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We present results of random-walk simulations in ordered mixed binary two-dimensional lat-

tices. We calculate the number of sites visited in an n-step walk and compare this to our previ-

ous work on random lattices. We also examine the effect of the mean free path of the random
walker. We find a considerable difference, as walks in the ordered cases produce a greater effi-

ciency than in the random ones, We rationalize this behavior with the use of the number of re-
flections on closed sites, which we also find to differ in these two cases. Suggestions for experi-
mental situations are made.

In a recent paper' we presented results on proper-
ties of random walks in simple and binary lattices by
use of simulation techniques. The interest in binary
lattices stems from the fact that the sites occupied by
the second component are not accessible to the ran-
dom walker (closed sites) as opposed to the first
component (open sites). We had calculated there the
number of distinct sites visited, S„, after a certain
number of steps n and expressed our results as e, the
efficiency, defined as e = S„/n. It was shown' that e
decreases as the concentration C of open sites de-
creases. This decrease was also strongly dependent
on the correlation of each random walk. In that work
the composition of all lattices was determined in a
random fashion according to the prescribed concen-
tration, i.e., in the binary system the two components
were mixed at random before the start of the walk
and occupied the same pattern throughout the walk.
We wish to report now our results where in the lat-
tices constructed all closed sites are positioned in a
periodic way or, in other words, they are symmetri-
cally or orderly arranged. This has an effect of pro-
viding some symmetry to the lattice, and the question
that arises now is if this imposed order on the two
components is going to affect the properties of ran-
dom walks when compared to the random distribu-
tion lattices. Up to date there exists no theoretical
formalism to treat any random-walk properties in

general complex binary systems, especially for two-
and three-dimensional lattices (with the exception of
low concentration of the second component3), and,
of course, no theory accounts for the randomness
versus order in lattices. Thus, to gain some insight
into the nature of this problem, we again resort to
Monte Carlo simulation methods. We first discuss
the method of calculations and then we present our
results and comparisons between the two different
cases.

A binary lattice made of two types of sites (open
and closed) is simulated and kept in the computer
memory. We vary the ratio of open to closed sites

over a wide range (see below). While for random
lattices the identity of each site was determined by
use of random number generating routines, the case
is different here. All closed sites are arranged period-
ically for several different concentrations. Since for a
given concentration there may be more than one way
that such lattices could be constructed, the criteria
used are the following: For each case (1) the
highest-symmetry construction was used; (2) among
cases with the same symmetry we used the one with
the smallest unit cell. Some examples may clarify
this point: For a concentration C of open sites
C =0.75, the closed sites are arranged so that each
one is exactly two lattice constants away from any
nearest-neighbor closed site (so that lines of closed
sites are parallel). All other sites are open sites.
This has a unit cell of four sites, in which one of the
four is a closed site and the other three are all open
sites. A structure of C = 0.75 with staggered lines of
closed sites, and the same symmetry, has a unit cell
of 16 sites and is not used. Similarly, structures with
C =0.8889, 0.9375, and 0.9600 have closed sites ex-
actly three, four, and five lattice constants away from
nearest-neighbor closed sites, respectively, and unit
cells of 9, 16, and 25 sites, respectively.

Other lattice concentrations were constructed with
the use of the C = 0.75 as a basis, and then adding or
subtracting closed sites in symmetrical patterns. For
C =0.7778 and 0.8125, every third and every second
nearest-neighbor closed site was removed, respective-
ly (producing unit cells of 36 and 16 sites, respective-
ly). For C = 0.7222 and 0.6875, closed sites were
added in the "empty lines" of the C =0.75 pattern
every six and every four sites, respectively (produc-
ing unit cells of 36 and 16 sites, respectively).

The size of all lattices is slightly above 10 sites.
This number is chosen so that during the actual run
of a random walk the boundaries would not be
reached, which might otherwise result in revisitation
effects. Of course, this would depend on the magni-
tude of n, the number of steps taken in each run.
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We find that for most runs of n up to 200000 steps
the boundaries are not reached. A general "rule of
thumb" for avoiding revisitation effects is found to
be that the size of the lattice should be five times the
value of n [5(200000) =106].

All random walks take place in the standard way by
use of random number generating routines, as we
have described else~here. ' We also utilize a second
mechanism and check our results. The mechanism
that was previously' used implied that, before each
step takes place, the probability interval was divided
equally among all directions, regardless of how many
of these are possible due to the existence of adjacent
closed sites. Then, if it happened from the random
number generator that one step led to a closed site,
and therefore a reflection, this step was simply not
performed, it was disregarded, and a new attempt was
made until an allowed step took place. A second
mechanism is the following: Before each step takes
place, all directions leading to closed sites are identi-
fied, and then the probability interval is divided only
by the number of available directions, thus making it
impossible to result in a reflection. The two mechan-
isms are found here to be equivalent since they give
the same (within statistical fluctuations) a values.

For simple random walks we assume that all

memory is lost after each jump between two adjacent
sites, and here the mean free path l of this walk is
I = 1. But if memory is to be retained over I sites
then the random walker is allowed to make I jumps in
a row in the same direction, which is similar but not
equal to making a jump length I = k, where k is an
integer. If a closed site is encountered before the ex-
ecution of I such jumps, the random walker is reflect-
ed back to its previous position and memory is au-
tomatically lost. Usually I is an average of a distribu-
tion rather than a constant. We used Gaussian distri-
butions, where we define their average and spread.

We compute S„, the number of sites visited in an
n-step walk. We repeat the runs several times for
each concentration with different initial random
number seeds and average the results. In these
simulations we find that, in order to attain a constant
standard deviation, we usually need to average about
10—20 runs. Because of the natural scattering in
these results, if more runs are included, the standard
deviation does not decrease, while the average stays
almost constant. We therefore used 20 runs each time.

Random walks in simple one-component lattices
have been treated in the past by use of an analytical
generating function technique, or numerical series
and matrix inversions, and simulations. 4' Walks
with variable step length have also been treated. 4 We
thus have adequate information for such properties,
such as the number of sites visited in an n-step walk,
the number of steps for trapping, the mean return to
the origin, the end-to-end distance, etc. In this paper
we concentrate on S„, the number of sites visited in

an n-step walk. It is known that, for a two-
dimensional square lattice, '

mn

inn

But the validity of this formula was known to be
good only for large values of n. Recently, this for-
mula was modified with use of numerical4 and analyt-
ical6 formalisms to give

m. nSn=
1 ( )

+c3,

where cq is of the order of 5 and is the only impor-
tant term, the contribution of c3 to S„being less than
one (1). Equation (2) is valid for any values of n

Our simulation results verify to excellent agree-
ment the correction terms in Eq. (2), as has been
pointed out, ' up to values of n = 200000 steps.

We proceed now to report our results for two-
component ordered lattices. Figure 1 shows the
results for e (e =S„/n ) for an early stage in the walk

(2000 steps), and much later (200000 steps), as a
function of concentration C, for the case of simple
walks (I = 1). Also shown is the behavior of e on
random lattices (from Ref. 1). We also report here
the statistical spread of e for many individual runs, as
it is expressed in the calculated "error bars" given by
the standard deviation of the results (see Fig. 1 for
details). We see that for small number of steps n the
spread is quite large [Fig. 1(a)] while for large n it is
much smaller [Fig. 1(b)]. Apparently, the reason for
this is that the large n makes it adequate for an inter-
nal averaging to take place, while this is not so for
small n. The main conclusion, however, is that for
high C values, say, C ~ 0.90, there is no actual
difference between the ordered and random lattices,
while in the range of 0.60 & C ( 0.90 the ordered lat-
tice produces a considerably higher e than the disor-
dered one. This result is quite startling and contrary
to the intuitive expectation that on the average or-
dered and disordered lattices should produce the
same e, since for a given concentration the number
of closed sites on the lattice is the same in both
cases, regardless of their arrangement, and should
thus provide the same hindrance to the random walk-

er. However, this does not happen because it turns
out from topological arguments that the number of
reflections on closed sites is not the same in both
cases (see below).

In Fig. 2 we show results for e for the case of
I =10 and plot the same parameters as previously.
We observe the same qualitative trends as before,
but here they are more pronounced.

The parameter that most probably affects this be-
havior is the number of reflections R on closed sites.
It is certainly true that 8 depends on the concentra-
tion of closed sites. For random lattices the relative
ratio of reflections R over the number of attempts



BRIEF REPORTS 1357

C3
(a)

C3
P)
C3

CD
(Q
C3

C3
CV

CD

C3
C3

050
I

0.60 0.70 0.80
CONCENTRATION C

I

0.90 1.00

C3
C3

c30.50
I

0.60 0.70 0.80
CONCENTRATION C

0.90
I

1.00

C3 (b) (b)

C3
P)
CD

CD
(D
C3

C3 C3

C3

C3

CD
CD

0.50 0,60 0.70 0.80
CONCENTRATION C

0.90 1,00

C3
C3

0.50 0.60 0.70 0.80
CONCENTRATION C

0.90
I

1.00

(which is n +R ) should be equal to the probability
P, of finding a closed site at any instance during the
random-walk process, which is equal to 1 —C.
Therefore

P = R =1—Cn+R
Rearranging Eq. (3) we obtain

n (1-C)
C

(3)

FIG. 1. Plot of the efficiency e vs the concentration C of
open sites for ordered (circles) and random (triangles) lat-
tices. The points are averages of 20 runs on lattices of size
1020 x 1020. The mean free path I =1 and a square lattice
topology is employed, allowing jumps on the four nearest
neighbors only. The error bars on each point are calculated
so that the total length of the bar is 2o-, where (7 is the
standard deviation of the statistical distribution, Part (a}
shows e for n = 2000, while part (b) shows e for n = 200000
steps.

FIG. 2. Plot of the efficiency e vs the concentration C of
open sites, similar to the previous plot, but here the mean
free path is 1 =10 (average of a Gaussian distribution with
standard deviation o-=3.0). Part (a) shows ~ for n =2000,
while part (b) shows ~ for n = 200000 steps.

Turning now to the ordered lattice we can derive
the analogous probability Po as follows: Since on the
ordered lattice each site has a definite pattern of
neighbors, it is easy to estimate, for each concentra-
tion C, the probability for scattering. We do this by
forming the fraction of jumps that lead to a reflection
out of all jumps, and we take into account each indi-
vidual site on the lattice. As an example, see Table
I, where we include four different concentrations:
0.75, 0.8889, 0.9375, and 0.96. The total number of
sites in each unit cell in these lattices is 4, 9, 16, and
25, respectively. Thus we have one closed site in
each case, and 3, 8, 15, and 24 open sites, respective-
ly. The scattering probability Po is given then by the
inverse of these numbers, i.e., 0.3333, 0.1250,
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TABLE I. Scattering probabilities for random (P, ) and

ordered (Pp) lattices.
C3

Sites in

unit cell
Number of
open sites Pp C3

0.7500
0.8889
0.9375
0.9600

4
9

16
25

3
8

15
24

0.3333
0.1250
0.0667
0.0417

0.2500
0.1111
0.0625
0.0400

C3
Pl
C3

0.0667, and 0.0417. The respective P, values as
derived from Eq. (3) are 0.25, 0.1111,0.0625, and
0.04. We can see therefore that, due to the different
topology, there is a considerable difference in the
number of reflections in the two cases, thus leading
to a different e.

In Fig. 3 we plot the scattering fractions Pp and P,
versus the concentration of open sites. The straight
line and curve are simply P, = 1 —C, and Pp the
results from Table I, while the circles and triangles
are results of simulations, where we calculated 8, P„
and Pp directly. It can be seen that the simulation
results agree very well with topological arguments for
the number of reflections throughout the concentra-
tion range.

The question that arises now is to what extent the
observed behavior in e depends on the difference in
the scattering probabilities. We hypothesize that the
larger scattering in ordered lattices forces the random
walker to visit more sites, reducing somewhat the re-
visitation that takes place to a larger extent in ran-
dom lattices. This, in turn, increases e. This ex-
planation is consistent with the limiting behavior in
Figs. 1 and 2 where, close to C =1.0, there is a very
small difference in e because (see Table I) there is a
very small difference between Pp and P, . But around
C =0.75 (highest-symmetry, smallest unit cell) we
have the greatest difference in e (65%), again be-
cause Pp and P, differ by about 33'lo. At C & 0.70,
these differences are minimized because we get closer
to the critical percolation concentration P„where ~ is
severely limited and drops close to 0 below P, .

The problem we studied may be of use for physical
or chemical systems of mixed crystals where the
second component, due to a generated repulsive po-
tential around each molecule, may be forced to a

C3
CU

C3

C3

t).60 0.70 o.'so o.'so

CtoNCENTRRTION
1.00

configuration of minimum potential given by such
symmetrical patterns as discussed above. From pho-
non and vibrational Raman spectra it is believed' that
this is not the case with isotopic mixed crystals where
a totally random pattern is achieved, providing a
model system for electronic energy transport studies.
A new system has recently been reported where,
upon mixing, a highly ordered crystalline complex is
formed (naphthalene in perfluorobiphenyl). This
complex is in a 1:1 ratio. We hope that this work will
generate an interest in divising more new experimen-
tal ordered systems.

Discussions with Professor Raoul Kopelman have
been particularly useful.

FIG. 3. Plot of the scattering probabilities Pp (circles) and

P, (triangles) vs the concentration C. The solid lines are
calculated (see text), while the circles and triangles are
simulation results. Both the calculated P 's and the ones
derived via simulations are independent of n, and they are
constant throughout the random walk. The simulation
results here are after 2000 steps. (Incidentally, the Pp
line shape can be fitted to an equation of the form

y = a + bx+cx2, and it is found here that a = 2.42,
b =—3.90, and c = 1.48.)
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