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The stage and temperature dependences of the in-plane thermal conductivity of
graphite-FeC13 acceptor intercalation compounds are reported and analyzed, as well as the
temperature dependence of a stage-5 potassium donor compound. The measured thermal
conductivity is tentatively separated into an electronic contribution, which is dominant at
low temperatures, and a lattice contribution, which is dominant around room temperature.
Quantitative information is provided about lattice defects which are introduced by inter-

calation and scatter both electrons and phonons. Below room temperature the in-plane lat-

tice thermal conductivity is reduced by about an order of magnitude relative to pristine gra-
phite due to an equivalent decrease in boundary scattering length and, to a lesser extent, to
point defect scattering. Electron and phonon scattering is only weakly stage dependent.
Data for the c-axis thermal conductivity of a stage-2 FeC13 and a stage-5 potassium com-

pound are also presented and discussed.

I. INTRODUCTION

Graphite is an anisotropic layered material in
which the in-plane covalent binding forces are
much larger than the interplanar van der
Waals —type binding forces. In spite of very high
in-plane electrical mobilities ( —1 m V 'sec ' at
300 K, compared to -3)&10 m V 'sec ' for
metals), graphite has a relatively poor conductivity
(2.5X10 0 'm ' at 300 K), because of its small

density of electrons and holes (-2)&10 m at
300 Iw ). The insertion between the graphite layers
of atomic or molecular layers of extrinsic species
called the intercalant, leads to the formation of ei-

ther donor or acceptor graphite intercalation corn-
pounds (GIC's) depending on the intercalant. The
intercalate layers are periodically arranged in the
matrix of the graphite layers, with the number of
graphite layers between adjacent intercalation layers
denoting the stage index of the GIC. A comprehen-
sive review on the properties of GIC's has recently
been presented. '

The charge transfer between intercalant and gra-
phite layers results in an increased density of highly
mobile carriers, which confers to GIC's electrical
conductivities comparable to those of the best me-
tallic conductors (-6)&10 0 'm '). Because of

their promise as synthetic materials of high electri-
cal conductivity, GIC's have in the last few years
attracted a great deal of attention. ' However, it was

only very recently that exploratory thermal conduc-
tivity studies were performed on acceptor ' and
donor ' GIC's. These investigations gave new in-

sights into the thermal-conduction phenomena in
two-dimensional solids as well as into the transport
properties of the GIC's.

In the previous work, it was shown that for
both donor and acceptor compounds, intercalation
leads to a decrease of the in-plane lattice thermal
conductivity and to an increase of the electronic
contribution relative to pristine graphite. In the c-
axis direction, the thermal conductivity was attri-
buted entirely to the lattice. Also, contrary to the
case of the electrical conductivity, the anisotropy of
the thermal conductivity was found comparable to
that of pristine graphite around room temperature.
At low temperatures it was found that heat is en-

tirely carried by phonons in one direction (c axis)
and electrons in another direction (in-plane).

The conduction of heat in crystalline solids below
room temperature is mainly due to two distinct
mechanisms: the lattice conductivity ~1 and the
contribution from the charge carriers ~E. If both
mechanisms are operative, then the total thermal
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conductivity is given by

K =KE+KI

It was shown that, contrary to pristine graphite
where only ~L is important for the entire tempera-
ture range 3 & T & 300 K, both ~E and ~I are effec-
tive in a GIC below room temperature. In the
liquid-helium range, the thermal conductivity was
found to vary linearly with temperature, suggesting
that KE is dominant. This was further confirmed
experimentally by applying a high magnetic field to
separate the electronic and lattice contributions.

In its simplest form, the lattice thermal conduc-
tivity is given by the well-known Debye formula

Cvv (2)

where C„ is the lattice specific heat at constant
volume, U is the group velocity of phonons (the
velocity of sound), and A, the phonon mean free
path.

The electronic contribution to the thermal con-
ductivity is directly related to the electrical conduc-
tivity o through the Wiedemann-Franz law (WFI.)

xE ——LcrT, (3)

where the coefficient L takes the value of the
Lorenz number Lo ——2.44)&10 V K for a free
electron system. The WFL is only valid when the
scattering of electrons is elastic. This is the case at
low temperatures for pure metals, where the dom-
inant scattering mechanism for the electrons is by
static defects, and around and above the Debye tem-

perature, where large-angle electron-phonon scatter-
ing is dominant.

Preliminary data reported for a donor and an ac-
ceptor GIC have shown that thermal-conductivity
measurements provide valuable information con-
cerning electrical and thermal transport properties.
At high temperatures where lattice thermal conduc-
tivity dominates, these measurements provide infor-
mation about phonon scattering mechanisms, while
at lower temperature where electronic conductivity
dominates, they yield quantitative information on
electronic scattering processes. In the present work
we extend these ideas in a more quantitative form
and present as well some new experimental results.
The present work also emphasizes the stage depen-
dence of the lattice and electronic thermal conduc-
tivities.

II. EXPERIMENTAL

A. Samples

All samples were prepared from the highly
oriented pyrolytic graphite (HOPG) host material.

Typical sample dimensions were 20&(4&O. S mm
for in-plane measurements and 4&4)&1 mm for c-
axis measurements. A standard two-zone furnace
was used to prepare the FeC13 compounds, and the
stage was controlled by adjusting the temperature
difference between the graphite and the FeC13
powder. Well-staged samples were synthesized us-

ing a gas pressure of -500 Torr Clz. Thermal
transport measurements were made on graphite-
FeC13 samples of stages 2, 3, 4*, and 6 prepared in
this way. With regard to thermal transport mea-
surements on donor compounds, a sample of stage-5
potassium GIC was selected, since its Fermi surface
had already been studied extensively. It was also
shown that for graphite-potassium compounds of
stage n g 4 the desorption rate under ambient condi-
tions is slow, ' and this observation was used to
simplify the sample handling procedure. All sam-
ples were stored in ampoules and were always han-
dled in a controlled dry-nitrogen atmosphere, free
from water vapor and oxygen, until the sample was
mounted in the sample chamber of the cryostat.
The samples were mounted as quickly as possible
and the sample chamber was then evacuated to
—10 Torr.

After intercalation, all samples were character-
ized by (001) x-ray diffractograms to determine the
stage index, stage fidelity, and c-axis repeat distance
I, . After performing the thermal-conductivity
measurements, x-ray diffractograms were taken
again to ensure that thermal cycling from liquid
helium to room temperature did not affect the stag-
ing. It was also verified on all samples that thermal
cycling did not affect the residual resistivity and
that the thermal-conductivity results were reprodu-
cible from run to run. All samples studied in this
work were well staged, except for the stage-4 FeC13
sample, which showed admixtures of stages 5 and 6
and is therefore labeled as n =4*.

B. Sample holders and measuring techniques

Static thermal-conductivity measurements were
performed using a heater and sink method. Since
the in-plane thermal conductivity is about 2 orders
of magnitude greater than that along the c axis, a
different sample holder had to be designed for the
two geometries. Specifically, the geometry of the
sample should be different according to whether a
good or a poor thermal conductor is being mea-
sured. " The I/A ratio (where 1 is the length of the
sample and A its cross section) should be large for a
good conductor and small for a poor conductor,
consistent with the dimensions of the available sam-
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ples, since the larger dimensions are in-plane. Ex-
perimental details for the thermal conductivity
measurements as well as the detailed description of
the sample holders designed and used for the mea-
surements are given elsewhere. ' In all cases electri-
cal contacts to the samples were made with a tiny
drop of silver paint. With and without silver paint
no detectable change was found in the low-
temperature electronic thermal conductivity (which
provides direct information on the residual electri-
cal resistivity, see Sec. IVA), indicating that the
silver paint did not alter the electronic properties of
our samples.

The experimental accuracy for the thermal-
conductivity measurements depends on the tem-
perature range, sample orientation, and sample di-
mensions. The highest accuracies are achieved for
in-plane measurements using samples of larger cross
sections in the lowest-temperature range, where the
estimated error is —1%; the accuracy for the same
samples is -3%%uo around room temperature. The
maximum estimated error is for c-axis samples
around room temperature, where it may reach
-5%. In addition, due to the uncertainties in es-
timating the distance between the thermometers, the
absolute magnitude of a, in the curves for the in-

plane thermal conductivity might have to be multi-
plied as a whole by a factor ranging from 0.95 to
1.05. Thus, the thermal-conductivity data are more
accurate with regard to temperature variation than
with regard to absolute magnitudes.

Usually, when thermal-conductivity measure-
ments are performed on electrical conductors, it is
of paramount importance to be able to measure the
electrical resistivity on the same sample. The
separation of lattice and electronic contributions is
then facilitated to a great extent. However, this
type of separation is not easy to perform for the in-

plane thermal conductivity for GIC's bemuse of the
high anisotropy of the electrical conductivity,
which for the case of acceptor compounds necessi-
tates the use of contactless measurement tech-
niques. '

III. RESULTS

A. The in-plane thermal conductivity

In Fig. 1 we present the temperature variation of
the thermal in-plane conductivity ~, in graphite-
FeC13 acceptor compounds (stages 2, 3, 4~, and 6)
and in a stage-5 graphite-potassium donor com-
pound for the temperature range 2&T&300 K.
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FIG. 1 ~ Temperature variation of the in-plane thermal
conductivity a, of various graphite intercalation com-
pounds compared to that of pristine HOPG (solid line).
Results are presented for pure stages: 2 (open circles), 3
(dark circles), and 6 (open squares), and a mixed 4* stage
(open triangles) FeC13 acceptor GIC. Data for a stage-5
potassium donor intercalation compound are also
presented (dark squares).

For comparison we also show thermal-conductivity
results for a pristine graphite (HOPG) sample of the
same origin as the starting material used in the
preparation of our intercalation compounds.

Starting from the lowest temperature, we see that
for the stage-2 FeC13 compound there is a very nar-
row temperature range T&3 K over which the
thermal conductivity ~, varies linearly with tem-
perature. Above the linear temperature regime, the
measured thermal conductivity increases more rap-
idly with temperature and shows a tendency to level
off above 30 K. At higher temperature, the thermal
conductivity again increases with temperature to
reach, finally, a very broad maximum or plateau.
In the stage-3 FeC13 sample the low-temperature
linear behavior extends to a higher temperature (to
—10 K) and the sample exhibits at yet higher tem-
peratures approximately the same behavior as the
stage-2 sample, except that the departure from
linearity at low temperature is less pronounced.
The thermal conductivity of the stage-6 sample in-
creases linearly with temperature to -6 K and then
increases a little more rapidly than T' above —10
K, until a, reaches a flat maximum or plateau
above -200 K. Note that for the FeC13 intercalat-
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ed samples, the low-temperature thermal conducti-
vity decreases with increasing stage, while at room
temperature the situation is qualitatively reversed.
For all the graphite-FeC13 samples that were inves-

tigated, the a; vs T--curves cross (reverse in
behavior) at the same temperature of -70 K. The
temperature dependence of a., for the mixed-stage-
4~ FeC13 sample appears to follow the trends of the
results for the stage 2, 3, and 6 compounds in Fig.
1.

10

I ( I I IIIII

In the case of the stage-5 potassium compound,
the thermal conductivity ~, begins with a linear T'
law for 2 & T &20 K, but then s., starts to level off
immediately, unlike the FeC13 compounds. It is
only for T & 60 K that x, for the stage-5 potassium
sample again increases and shows a similar func-
tional behavior as that for the FeC13 acceptor sam-

ples. It is also significant to note that at low tem-

perature all GIC samples exhibit a linear T' law
while highly ordered pristine graphite samples exhi-
bit no linear T dependence down to 3 K.

B. The c-axis thermal conductivity

The temperature dependence of the c-axis ther-
mal conductivity ~„which is presented in Fig. 2 for
a stage-2 graphite-FeC13 sample and a stage-5
graphite-K sample, is quite different in magnitude
and in functional form than the in-plane component

First, the c-axis component at low temperature
increases roughly as T with increasing tempera-
ture, reaches a maximum around -60 K for the
stage-2 graphite-FeC13 sample, then decreases as the
temperature is further increased.

Approximately the same behavior is observed in

a; for a potassium stage-5 compound, except that in
this case the maximum in a, is near 20 K, and the
magnitude of a, exceeds that for the stage-2 FeC13
compound by a factor of -6 at low T. For com-
parison we also present the temperature variation of
the c-axis thermal conductivity for pristine gra-
phite, ' which also exhibits a T dependence at low
temperature T & 20 K, and is a factor of between 10
and 10 greater than that for the FeC13 compound
over the entire temperature range. Note too, that
for the two GIC samples the anisotropy ratio is
several hundred at 300 K and around 100 at 2 K.

IV. DISCUSSION OF THE RESULTS

We shall first discuss the results for the in-plane
thermal conductivity z, in terms of the contribu-
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FIG. 2. Temperature variation of the c-axis thermal
conductivity a, of a stage-2 graphite-FeC13 acceptor in-

tercalation compound and a stage-5 potassium donor in-

tercalation compound. The curve for pristine HOPG
which is taken from Ref. 14 is only given as a rough
guide for comparison.

tions of the various types of layers present in the in-

tercalation compound. For each type of layer, we
consider the principal heat-conduction mechanisms
that are effective below room temperature, i.e., elec-
tronic and lattice. Then the c-axis thermal conduc-
tivity ~, will be briefly analyzed.

The thermal conductivity a, of dilute GIC's has
been separated experimentally into electronic and
lattice contributions by using high magnetic fields,
confirming that at the lowest temperatures ~, is

dominated by pure electronic conduction, as could
be expected from the observation of a linear T'
temperature dependence of ~, . This electronic con-
duction is attributed to a large charge-carrier densi-

ty in the graphite bounding layers; the density of
the charge carriers in the graphite interior layers is
much lower than in the bounding layers, while the
intercalate layers have a very low mobile-carrier
density. ' At higher temperatures, lattice thermal
conductivity plays a more important role. Conceiv-

ably, in the temperature range between 10 and 30
K, and only for the lowest-stage compounds, might
the effect of the intercalant phonons on I~r be signi-
ficant.

Near room temperature, the thermal conductivity
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~, is dominated by the lattice contribution of the
graphite layers, with a smaller contribution also
coming. from the charge carriers in the graphite
bounding layers. We shall now consider in detail
these various contributions.
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A. The in-plane electronic thermal conductivity

E
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In discussing the electronic thermal conductivity
one should first examine the electrical resistivity
data for intercalated graphite. From the tempera-
ture dependence of the electrical resistivity p(T) of
a stage-1 graphite-FeC13 compound reported by
Pendrys et al. ' we see that p(T) qualitatively fol-
lows the behavior of typical metals, where the total
measured electrical resistivity p is the sum of a
temperature-independent residual contribution p„
and a temperature-dependent intrinsic term p;,

0
0

I

Q5

P=Pr+PI ~ (4)

For typical acceptor compounds the ratio of the
room-temperature (300-K) resistivity to that at
liquid-helium temperature (4.2 K), [i.e., the residual
resistivity ratio (RRR)], is less than 10." This can
be compared to RRR values of several hundred, or
even thousands for pure metals. The situation is

quite different for low-stage donor compounds'
where for some samples the RRR (120 for RbCs
and 218 for KCs) is comparable to that of pure met-

als. In this connection, it is of interest to note that
the RRR value for dilute donor intercalation com-
pounds may be more like that of graphite which is

typically —10 for HOPG samples. ' However, it
should be noted that in pristine graphite the carrier
density is temperature dependent in contrast to
GICss 20

In fact, one should compare residual mobility ra-
tios (RMR) rather than residual resistivity ratios
(RRR) for semimetals, which have temperature-
dependent carrier densities below room temperature.
For these materials the RRR does not have the
same meaning as for ordinary metals and GIC's. In
the latter materials the RRR is used as a criterion
of sample purity and crystalline perfection and in

fact also reflects the RMR for the two temperatures
considered, 4.2 and 300 K, since the carrier density
is temperature independent. Thus one should mul-

tiply the RRR value of graphite by a factor of 3
(i.e., N30O K /N4 z ~ ) in making comparisons to
GIC's.

The Wiedemann-Franz law should apply to the
analysis of the low-temperature thermal-
conductivity measurements, since in the residual

1/n
FIG. 3. In-plane residual resistivity p„of graphite-

FeCl3 intercalation compounds as a function of reciprocal
stage. The residual resistivity was calculated by applying
the Wiedemann-Franz relation to the low-temperature
linear part of the electronic thermal conductivity. The
horizontal error bar is for the data obtained on the 4*
mixed-stage compound. The data for a pure stage-4 aIe
taken from Ref. 2 and the vertical uncertainty bar is

mainly attributed to the uncertainty in the estimation of
the distance between the thermometers on the small sam-

ple that was investigated in that work. All the dark tri-

angles refer to our data while the dark square point for
the stage-1 compound is taken from Ref. 15. The solid

line is the calculated stage dependence using Eq. (7). (See

text) ~

resistivity range, scattering is entirely due to static
defects and is thus elastic. Here the electrical resis-

tivity (identified with the residual resistivity p„) is
constant, corresponding to a linear T' dependence
of the electronic thermal conductivity. It has been

previously checked on a stage-4 FeC13 GIC that p
was indeed constant in the range T & 10 K, where
the thermal conductivity varies linearly with tem-
perature.

Applying the Wiedemann-Franz relation [Eq. (3)]
with a free-electron Lorenz number 1.0 to the low-

temperature linear part of the thermal conductivity,
we have computed the low-temperature electrical
resistivity p for the various stage FeC13 compounds
investigated in the present work; the results are
shown by the triangular points in Fig. 3. We see
from this figure that the variation of p„with re-
ciprocal stage ( I/n) follows the same type of depen-
dence as is observed by direct measurement in inter-
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calation compounds around room temperature,
where such data are available. ' This suggests that
in the residual range, it is mainly the change in car-
rier density with stage, and not a variation in the
electron —static-defect interactions from one sample
to another, which mainly governs the stage depen-
dence of the resistivity in these compounds. It is
thus implied that in our FeC13 GIC samples the de-
fects introduced by intercalation do not vary signifi-
cantly from one sample to another of the same stage
or for compounds of different stages. It will be seen
in Sec. IVB that this assumption also leads to con-
sistent results when applied to lattice conduction
and phonon-defect scattering near room tempera-
ture. It is worth noting that these assumptions are
also in qualitative agreement with recent x-ray
structural studies on two GIC's. ' On the other
hand, the assumption that the electron —static-
defect interactions are stage independent is only as-
sumed for the present set of graphite-FeC13 sam-

ples, which were prepared in the same way and
from the same piece of HOPG. This assumption
may not be applicable to other sets of GIC samples
or to a stage-1 graphite-FeC13 sample. No stage-1
compounds were studied in the present work.

In our analysis of the in-plane residual resistivi-
ties of the FeC13 compounds we make use of the
simple phenomenological picture recently proposed
for the electrical conductivity' of compounds
with stages n )2:

cr„=[d;o;+2coo'sb+(n 2)coos, ]/I, —, (5)

where O.„ is the electrical conductivity of a sample
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FIG. 4. Simple model for the in-plane electrical con-
ductivity of GIC s (Ref. 23), which distinguishes between
the intercalant nonconducting layer of thickness d;, the
highly conductive graphite bounding layers, and the less
conductive graphite interior layers of thickness co. I, is
the c-axis repeat distance and n the stage of the cora-
pound. The same model is applied for the electronic
thermal conductivity and for the lattice thermal conduc-
tivity where Q indicates the heat flux. However, in the
case of lattice thermal conductivity no distinction is made
between graphite interior layers and graphite bounding

layers in the present work.

of stage n, and o.;, o.
gb, and o.

g; are, respectively, the
conductivities of the intercalate, graphite bounding,
and graphite interior layers (see Fig. 4). The c-axis
repeat distance in Eq. (5) and Fig. 4 is

I, =d;+neo,

where d; is the thickness of the intercalate layer and
has the value 6.06 A for FeC13 and 2.05 A for po-
tassium, and co ——3.35 A is the thickness of the car-
bon layers. There is a slight variation of the thick-
ness of these layers according to the stage, ' ' but
this effect is too small to be of importance in the
present discussion. Though naive, the two-
dimensional model represented by Eq. (5) is plausi-
ble because of the high in-plane conductivity and
low c-axis conductivity in these materials.

The electrical. conductivity of the intercalant
layer 0.; can usually be neglected' and we shall to
a first approximation also neglect that of the gra-
phite interior layers, because the carrier concentra-
tion in the graphite bounding layers far exceeds that
in the interior layers. Thus Eq. (5) can be approxi-
mately written as

p„=(d;+neo)p bl2c (7)

where pgb and p„are the electrical resistivities of the
graphite bounding layers and of the sample of stage
n, respectively. In the simplest approximation, we
assume that pgb is independent of stage for n )2.

From the value of the residual resistivity obtained
for the FeC13 stage-2 compound, p2 ——0.445
&(10 0 m, we may estimate pgb for the bounding
layers and obtain p~b ——0.232&(10 0 m. Then us-
ing Eq. (7), we can determine p„ for various stages.
We see from Fig. 3 (solid line) that this procedure
underestimates the value of the resistivity for the
higher stages. The difference between the measured
and calculated values for p„ is greater than the ex-
perimental uncertainty for the measured thermal
conductivity (Sec. II 8).

At higher temperatures, the electronic thermal
conductivity of the FeC13 compounds is more diffi-
cult to estimate for several reasons. First, except
for the stage-1 compound' there are no available
data for direct measurement of the temperature
dependence of the resistivity. Second, even at room
temperature where such data have been reported,
these data are too scattered to allow any quantita-
tive analysis to be made of the stage dependence of
the electrical resistivity. Third, it is likely that
there is a narrow temperature region between
liquid-helium and room temperature where the
scattering is not elastic and the Wiedemann-Franz
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FIG. 5. Tentative separation of the electronic (~E) and
lattice (~L ) contributions to the in-plane thermal conduc-
tivity (x, ) of a stage-5 graphite potassium intercalation
compound. The upper points are relative to the mea-
sured total thermal conductivity, which is assumed to
coincide with the electronic thermal conductivity ~E in
the low-temperature range and up to the onset of the pla-
teau. The dashed line is the extrapolation to higher tem-
peratures of the plateau of the electronic thermal conduc-
tivity. Subtraction of Irz from a [Eq. (1)] yields the lat-
tice thermal conductivity ~L (lower points). Note that in
the lower-temperature range the uncertainty in aI. is very
large, since it results from the subtraction of two large
numbers, and the exact ordinate of the plateau is difficult
to locate accurately. The solid curve is the electronic
thermal conductivity computed from the electrical resis-

.tivity data of McRae et al. (Ref. 28).

served on a stage-7 potassium compound with an
electronic thermal conductivity varying linearly
with temperature for T &4 K and a temperature-
independent behavior above —10 K. Thus for our
stage-5 potassium compound, a tentative way to
separate the electronic and lattice contributions is to
attribute the plateau of the thermal conductivity ob-
served for the K sample in the narrow temperature
range 30& T&45 K to the onset of the "high-
temperature" saturation behavior of the electronic
thermal conductivity. With this identification, the
relative contributions in Fig. 5 are obtained for the
lattice aL (given by the points) and for the electrons
irE (given by the dashed line). If, using the
Wiedemann-Franz law, we compute the electronic
thermal conductivities from the electrical resistivity
data of McRae et al. we obtain about half the
magnitude (solid line in Fig. 5) of those deduced
from our analysis. However, if we extrapolate to
stage 5 the electrical resistivity measurements of
Onn et al. on stages 2, 3, and 4, we find that the
corresponding ~E data fall midway between our
data and those computed from the measurements of
McRae et al. Because of the variation in residual
resistivity from one sample to another of the same
intercalant and stage, we consider the agreement be-

tween our analysis and the work of others to be sa-
tisfactory.

B. The in-plane lattice thermal conductivity

relation does not hold.
The situation is easier to analyze in the case of

the K compound. It is evident from Fig. 1 that the
electronic thermal conductivity is much higher at
low temperature for this compound than for the
FeC13 compounds and the electronic contribution is

probably the dominant one up to about 4S K. This
observation supports a higher charge transfer to the
graphite in the case of the K intercalant as com-
pared with FeC13. Also, below 10 K, the thermal
conductivity varies linearly with temperature.
Above 50 K, if we exclude the small features attri-
buted to phase transitions, the electrical resistivity
of the stage-S K compound varies almost linearly
with temperature.

' This indicates that the electron
scattering is dominated by large-angle electron-
phonon scattering, a quasielastic process; thus the
Wiedemann-Franz law should hold, and the elec-
tronic thermal conductivity should be temperature
independent [Eq. (3)], as observed (see Figs. 1 and
5). Further, this behavior was experimentally ob-

In this section, we shall first discuss the tempera-
ture dependence of the lattice thermal conductivity
of the potassium compound, followed by a brief dis-
cussion of the stage dependence of the lattice ther-
mal conductivity of the acceptor compounds.

The temperature variation of the lattice contribu-
tion KL is obtained upon subtraction of the electron-
ic component ~E from the measured value of the to-
tal thermal conductivity Ir according to Eq. (1).
The lattice contribution ~L for the stage-5 potassi-
um compound is presented by points in Fig. 5. The
validity of this approach has been established exper-
irnentally for T & 50 K. In the present discussion,
we mainly focus on the higher-temperature range
(T&100 K) where the lattice contribution dom-
inates.

We see, by comparing Figs. 1 and 5, that the
behavior of the lattice component of a for the po-
tassium stage-5 compound follows qualitatively that
of pristine graphite. As the defect concentration in-

creases, the peak in ~1 decreases in amplitude,
broadens, and shifts to higher temperature, con-
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sistent with observations on these GIC's. The dip
in the curve for ~L around 200 K, where an anoma-

ly was also observed in the thermopower, is identi-
fied with a phase transition in the intercalate layer.
This phase transition has been observed by many
experimental techniques, ' including anomalies in
the electrical resistivity. ' ' ' The temperature re-
gion around 200 K was carefully measured and the
observed dip in ~L is larger than the experimental
uncertainty. Independent differential thermal
analysis measurements that we performed in the
range 150&T &300 K confirmed the presence of a
phase transition in our sample at -230 K.

In modeling the thermal conductivity of inter-
calated graphite we note that the most important
contribution above -50 K comes from phonons as-
sociated with the graphite planes. As a first ap-
proximation we model this contribution on the basis
of previous theories developed for the thermal con-
ductivity of pristine graphite.

Many groups have dealt with the low-
temperature thermal conductivity of pristine gra-
phite. 30 3 Dreyfus and Maynard3 and Kelly
have considered the influence of defects such as in-
troduced by neutron irradiation or grain boundaries,
while Kelly ' and Hooker et al. also considered
the contribution of out-of-plane phonons and their
scattering by defects along the c axis. Dreyfus and
Maynard confined themselves to a two-
dimensional model. In the present work, we have
experimental information for ~l only in the tem-
perature range 50& T &300 K. In this region the
two-dimensional model is adequate because of the
low cutoff energy of the out-of-plane phonons.

Before analyzing quantitatively the temperature
variation of the lattice contribution in intercalated
graphite, let us first try to identify the scattering
mechanism that could be responsible for the reduc-
tion of the lattice thermal conductivity relative to
pristine graphite. In graphite we are still in the
low-temperature regime at room temperature with
regard to the in-plane thermal properties. The De-
bye temperature for in-plane phonons in pristine
graphite is very high (8&-2500 K), and even
though intercalating potassium into graphite
reduces the mean Debye temperature, ' 8& is still
very large compared to values in common materials.
Therefore, the upshift we observe in the tempera-
ture of the dielectric maximum T~ in the inter-
calated sample relative to pristine graphite could
not be attributed to a variation of the Debye tem-
perature, which would be expected to result in a
small decrease in T~ with intercalation. Thus the

shift of T to higher temperature after intercala-
tion, as well as the decrease of ~, at and below T,
is consistent with the reduction of the phonon mean
free path A, .

The temperature dependence of the lattice ther-
mal conductivity of pristine graphite below T~ re-
flects that of the lattice specific heat C„ in a scatter-
ing regime where A, is temperature independent [Eq.
(2)]. In pristine HOPG the dominant in-plane pho-
non scattering mechanism is phonon scattering at
grain boundaries. In intercalated graphite, the mag-
nitudes of the lattice thermal conductivities near
and below T~ (compare Figs. I and 5) enable us to
estimate that A, must be roughly an order of magni-
tude smaller than in HOPG.

Since in-plane phonon diffusion is two dimen-
sional, a linear defect in the plane of phonon propa-
gation will be as effective a scatterer as a surface
defect in three-dimensional solids. %'e attribute the
reduction of A, in the intercalated samples to the lat-
tice distortions associated with large-scale defects
introduced during the intercalation process. Such
defects might arise from the bending of the graphi-
tic layers in the vicinity of the previously proposed
Daumas-Herold domain boundaries, where an
acoustic mismatch is expected. This mismatch will
cause a refiection of phonons, as occurs at grain
boundaries in three-dimensional solids. On the oth-
er hand, our thermal-conductivity measurements
are not sensitive to the detailed nature of the large-
scale defects.

Below room temperature we are in the low-
temperature regime with regard to the phonon
scattering processes, and the relaxation time of pho-
nons will be mainly determined by that of phonon-
phonon interactions, phonon —point-defect scatter-
ing, and, below T, by that of phonon —large-
scale-defect scattering. Low-energy phonons are
dominant over the entire temperature range of the
experiments. In the analysis, it is necessary to con-
sider both normal processes and umklapp processes.

The relaxation frequency for phonon scattering
by defects of much larger size than the phonon
wavelength, such as boundaries, is given by

where the boundary scattering length Xz is within a
numerical factor, usually small, equal to the dis-
tance between such defects, and vz

' is independent
of the phonon frequency co. Point defects are those
with a small size compared to the phonon wave-

length, and their scattering frequency for two-
dimensional solids has a functional dependence of
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—1 3
7D =AN —1 —1 —1

~c +N ++R (13)

——Ux T exp( ep/—UpT), (10)

where 8D is the in-plane Debye temperature, x
=fico/ks T, a is a constant of the order of 2, U is a
coupling parameter, and UD a parameter with a nu-

merical value between 2 and 3. The parameters u,
U, and Up are determined by fitting Eq. (10) to ex-

perimental values of ~U '.
Normal processes do not contribute directly to

the thermal resistance, although they have an in-
direct influence since normal processes lead to the
creation of higher-frequency phonons, which are
more apt to undergo resistive processes. The relaxa-
tion frequency for such normal processes in a two-
dimensional hexagonal solid is given by

While boundary and point-defect scattering are
both resistive processes, we must distinguish be-
tween umklapp and normal processes in the discus-
sion of phonon-phonon scattering. In the first case,
the phonon-phonon interaction leads to a resistance
to the thermal flow characterized by a relaxation
frequency,

In the Callaway treatment of thermal conductivi-
ty ' the total lattice conductivity KL is expressed as
the sum of two terms:

Kl. =K1+K2 .

The first term Ki considers all collisions (including
normal processes) as resistive mechanisms,

ND

K t ——Kp 1 ~ (CO )C (CO )dCO,
0

where Kp is a constant factor, cop Op/T——, and c (co)
is the contribution to the specific heat of a phonon
of frequency co. The correction term a2 makes al-

lowance for the fact that N processes do not contri-
bute directly to the thermal resistance ':

o)D 2

J (r, /rN )c (co )Cco

K2 =KP (16)

f [1g/(r~v'g )]c(co )dco

For two-dimensional solids and replacing c(co)
by the expression given by Klemens, these in-

tegrals become

=No) T

where N is a coupling constant.
The total relaxation frequency re

' for all resis-
tive processes is then and

3
' 2

ka T "~ x'e"
K1= ~c 2

dX
2ircp A' o (e"—1)2

—1 —1 —1 —1
'Tg =TU +1g +7/) (12)

We shall further define a relaxation frequency r, '

which takes into account resistive as well as normal
processes in such a way that

x~ 7 X3ex

ks T t p 're (e"—1)
K2=

27TCO ~ xD Tc X ex
2

dX
rivet (e"—1)'

TABLE I. Values of the various parameters determining phonon scattering processes in pristine and intercalated gra-
phite. Only the parameters A, z and A are fitted to the KL for the GIC. For the parameters U, a, UD, and N, the values

for pristine graphite are used.

Symbol

Ub

a'
U
QC

AI'

Units

m
sec 'K

10—11 K —3

10 32 sec'

HOPG

1.55X10 5

766
1.44
4.74
1.63
0.58

K
stage 5

3.03 X 10-'
766
1.44
4.74
1.63
3.28

Values
FeC13

stage 2

5.83 X 10-'
766
1.44
4.74
1.63
1.82

FeC13
stage 3

6.23 X 10
766
1.44
4.74
1.63
2.56

FeC13
stage 6

7.70X 10
766
1.44
4.74
1.63
2.34

9,~ is the boundary scattering length.
"U is the coupling constant in Eq. (10) for umklapp processes.
'a is the quantity defined by Eq. (10).

Up relates to the fraction of ep at the temperature of the most probable interacting phonou [Eq. (10)].
'X is the coupling constant for a normal process given by Eq. (11).
A is the point defect scattering coupling constant given by Eq. (9).
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IcL (d KL +nc'olcL'c)lI (19)

where scL,; is the lattice thermal conductivity of the
intercalant and aLC is that of the graphite in the in-
tercalation compound. This value for scL c is lower
than that of pristine graphite, since the thermal
conductivity of the graphite layers is reduced by the
lattice defects introduced by intercalation. In the
higher-temperature range (T& 50 K) where the lat-
tice thermal conductivity of the graphite layers,
even after intercalation, is much higher than that of
the intercalant, one may approximately write for a
stage-n compound,

KL =nC pKL C /I& (20)

Equations (19) and (20) imply that we neglect any
differentiation between bounding and interior gra-
phite layers when we consider phonon properties,
quite unlike what we did with the electronic proper-
ties (Sec. IVA). By assuming both types of gra-
phitic layers to have the same phonon mean free
path, we neglect phonon-electron scattering in con-
sidering phonon transport. This hypothesis is gen-
erally accepted in three-dimensional solids when the
number of free carriers is smaller than 10 per
atom. Furthermore, defect scattering is expected

where xD ——e~/T. These equations are applicable
when only two of the graphite in-plane phonon
modes carry the heat. This is the case for T »T„,
where T„ is the temperature corresponding to the
cutoff frequency of the out-of-plane graphite pho-
nons, which from the phonon dispersion relations
for pristine graphite is T„=25 K. For GIC's, the
density of low-frequency phonon modes is greatly
increased, thereby increasing the channel for low-

temperature thermal conduction by phonons.
In our analysis of aL for pristine graphite we

determined the parameters A,~, A, a, U, UD, and N
in Eqs. (9)—(11) so that Eqs. (8)—(19) would fit the
experimental values of aL measured on pristine
HOPG in the temperature range 40& T &300 K.
The Debye temperature was taken equal to 2500
K. The values of the parameters thus obtained
are given in Table I.

In our analysis of the lattice thermal conductivity
for intercalated graphite, we use the simplest possi-
ble phenomenological model through which we con-
sider the total lattice conductance per unit cell to be
equal to the sum of the conductances of the consti-
tuent graphite and intercalate layers of this unit cell
(see Fig. 4). The total lattice conductance for a
stage-n sample is then given by

to be the dominant scattering mechanism. This de-
fect mechanism is strongly suggested by the lattice-
fringing micrographs of Thomas et al. , implying
a random distribution of large-scale imperfections
throughout the crystal. Recent lattice-fringing mi-
crographs on well-staged graphite-SbC15 based on a
single-crystal host material, however, indicate that
samples can be prepared with large defect-free re-
gions (-100X2000 A ).

Using Eq. (20), the same calculation of ~L as that
for pristine graphite was made for the stage-5
potassium-intercalated graphite sample. In this cal-
culation, the pristine graphite values for the various
parameters were used with the exception of A,z and
A [see Eqs. (8) and (9)], which we treated as adjust-
able parameters, since they depend on the defect
structure of the graphite planes. The result of the
fit is given in Table I. From Table I we see that a
boundary scattering length of kz ——15.5&10 m is
obtained for pristine HOPG, which is to be com-
pared with a basal crystallite size of approximately
10 m. Thus in pristine HOPG the boundary
scattering length is 1 order of magnitude larger
than the size of the crystallites. This situation is
not unexpected since large differences were previ-
ously observed between boundary scattering lengths
estimated from thermal conductivity measurements
and crystallite sizes determined by other techniques
such as x rays. ' To estimate the effect of inter-
calation, we see from Table I that A,~ is reduced in
the stage-5 potassium GIC by a factor of -50.

0
Here we find a value of -3000 A for A,z, which is
again roughly an order of magnitude higher than
the distance between large-scale defects in these
compounds. Indeed Rousseaux et al. ' observed by
means of x-ray measurements for a stage-1 potassi-
um compound an in-plane correlation length W of

0
400+20 A, and also noted that W was not very
sensitive to staging. Thus we see that, if for both
the pristine HOPG and the intercalated potassium
compound A,s is 1 order of magnitude higher than
the corresponding in-plane correlation length W,
the ratio Aq/W is of the same order for both ma-
terials.

We also note from Table I that 3 =3.28& 10
sec for the stage-5 potassium GIC as compared to
0.583 &(10 sec for pristine graphite, indicating
that point defect scattering is more effective in the
intercalated sample than in pristine graphite; this is
consistent with the increase in the concentration of
point defects upon intercalation.

There is a much larger uncertainty with regard to
the electronic component for the FeC13 compounds
at high temperatures than that for the potassium
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compounds. However, since we have experimental
values for the total thermal conductivity for dif-
ferent stages, we may estimate qualitatively how
both lattice and electronic contributions should vary
with stage at a given temperature. To carry out this
analysis, let us assume again that the lattice thermal

I I I I

0 0. 1 02 03 0.4 0.5
1/Stage

FIG. 6. Estimated stage dependence of the room-
temperature (T=290 K) lattice thermal conductivity
(right-hand scale) of graphite-FeC13 intercalation com-
pounds obtained from the analysis given in the text. The
hexagonal points represent the experimental values for
the room-temperature in-plane thermal conductivity K.

The lower curve (left-hand scale) represents the stage
dependence of the electrical resistivity p obtained from
the electronic thermal conductivity K@=K—KL, using the
Wiedemann-Franz law (see text).

conductivity of the graphite layers, whether bound-
ing or interior layers, are the same.

The total thermal conductivity a at room tem-
perature is given by Eq. (1). Thus, if we know the
stage dependence of the electrical conductivity at
room temperature, we are able to deduce the lattice
contribution az from the experimental values of K,

if aE can be obtained from the measured stage
dependence of the electrical resistivity p using the
Wiedemann-Franz law. However, there is too much
scatter in the data available for the room-
temperature stage dependence of p to make an accu-
rate analysis in this way. Thus, to estimate the rela-
tive importance of ~E and ~L, we shall proceed in
another way as outlined below.

For dilute stages, the electrical resistivity in-
creases approximately linearly with stage index.
Thus, in the limit of infinite stage, KE tends to a
negligible small value, namely that for pristine gra-
phite with defects; in this limit, the measured ther-
mal conductivity is entirely due to the lattice contri-
bution. In this analysis, we assume a stage depen-
dence for aL given by Eq. (20) and a stage depen-
dence of aE determined from Eq. (7) and the
Wiedemann-Franz law. The magnitudes of vL c and

0~q are, respectively, determined to be 650
Wm 'K ' and (27+3)X10 Qm by fitting to
the measured values of a for the stage-2 and -6
FeC13 GIC samples. The results thus obtained for
the stage dependence of aL, and p (obtained from
az) are presented in Fig. 6. Also included in the
figure is a curve for the stage dependence of
sc=aL+~E, which is constrained to pass through
two points, as indicated above. The results obtained
in Fig. 6 for the stage dependence of p are con-
sistent with the direct room-temperature measure-
ments of p by Perrachon ef al.

We may also roughly estimate the relative impor-
tance of the lattice and electronic thermal conduc-

TABLE II. Parameters governing the temperature dependence of the electrical resistivity of
graphite-FeC13 intercalation compounds.

Stage of
sample

p.'
(10-' n m)

gb

{10 ' Qm)'
P290 K

(10 0 m)

a
{10 0 m K') RRR'

19.8
41.0

156.0

52.6
66.3

107.0

2 4.45 11.8
3 6.40 10.4
6 12.5 8.6

'p„ is determined from the low-temperature electronic thermal conductivity by applying the
Wiedemann-Franz law [see Eq. (3) and Fig. 3].
b is derived from Eq. (21) by assuming T =0 and p =p, .

'The p290 Q values are taken from the analysis in Fig. 6.
The a values are determined from Eq. (21) when p=p290 z and T =290 K.

'RRR is the residual resistivity ratio.
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z 2+b)1/2 (21)

which smoothly joins a temperature-independent re-

gion to a linear T regime. Values for a and b as
determined from the resistivity values at 2 and 290
K are also given in Table II. Applying the
Wiedemann-Franz relation, the temperature varia-
tion of the electronic contribution may then be
computed and subtracted from the measured ther-
mal conductivity to yield the lattice contribution.
Although Eq. (21) may be a poor representation of
the electrical resistivity, any error in it becomes a
small error in aL because ~E contributes no more
than 25%%uo of the total thermal conductivity near
room temperature for any of the samples that were
measured.

We may now estimate the importance of the lat-
tice defects introduced by FeC13 intercalation in a
similar way as we did for the stage-5 potassium
GIC. These preliminary results are given in Table
I. A more accurate analysis required a direct deter-
mination of the temperature dependence of the
resistivity on the same samples. The large magni-

0
tudes (-6000 A) of the large-scale defects in Table
I are consistent with recent lattice-fringing results
on a stage-2 graphite-SbC15 acceptor compound.
It is also seen from Table I that the boundary
scattering length in FeC13 GIC increases as the
stage increases, but this stage dependence is weak.
This is consistent with the observation (Fig. 1) that
the high-temperature flat maximum in the thermal
conductivity occurs at temperatures which increase
slightly with increasing stage. It also confirms that
defects introduced by intercalation do not exhibit
much stage dependence.

It may also be seen from Table I that point-defect
scattering, though less important in FeC13 corn-
pounds than in the potassium stage-5 compound, is
increased with respect to pristine graphite. The re-

sults also show that point defect scattering tends to
increase slightly with increasing stage.

tivities of the FeC13 compounds as a function of
temperature. However, since we do not know the
temperature variation of the electrical resistivity for
compounds of higher stage, we must assume that,
as for the stage-1 compound, all samples have a
linear temperature dependence of the electrical
resistivity above —50 K. From the room-
temperature values of p (denoted by p290x) and
from p„(Table II), we then compute the tempera-
ture variation of p for each stage by means of an ex-
pression

C. The e-axis thermal conductivity

The observed temperature dependence of the c-
axis thermal conductivity is more difficult to inter-
pret than the in-plane component, and this is so for
several reasons. The results obtained in-plane can
be extrapolated to the case of an ideal GIC single
crystal, provided proper allowance is made for the
quantitative differences in the scattering processes,
mainly due to domain boundary scattering. For
this reason the results for the temperature depen-
dence of the in-plane thermal conductivity are be-
lieved to be of fundamental interest. This extrapo-
lation is not so obvious for the case of the c-axis
thermal conductivity.

Because of the large anisotropy in the thermal
conductivity, one might while measuring the c-axis
component measure at the same time a contribution
from the in-plane component. This may occur for
two reasons: (1) The c axes of the crystallites are
not perfectly aligned but rather are oriented within
a cone of 0.2' in pristine HOPG (Ref. 45) and this
angle may be much larger for the intercalated ma-
terials. (2) If Daumas-Herold domains exist, then
graphitic layers which delineate these domains
might carry the heat in the c-a;.is direction follow-
ing a tortuous path.

A third reason that applies to the case of electri-
cal conductivity measurements is not present for the
thermal conductivity. In electrical conductivity
measurements along the c axis, the sample edges

may short-circuit the bulk when the proper precau-
tions are not taken to avoid bending of the graphite
planes around the edges. However, in thermal-
conductivity measurements, this problem does not
seem to arise. At low temperature, this mechanism
would give rise to a T' law in the c-axis thermal
conductivity, which is not observed. If we analyze
the curve for the c-axis thermal conductivity of the
GIC in Fig. 2 as it stands, the magnitude of the
thermal conductivity as well as the temperature
dependence are similar to those of a heavily dam-
aged dielectric.

To verify further that the electronic contribution
to a, is negligible, we compute the electronic
thermal conductivity from the electrical resistivity'
using the Wiedemann-Franz law. The results of
this calculation show that the electronic contribu-
tion is between 4 and 5 orders of magnitude smaller
than the measured thermal conductivity even at the
lowest temperatures measured. This, as well as the
behavior of the temperature dependence, indicates
that lattice conduction is dominant over the whole
temperature range, in contrast to the in-plane
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thermal conductivity. A rough calculation, using
approximate values for the specific heat and the
measured value for the velocity of sound ' in the c-
axis direction, shows that if we use the Debye rela-
tion [Eq. (2)], the room-temperature mean free path
of the phonons in the c-axis direction would be of
the order of 10 ' m. This is smaller than the in-

teratomic spacing and the dominant phonon wave-

length at this temperature. Thus we face the same
problem that was discussed in the case of the elec-
trical conductivity of GIC's in this direction. The
small mean free path for the phonons raises a fun-

damental question as to the nature of the thermal
conduction mechanism in this direction.

A quantitative model due to Kelly exists for the
c-axis thermal conductivity in graphite. It is,
however, not possible to carry over Kelly's argu-
ments directly to GIC's because the intercalate
layers are effective scatterers for out-of-plane gra-
phite phonons, which are expected to dominante c-
axis thermal conductivity. Furthermore, in GIC's
there is a much higher density of out-of-plane low-

frequency phonon modes, and these modes have
very low dispersion along k, .

V. CONCLUSIONS

In the present work we have analyzed the tern-

perature and stage dependence of the in-plane ther-
mal conductivity of acceptor graphite-FeCli inter-
calation compounds. The temperature variation of
the in-plane thermal conductivity of a donor
graphite-K compound has also been analyzed, while
preliminary results on the c-axis conductivity of a
donor and an acceptor compound have been dis-
cussed.

The temperature dependence of the in-plane ther-
mal conductivity of all samples measured so far
confirms the trend inferred from preliminary inves-

tigations: an increase in the electronic thermal
conductivity of the graphite bounding layers in
GIC's relative to pristine graphite and a decrease in
the lattice thermal conductivity. The result is a
thermal conductivity that for good samples is en-

tirely electronic in the liquid-helium range and a
mixture of lattice and electronic contributions at
higher temperatures. We have also previously dis-
cussed the possible use of the electronic and lattice
thermal conductivities as two independent tools to
study the effect of intercalation on electron and
phonon scattering processes. The present work
shows that this can be done. In particular, it is
shown that the electronic thermal-conductivity con-
tribution. at low temperatures provides a powerful

and independent tool for measuring the low-

temperature in-plane electrical conductivity.
Analysis of the present measurements shows that it
is the variation in carrier density that most sensi-
tively determines the stage dependence of the elec-
trical conductivity of these compounds.

The results show that below room temperature
the main scattering mechanism for phonons in the
intercalated material is large-scale defects. The
same situation occurs in pristine HOPG for tem-
peratures below the dielectric maximum, where it is
the size of the crystallites that determines the pho-
non mean free path. We have shown that the boun-
dary length is about an order of magnitude larger
than the crystallite size as was also previously ob-
served. This boundary scattering length is also an
order of magnitude higher in the stage-5 potassium
compound than the in-plane correlation length ob-
served on a stage-1 potassium compound. On the
other hand, recent direct lattice-fringing results in
single-crystal graphite-SbC15 indicated defect-free

0

regions larger than 2000 A. It seems, however,
difficult to come to definitive conclusions, since we
are not comparing results of measurements per-
formed on the same samples. Indeed, an interesting
problem remaining to be solved is that of phonon-
boundary scattering in two-dimensional solids.
Parallel thermal-conductivity and electron micros-
copy or x-ray studies on the same intercalated ma-
terial based on the same starting pristine HOPG
material would be most useful to determine the rela-
tion between A,q and W.

Although electron scattering at low temperatures
and phonon scattering below the dielectric max-
imum are not necessarily sensitive to the sane static
defects, the result of the analysis of the stage depen-
dence of the low-temperature electronic thermal
conductivity and that of the lattice thermal conduc-
tivity indicate that lattice defects are not strongly
dependent on stage for n &2. It should also be
mentioned that the effect of the intercalant layer
may be observed in a temperature range where the
measured thermal conductivity is small.

The magnitude and temperature dependence of
the c-axis thermal conductivity of GIC preclude
any electronic contribution in this direction. Thus
it is suggested that the phonons carry all the heat in
the case of c-axis conduction. However, if analyzed
in terms of the Debye theory, these phonons would
have anomalously small mean free paths (less than a
layer spacing) thus raising a fundamental question
concerning the transport of heat in this direction.
The present results, however, suggest an intrinsic
conduction mechanism in the c direction since the
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temperature dependence for ~, is quite different
from that for x„nevertheless, the mechanism of
basal plane short-circuiting by defects must also be
considered. It is interesting to note also that at low
temperatures we are in a unique situation where in
the same sample the heat is carried by electrons in

one direction and by phonons in the other direction.
Finally, the anisotropy of the thermal conductivity
is much smaller than that of the electrical conduc-
tivity and this explains a posteriori why it is possible
to perform four-probe in-plane thermal conductivi-

ty measurements but not electrical resistivity mea-
surements in acceptor GIC's.

The present analysis strongly suggests that the
study of thermal-conduction phenomena in GIC's
provides new insights into transport in two-
dimensional systems generally.
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