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Quantum percolation and the Anderson transition in dilute systems
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Computer-simulation results are presented for quantum systems with discrete off-diagonal dis-

order in square and cubic lattices, For the quantum percolation model with bonds present or
absent at random the density of states shows a dip at the band center which develops into a gap
for strong dilution. The relation between the quantum and geometrical percolation thresholds

pq & p, is satisfied for these lattices as well as for Cayley trees. In a model with alternating sign

of bonds, most of the states in the band remain delocalized.

Considerable progress has been made' in our
understanding of the Anderson transition between lo-
calized and extended states in a disordered quantum
system. Complete localization is predicted for d ~ 2
with the occurrence of a transition above two dimen-
sions with mobility edges E, emerging in the band
separating localized from extended states. The "criti-
cal" behavior near E, is established in terms of
field-theoretic expansions in e =2 + d. However, the
commonly studied case is that of diagonal disorder in
which the site energies of a single-particle Hamiltoni-
an on a periodic lattice are stochastic variables. Less
attention has been paid to off diagonal disor-der where,
instead, the hopping elements vary at random. ' Ran-
domly dilute lattice systems have also attracted a lot
of attention recently. 4 In this case the disorder can
manifest itself in both the geometrical and quantum
aspects of the model and one expects a classical per-
colation as well as an Anderson transition. In this
Communication a simple numerical simulation study
is presented of the quantum bond percolation model

brought into attention by Raghavan and Mattis, 4

although a related site model was studied much ear-
lier by Kirkpatrick and Eggarter. ' A different model
with a discrete type of disorder is also considered as a
special case of the. random-phase model proposed by
Sadovskii. This work was in part motivated by the
existence of amorphous materials with short-ranged
off-diagonal interactions of a common sign, such as
amorphous semiconductors' and spin-glasses with al-

ternating sign.
The quantum-mechanical single-particle Hamiltoni-

an in a tight-binding form is

using an orthogonalized site representation in a d-
dimensional lattice. The hopping integrals, which
differ from zero only between nearest neighbors, are
assumed to be random quantities chosen from a
probability distribution. For the quantum percolation

model the randomness refers to the modulus of J„"so
that

(2)

and bonds are present or absent in a lattice with
probability p and 1 —p, respectively. For the other
model considered, J& = exp(iC&„") and the phase 4» is
instead the independent random variable. In the di-
lute case "antiferromagnetic" bonds are introduced
at random by

It can be shown that the Hamiltonian (1) with (3) is
invariant under a local gauge transformation defined
in Ref. 6, and the concept of frustration can be intro-
duced for the electronic system in analogy with spin-
glasses. ' It is known from percolation theory that for
p & p„ the percolation threshold, an infinite cluster
appears which covers the ~hole lattice as p 1. The
Anderson transition, at which all states of (1) on the
percolating become localized, occurs at a probability

pq, and the inequality pq )p, was recently found to
hold. Raghavan and Mattis approached the problem
from the "pure limit" (p =1) by using the well-
suited method of tridiagonalization, while Shapir
et al. developed series expansions in powers of p for
a range of dimensions. These authors find indica-
tions of complete localization, pq =1 in d =2 in ac-
cordance with the scaling theory, ' and p» =0.37 (Ref.
4) or 0.32 (Ref. 9) in d =3, which may be compared
with p, =0.50 and 0.256 in d =2 and 3, respectively.
In this Communication localization is studied by a
more direct numerical procedure. The complete
eigensolutions are obtained numerically for many
random samples of square lattices up to 64 & 64 and
cubic lattices of 10 && 10 x 10 with periodic boundary
conditions in all directions. ' The present work can
be regarded as complementary to that of Refs. 4 and
9 as well as a check of their results, via independent
means, when their range of validity coincide.

The configurationally averaged density of states
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FIG. 1. Density of states, p(E) [=p( —E)], for quantum
percolation averaged over 20 configurations in 32 x 32 and
64 x 64 square lattices. The dip at the band center is
displayed and a 8-function singularity exists at E =0.

p(E) is an even function of the energy Eas a conse-
quence of the dual interconnected sublattice structure
of the lattices considered. For p =1, p(E) is non-
vanishing in the range [—Z, Zt, where Z =2d, and
for p (1 the band narrows for the distribution (2)
and has total weight p states per site. Dilution of this
sort is expected to create strong local disorder in spe-
cial parts of the percolating cluster leading to highly
localized states known as Kirkpatrick-Eggarter local-
ization, which contribute to spikes in p(E). These
5-function singularities occur precisely at certain spe-
cial energies, e.g. , 0, +1 in d =2 and 0, +1, + v2 in
d =3, and they are partly due to isolated clusters.
Moreover, these states are highly degenerate and can
coexist with extended states. 5 9

We have calculated densities of states for large sys-
tems and many random samples. The dip is observed
at the band center for concentrations higher than p,
unaffected by size variation or the number of sam-
ples (see Figs. I and 2 ), although the infinitesimal

gap in the inset is most probably a finite-size effect.
We find no indication of dips at other special energies
in our samples for moderate concentrations. Effec-
tive-medium theories, reproduce the dip and the gap
with a 8 function at the origin, but at much lower
p(~ I/Z). " For the distribution (3) the effect of di-

lution is much less drastic and p(E) differs little
from the pure case except at the band edges where it
becomes smoothed.

The chief concern of this Communication is the

question of localization although we do expect this to
be associated with the anomalies in p(E). The defi-
nition of mobility edges has to be modified in this
case so that they separate extended and possible
coexisting localized states from purely localized
states. We have calculated the inverse participation
ratio (IPR) defined by

y (E) = $yE'( i),

p=0.35
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FIG. 2. Same as in Fig. 1 but for 10 x 10 & 10 cubic lat-
tices.

for each normalized eigenvector PE. The use of
y(E) is expected to probe directly the spatial extent
of the eigenstates and can also indicate the position
of E,. For an extended state, y(E) is expected to be
very small, of about 3/N for N sites, while localized
states show higher y(E) values. In d =3 we observe
no extended states up to p~ =0.35, which confirms
the estimates of Refs. 4 and 9 (Fig. 3). In d =2 (Fig.
4) the situation is more complicated but, for p =0.6,
y(E) shows localized behavior for all the eigenfunc-
tions on the percolating cluster. Our main concern is
to examine states other than at special energies where
localized states also occur; therefore we do not expect
this degeneracy to affect our results. The safe con-
clusion p~ & p, can be reached on the basis of this
calculation in d =2 and 3. We also find an indication
that in d =2 the behavior of the localization length
closely resembles the corresponding behavior in the
original Anderson model. ' For the random-phase
model (3) extended states appear at every concentra-
tion in agreement with Sadovskii. It must be em-
phasized that phase disorder introduced via (3) is
nontrivial and cannot be eliminated by a suitable
gauge transformation apart from d =1. In d =2 and
3 complete randomization of the phases may occur;
however, even in this case, only about

3
of the

states in the band are probably localized (Fig. 5)."
Finally, the case of the Cayley tree of connectivity

E (=Z —1) is considered, which is regarded as a
pseudolattice with no closed loops but maps exactly
into a real d-dimensional lattice in the cases of E =1
(d =1) and E = ~ (d = ~). The conclusions drawn
previously are supported by recent exact calculations
on Cayley trees by Harris' and Thouless and Kirk-
patrick, ' since in this limit the Anderson transition is
well understood. " A different approach is used in
this case in order to check these analytical calcula-
tions of p~ which give different results, e.g. , for
E =2, p~ =0.59 (Ref. 13) and 0.75 (Ref. 14), com-
pared with p, =0.5 (= I/K). I have calculated the
tridiagonalization coefficients b„ for many random
samples going up to 10—15 steps in connected trees
with no closed loops, corresponding to E =2. A lo-
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FIG. 4. IPR for the 32 && 32 square lattice but with the iso-
lated clusters removed in this case.
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FIG. 3. IPR for the quantum percolation model in cubic
10 X10 &10 lattices. The highly localized states [large y(E)]
are partly due to isolated clusters and partly to special parts
of the percolating cluster. In case (a) all states are localized
while extended states [ Y(E) of the order 0(10 ) j coexist
with localized states.

calization criterion defined in Ref. 4 is related to the
measure of the noise in b„'s. The asymptotic value
of this noise 5 is 0.28 for p =O.S, 0.23 for p =0.6,
0.13 for p =0.7, and 0.09 for p =0.75, while for

p )0.75 the b„'s converge within an uncertainty of
less than +0.05. This leads to qualitative agreement
with both estimates of p~. Difficulties are encoun-
tered in this simulation approach similar in nature to
those experienced in Ref. 1S; however, within the
quoted uncertainty, the tridiagonalization favors a

p~ =0.75 in agreement with Ref. 14. For the model
(3), within the same method, it can be trivially

shown that all the states remain extended, perhaps
due to the lack of frustration.

In conclusion, I have presented numerical results

which confirm earlier estimates of p~ in d =2, 3 as
well as the Cayley tree and demonstrate the essential
features of the density of states p(E), similar to
those found in Ref. 5. The behavior of p(E) at the
band center with a dip or a gap present in d = 2, 3
must be exclusive to quantum percolation models
since, for continuous randomness of positive sign in
d = 2, the singularity at E =0 probably takes the
Dyson form p(E) —1/EIlnEI (Ref. 16) for strong
disorder while, for continuous gauge invariant
models, "p(E) -1n(1/IEI), and no singularity exists
in d =3. There are still many questions left to be
answered, particularly concerning a more sensitive
calculation of p~ in the marginal d =2 as well as the
localization of spin-wave excitations.
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FIG. 5. IPR for the random-phase model (3). A mobility
edge could be located between E =2.0 and 2.5.
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