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We demonstrate that the nonlinear temperature dependence of the thermopower in certain
amorphous metals and metallic alloys can be explained within the Ziman model. The single
generalization required is that the structure factor vary with temperature. We apply our results
to hypothetical amorphous zinc and to amorphous Mg-Zn alloys; agreement is very good.

I. INTRODUCTION

The study of the thermoelectric power of amor-
phous metals is frequently placed within the context
of what is known about liquid metals. However,
measurements of the thermoelectric power of liquid
metals have typically been concerned with the magni-
tude of the effect at a single temperature, usually the
melting point of the metal in question, and have sel-
dom been concerned with the temperature depen-
dence of the effect. However, the data which do ex-
ist! show that in most liquid metals the thermopower
is porportional to the absolute temperature: In ex-
ceptional cases [Zn,Hg, Tl (Ref. 1)] the data show
linear behavior, but with a nonzero intercept at
T=0.

Some amorphous metals also show a thermopower
proportional to the temperature.? However, as dis-
cussed in a recent review,’ these are the exceptions,
and the data typically show a ‘“‘knee’’ at around 50 K
or, as in some Mg-Zn alloys* or some Metglases,’
show much more pronounced nonlinearity in the
temperature dependence. It is the objective of this
article to demonstrate that such nonlinearity arises
from a straightforward generalization of the usual Zi-
man formalism.® We first review this formalism,
then generalize it, and finally apply it to hypothetical
amorphous Zn and to amorphous Mg-Zn alloys.

Theoretical discussion of the thermopower in liquid
and amorphous metals has been based upon the Zi-.
man treatment of the diffusion thermopower® which,
following Mott,” links the thermopower S to the en-
ergy derivative of the electron relaxation time 7(E).
The appropriate expression is

where o (E) is the value that the conductivity would
have if evaluated at T =0 with the Fermi level at
E =Er. o(E) is thus given by

o(E)=“T‘—’ZD(E) VA(E)(E) . @

In these expressions the various parameters have
their usual meanings: In particular, D (E) is the den-
sity of electron states, V' (E) is the electron velocity,
and Q is the atomic volume, and ¢ is the so-called
thermoelectric parameter. Ordinarily there is no tem-
perature dependence in o (E), so that S is predicted
to be linearly proportional to the temperature T.

Within the free-electron model, the Ziman expres-
sion for ¢ is given by®

£=3-29—5r , (3

where
q=1VQkp) |’ 2kp)/{IV(Q)I%S(Q)) , (3)

_ )
r—<kpa—kFlV(Q)|2S(Q)>/(lV(Q)le(Q»( '
3”

In these expressions, S (Q) is ordinarily taken to be
the static structure factor of the material for scatter-
ing wave vector Q, and V(Q) is the corresponding
matrix element of the scattering potential of one
atom. kp is the Fermi momentum. The brackets
denote an average of the form

(V@) I’s(Q))

3
_ 2 0 9
ooz KT Bino(E) - fIvio)is0)4 7 K by B
3 lelEr 9E e~k
R In binary alloys, following Faber,’ the matrix ele-
_—m? kg ment for scattering from the potentials of the N ions
= £T m o
3 lelEr is written as
]
[V(Q)2=N{C Vi1 +CoV385n+CiClVE(1=81) + V(1 =8p») -2V V,(1=S1) 1}, Q)
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where V1=V ,(Q) and V,=V,(Q) are the potentials
of the two species of concentrations C; and C,, and
S11, S12, and Sy, are the three partial structure fac-
tors. (For simplicity, ¥, and V, are taken to be real.)
Following Enderby et al. 1° the complexity of this ex-
pression is reduced by assuming that S;;,=S1,=5,,
and by substituting in (3) to obtain!!

£=(Cip1§p +Cap2br +C1Cal)/p (6)

where the parameter / describes the deviations from
a simple linear dependence. The parameters py, p,,
and p are the resistivities of the pure components
and of the alloy, respectively, and &, and ¢, are the
thermoelectric parameters of the pure components.
(The expression used by Enderby et al. !° is different
from ours, but in fact involves different definitions
of the parameters). Thus the concentration depen-
dence is described by three parameters &, £,, and I,
of which the first two are, in principle, available from
experiment. The parameter / is in principle depen-
dent upon the structure factor, and is therefore
dependent upon both temperature and upon kr. In
the present calculation the temperature dependence is
expected to be negligible, because S (2kr) ~ 1, and
the dependence upon kr is small over the range of
concentrations employed: Thus, 7/ is taken to be a
constant.

The temperature dependence of the thermopower
thus comes about in two ways: First from the pro-
portionality to T in the basic expression (1), and
second from the temperature dependence of the
terms ¢ and r in Eq. (3). It is the first of these ef-
fects which has dominated the literature up to now.
The structure factor S (Q) is, to a first approxima-
tion, independent of temperature, so that g and r are
usually taken as constants. Their values have been
the subject of many theoretical papers!? since only
with nonzero ¢ and r can the Ziman theory explain
the positive thermopowers observed in many liquid
metals.

The temperature dependence of S (Q), however,
does have important consequences for the electrical
resistivity of metals, both at temperatures much
lower than the Debye temperature (7 << ©p),
where a T? term is predicted for amorphous metals,
and at high temperatures (7 > ®p), where positive
and negative temperature coefficients of resistivity
for liquid and amorphous metals can be described.!?
In this paper we investigate the effects of the tem-
perature dependence of S(Q) on the thermopower:
We find them to be significant, particularly in the
parameter ¢ of Eq. (3) and to depend largely upon
the ratio of 2kr to K,, where K|, is the wave vector of
the first peak in S (Q). In particular, when 2k is
close to K, the thermopower increases slower than
linearly with temperature, whereas when 2k is larger
than K, the increase is faster than linear. These two
extreme types of variation with temperature corre-

spond to the present calculation of 2kr/K, § 1.04, a

value which is probably very sensitive to the details
of the structure factor.

II. DETAILS OF THE CALCULATION

Including the temperature dependence of S (Q), as
pointed out by Cote and Meisel,!® is not just a matter
of using the experimentally available x-ray or neutron
structure factors. Rather, the correct S(Q) is a par-
ticular average over the dynamic structure factor,
which must be obtained by model calculations. In
the present paper we follow the procedure described
by Cote and Meisel, '3 using as a starting point the
Fourier transform of the pair-distribution for a ran-
dom close-packed cluster of 1000 atoms constructed
by a Bennet algorithm on a computer.!* The length
scale was determined by choosing the hard-sphere
diameter to be 2.54 A for Zn and 3.12 & for Mg, and
the temperature scale by taking the Debye tempera-
ture as ®p =295 K, appropriate to the Mg-Zn amor-
phous alloys.!”® In the calculations of ¢ the potentials
¥ (Q) were taken from Ashcroft and Langreth,!® and
values of r were chosen following the procedure of
Ashcroft.!” In the first instance, we attempted to cal-
culate the temperature dependence of the thermo-
power of hypothetical amorphous Zn. In the absence
of data, we chose to fit instead to values of liquid
Zn," using a value kr=1.65 A™! (Er~10.36 eV),
which gives a ratio 2kr/K,=1.11. This value is
higher than that from a free-electron value for kr and
the experimental structure factor'® (1.03). It corre-
sponds to values of g and r of 1.35 and 0.03, respec-
tively, at 300 K, and gives pronounced upward curva-
ture to the temperature dependence, with a negative
thermopower for hypothetical ‘‘amorphous zinc’’
below 450 K, as shown in Fig. 1.

To analyze the alloys we first identified the param-

- S(}J.V/K) N
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FIG. 1. Temperature dependence of the thermopower of
hypothetical amorphous zinc. Dashed line, theoretical curve
as discussed in the text. Solid line, data for liquid Zn from
Ref. 1, with error bars.
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FIG. 2. Temperature dependence of the thermopower of
amorphous Mg-Zn alloys. Solid lines, data from Ref. 4. Er-
ror bars are very small, but concentration values can be
inaccurate to within *1%. Dashed lines, theoretical curves
as discussed in the text,

eter ¢, with this calculated thermopower for Zn. In
principle, we would have preferred to calculate &;, for
Mg, in a similar fashion, but data for the liquid exist
only at the melting point,! and in view of this we
chose the parameter &, to give the best fit to the alloy
data. The value chosen was consistent with 2K;/K,
=1.10 and gives ¢, =2.73 at 300 K, a value which
corresponds with the analysis of Baibich et al. ¢
Analysis of the alloys then proceeded by choosing a
temperature-independent value of 7 [Eq. (6)] which
gave a good fit to the concentration dependence at
300 K. Over the available range of concentration
the dependence is approximately linear,* but the in-
clusion of I gives a characteristic parabolic shape to
the (experimentally inaccessible) region at higher
zinc concentration. The calculations were performed
with experimental values for the resistivities p1, pa,
and p taken, respectively, from the liquid state [27.0
and 37.0 @ cm (Ref. 9)] and from the alloy data.*
Temperature dependences of the thermopowers
at different concentrations are displayed in Fig. 2.
Agreement with the experimental curves is seen to
be very good.

III. DISCUSSION

The most significant feature of the calculations
presented in this paper is that the Ziman expression
for the thermopower is capable of describing non-
linear temperature dependence. The crucial parame-
ter is seen to be the ratio of 2kr to K, which deter-
mines the temperature dependence through the
parameter g. The present results, using an artificial
structure factor obtained from a hard-sphere packing,
cannot be expected to give realistic values for the ra-
tio which best fits the data, but nevertheless they
give an excellent indication of qualitative trends. A

more realistic structure factor (perhaps derived from
a relaxed structural model) would be expected to
have a narrower first peak, so that fits to the data
would be expected for slightly smaller values of the
ratio. This would improve the agreement with the
free-electron value mentioned in the text. Investiga-
tions in this direction are continuing.

It is also interesting to note that the temperature
dependence of the thermopower of our hypothetical
amorphous Zn reproduces rather well that of liquid
Zn. Although the calculational techniques used for
the temperature dependence of liquid thermopowers
are rather different from those used in this paper®
we believe that it would be fruitful to pursue the
present approach using first-principles values of ¢ and
r.12 Parallel calculations for liquid Hg and T1 would
also be useful. In general, it becomes interesting to
speculate on the reason for the linearity exhibited by
the majority of liquid metals.! From our point of
view, the temperature dependence of ¢ is either ab-
sent (with 2k far from K,) or, in these metals, con-
fined to temperatures below the melting point.

The alloy calculations are interesting in that the
trends with concentration are clearly reproduced even
with the drastic approximations employed to mini-
mize the number of free parameters. Individual fits
to individual alloys can be obtained which are much
superior to those shown in Fig. 2, but we chose in-
stead to describe the alloys as a group. The key
parameter is then the 7 occurring in Eq. (6). In prin-
ciple this parameter could be calculated from the po-
tentials and the structure factor, but in practice such
a complex calculation would be exceedingly unreli-
able, although it might yield qualitative information
about the temperature and kr dependence of . The
other approximation, namely that all the partial struc-
ture factors are identical, is certainly very reasonable
for the isoelectronic Mg-Zn alloys, and improvements
are not likely to be significant.

In conclusion, we have shown that nonlinear tem-
perature dependence of the thermopower in metallic
glasses can be explained within the Ziman model.
Dependence of the type exhibited by Mg-Zn alloys
and by many Metglases arises in a natural way. How-
ever, the low-temperature knee observed in several
other metallic glasses® does not emerge from the cal-
culations. An explanation of this effect must await
further theoretical work.
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