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Real-space rescaling method for the spectral properties of tight-binding systems
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Exact real-space rescaling transformations are used to calculate the spectral properties of
tight-binding Hamiltonians with arbitrary range of interaction on a linear chain. Singularities of
the spectral functions within the band of extended states are associated with fixed points of the
rescaling transformation. The fixed points separate regions of energy in which the behavior of
the system is qualitatively different. The method is not restricted to one dimension and can also
be used to treat single-impurity problems.

Real-space rescaling methods have been quite suc-
cessful in describing the singularities which occur in
thermodynamic quantities at a phase transition. '

More recently, these scaling methods have also been
employed to obtain information about the spectral
properties of disordered tight-binding systems. ' ' We
have developed an exact rescaling transformation for
ordered systems described by tight-binding Hamil-
tonians with arbitrary range of interaction on a linear
chain and show how the lattice Green's functions of
the system can be evaluated using this approach.
The conventional treatment of this system uses
Fourier transformation to obtain the dispersion func-
tion and then expresses the spectral functions in
terms of Brillouin-zone integrals. In general, the
evaluation of these integrals requires numerical quad-
rature with inherent grid size effects. There are
some exceptions where analytic results can be found,
notably for nearest-neighbor problems, ' but for real
materials longer-ranged interactions are present and
"quasianalytic" numerical methods are frequently
used. Our rescaling approach is computationally very
efficient and is not necessarily restricted to transla-
tionally invariant systems.

The one-dimensional tight-binding Hamiltonian for
a single band is

where

G;J(E+i0+) = i j1

E+ IO+ —K

Equations of this same form describe many different
types of elementary excitation, e.g. , electron quasi-
particles, magnons, and phonons.

Our basic approach to solving these equations is to
eliminate a fraction of the degrees of freedom from
the set (2) and rewrite the resulting sets of equations
in the same form as the original set but with renor-
malized parameters. The simplest rescaling transfor-
mation on the set (2), which involves N sites, would
correspond to the elimination of alternate sites to
form two new sets of equations which are completely
decoupled from each other and each involving only
N/2 sites. However, the elimination process gen-
erates additional inhomogeneous terms in the new
sets, and these must be included in the initial set (2)
if the procedure is to be iterated. We must replace
the Kronecker 5 in (2) by a matrix ztt, which is only
5„" initially. At any stage of the procedure the equa-
tions can be written in terms of reduced variables and
have the following general form:

X= Xefi) (if + X V( [i) (i +n f+ fi +n) (if) G, =n, + Xx„GJ+„ (3)

(E—e) Gtt = Stt + X V„Gq+„ (2)

in obvious notation. Most studies of this system re-
strict the hopping matrix elements to nearest-
neighbor sites but for reasons to be discussed later
we are interested in the problem with arbitrary hop-
ping range.

The spectral properties of this system are obtained
by solving the following set of equations for the lat-
tice Green's functions' 6„:

where

zg V„

E —e' " E —e

and the first subscript i of the GJ has been dropped
for convenience. All o.

&
are initially zero except o,p.

For each value of j, we multiply the equation for
G, + by a factor (—l) +'x and add them to G&.

This yields "even" and "odd" sets having the same
general form as (3) but with renormalized parameters
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nj' and x„' given by

n;+ $ (—1) +'x n, +
TWO

0!J I+/( —1)xx
m&0

(4a)

I
X2n =

2x2n+ X ( I) xmx2n —m
mWO

1+$(—1) xx
mWO

(4b)

If we now perform a scaling of all lattice distances in
each set by a factor b =2, then we can identify x2„as
the effective x„' and o.,'+2„as the effective o.,'+„ in
these new sets. The elimination of degrees of free-
dom and the rescaling of distances together constitute
the rescaling tranformation. Kith the renormalized
parameters, the procedures can now be repeated for
the new sets to generate twice as many sets of decou-
pled equations. As the process is iterated, each 6&
belongs to a smaller and smaller set until finally each

set contains only one 6&. In this limit the renormal-
ized equations can be solved exactly since they are
now diagonalized. Each 6& is obtained as the limiting
value of its inhomogeneous term o.,'.

In one dimension the range of interaction at any
stage is the same as the initial range. However, the
transformation (4) does not rely on this property. As
an illustration of the method, consider a tight-binding
Hamiltonian with only nearest- and next-nearest-
neighbor overlap. Only x~' and x2 are required at
each stage and determined from the following re-
currence relations:

X& +2X2
X& (5a)

(1 —2xt' +2x2 )

X2
2

X2 =
(I —2x2 +2x2) (Sb)

The calculation of a particular G~ also involves the in-
homogeneous terms of the other members of its set
at each stage and these are determined from the fol-
lowing recurrence relations:

~j +2n +Xl(~j+2n+1 +~j+2n 1) X—2( ~j +2n+2 ++j+2n 2)—
(1 —2x,' +2x,') (6)

Before we describe the evaluation of the GJ in de-
tail, consider the recurrence relations in (5). The
behavior of the system at any value of the energy E
and for given initial choices of the hopping elements
V~ and V2 can be determined by studying the behav-
ior of these recurrence relations alone. In general, if
the value of E lies within a certain range, the parame-
ters x~ and x2 oscillate in an apparently random
fashion as the equations are iterated. However, if the
value of E lies outside this range, the parameters
iterate to zero monotonically. The various regions of
E in which the behavior of the recurrence relations
(5) is qualitatively different are shown in Fig. 1. In
the central region I all initial values of x~ and x2 are
eventually mapped into the origin. In region II, x2
iterates to zero and only x~ oscillates, whereas in re-
gion III both parameters oscillate. In this way the
boundaries which separate the different regions of E
can be mapped out in the x~-X2 plane. The curve
which separates region I from either region II or III
is, in fact, the locus of the band edge. The lines
separating regions II and III correspond to internal
singularities within the band which appear when the
ratio of the second-neighbor to the first-neighbor
coupling exceeds a critical value.

The recurrence relations (5) possess certain fixed
points, or special points where the values of x~ and
x2 do not change under iteration. The recurrence re-
lations can be linearized about these fixed points and
the eigenvalues which describe their stability proper-
ties can be obtained. ' In the present case there are

two unstable fixed points whose coordinates and
eigenvalues are listed in Table I. Fixed point A
describes the change in behavior at the band edges
and on the lines separating regions II and III in Fig.
1. Fixed point Bdescribes this behavior for a special
value of the ratio Ix2/xt I

=
4

where the three dif-

ferent regions intersect. These changes in behavior
from one region to another are similar to the bifurca-
tion phenomena observed in some simple models of
dynamical systems 'o "

Standard scaling arguments' indicate that the eigen-
values of these fixed points describe singularities of
the GJ as we cross the boundaries in Fig. 1. Near
these values of E, denoted E„ the 6& behave as
Gj cc IE E,I'" ' j', where dis —the dimension of the
lattice and y is an exponent corresponding to the larg-
est eigenvalue of the associated fixed point. For a
scaling factor b, the exponents are related to the
eigenvalues as A. = b~. Fixed point A describes the
square-root singularities of the 6,. at the band edges
and at internal points in the band, whereas fixed
point Bdescribes a special case where the internal
singularities merge with the band edge to give an
I E —E, I

3 4 behavior and occurs when I V2/ VtI = —„.
For values of V2 smaller than this the G~ are singular
only at the band edges but for values of V2 which are
larger, the group velocity can also vanish inside the
band. Fixed point B thus describes the onset of this
new behavior as V2 is increased.

The real and imaginary parts of the lattice Green's
functions GJ are calculated by iterating the recurrence
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TABLE I. Fixed points of the recurrence relations (5)
and their corresponding eigenvalues.

I.O— Fixed
points

0.5
1

2

1

6

0.0

-0.5

-I 0—

I

-0.5
I

0.5
I

"I.O
I

0.0
XI

FIG. 1. I, II, and III label the regions of the x~ -x2 plane

in which the behavior of the recurrence relations (5) is qual-

itatively different. The positions of the fixed points are la-

beled by 2 and B.

I

I.O

formulas (5) and (6) for energy E+i0+ The x„.now
iterate to zero for all values of E although the distinct
regions discussed earlier exhibit qualitative differ-
ences in how this occurs. When the inhomogeneous
terms in (6) reach limiting complex values (depen-
dent on the value of E) we have that G, =u,'"'.

The number of inhomogeneous terms depends on
the value of j. For j =0, where the imaginary part of
Gp(E+ i0+) gives the local density of states, only ap
and o, ~ are needed at any stage and, by using the fact
that n~ = o, ~, are determined from the following rela-
tions:

up = (up+2xt ut)/(I —2xt +2x2 )

u& ——(x, u, —x2ap)/(1 —2x,' +2x22)

Under iteration, o.~ changes but eventually tends to
zero as no reaches its limiting value. On the other
hand, the calculation of G~ involves three inhomo-
geneous terms which satisfy

ul [ al +xl (up +u2) ]/( I —2xt +2x2 )

a2 ——(xt u2 —x2 ut)/(I —2xt' +2x2'),

up = (xt up —x2 ut)/(I —2xt' +2x22)

for six-digit precision depends upon E but is of the
order of ten and can be readily implemented on any
programmable device. The results for the second-
neighbor problem are in complete argeement with
recent analytic results.

In the nearest-neighbor case it is easy to see for
the calculation of Gp from (7) (with x2 =0) that u~ is
always zero. In fact, the initial gp in (2) never
changes in this case. Thus the consideration of the
inhomogeneous terms was not necessary in the re-
cent calculations of the density of states for the
nearest-neighbor chain. '

We have performed explicit calculations for the
system with third-neighbor overlap where there are
more distinct energy regions than for the second-
neighbor case. However, it is the arbitrary range
problem that we have formulated for one dimension
(1D) in (4) that is important for extensions to higher
dimensions. The reason is simply that, in contrast to
the linear chain where the initial range of coupling
does not effectively change, in two and three di-
mensions, even for only nearest-neighbor couplings
initially, each successive elimination causes a proli-
feration of the range of interaction. For the 20
square lattice we have constructed an exact transfor-
mation similar to that given in (4) which has been
successful in locating the band edges. The initial in-

crease in the range of the couplings reverses under
iteration as the x„ tend to zero. In the region of en-
ergy outside the band of extended states, fifth neigh-
bors and ten iterations are typically involved. We are
currently investigating the application of the present
techniques to the evaluation of the lattice Green's
functions for higher dimensional lattices with cou-
plings which extend beyong nearest neighbors.

The present approach can also be used to study
problems in which the couplings are not uniform.
For example, the case of a single impurity in a chain
can also be treated exactly. The method has potential
applications to the study of problems with strong dis-
order such as Anderson localization and spin-glasses.

In this case o.~ tends to a limiting value and the
neighboring o, 's tend to zero. Other G& can be calcu-
lated in a similar manner but involve larger numbers
of inhomogeneous terms.

For Go and G~ the number of iterations required
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