against the analogous process, phase slip, is just
twice the coupling energy

Ey=2E,(T)=24i,(T)/e* .

In that case, the average time for a phase slip is
given by**
#i 1

r=21——I§(Ey/2kT) , (A1)
et ir,

where I(x) is the hyperbolic Bessel function of or-
der zero. We use (A1) to estimate the time 7 for a
vortex to move past one junction in an array by re-
placing Ey with the (as yet unknown) barrier height
Ey, for an array.

Figure 2 shows two phase configurations corre-
sponding to vortex centers located at points a and b
in Fig. 1. Configuration a corresponds to a local
minimum in energy, while b corresponds to a max-
imum, so that Ey,=E, —E,.

In both configurations the phase at very large r is
known by symmetry: é(r >>s)=tan"!(y /x), which
determines one boundary condition. For configura-
tion a symmetry requires that the phase vectors on
the four islands nearest the center point radially out-
ward, as shown in Fig. 2(a). For configuration b the
phase angle is O for islands on the line to the right of
the center and 7 for those to the left, as shown in
Fig. 2(b).

To find the phase at all the other islands (2) is
minimized, which leads to

Esin(¢,~—¢j)=0 (A2)
J

for each island i, where j runs over the nearest
neighbors to i; that is, the net current flowing into
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FIG. 2. Phase-angle configurations for two positions of
the geometrical center of the vortex. (a) is a low-energy
configuration, (b) is a high-energy configuration.

each island is zero [see (2)]. To solve (A2), it is
rewritten as

tang; = ¥ sing; />, coss; . (A3)
j j

These equations can be solved iteratively on a com-
puter. At the n' iteration we set

tang;"” = Fsing;™ /3 cosp;™ , (A4)
J J

where ¢}"” is the latest value of ¢; available (i.e.,
m =n or n —1). When the ¢’s are known, E, and

AT 7 T T

0205 _
019 -
018 -

Ena
0k _
Es

0.16 .
0.15[- -
014 T

0131 R

012 1 | L | | 1

0 0.02 0.04 0.06 008 010 012 0.4
/N

FIG. 3. Plot of the barrier height Ey,/E; against in-

verse sample size 1/N. When extrapolated to N= 0,
these data yield Ey,/E;=0.199.

E, can be calculated using (2), and thus the barrier
height Ey; s =E, —E, is determined.

This procedure was followed on square lat-
tices containing N 2 islands. For N =8, 16, 32, 50,
64, 128, and 256, Ey,/E;=0.13190, 0.18800,
0.196 54, 0.19800, 0.19840, 0.198 70, and 0.198 80.
Extrapolating this to N=ow by plotting against
1/N, we obtain the estimate EHA/EJEO.1995%
(see Fig. 3).

Adopting the Ambegaokar-Halperin result** (A1),
but using this numerically determined barrier
height, we obtain

7'=217'_fi‘ —_I—I%(EJ(T)/IOkT) , (A5)
e* ir,

which is the desired relation (17). Details of this
calculation change when it is done for a triangular
lattice. We have determined that the barrier height
for a triangular lattice is ~0.043E;, which changes
the 10 in (AS5) to ~47. This does not alter the phys-

ics of (19).
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