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Construction of amorphous structures
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Conditions for modeling amorphous structures from first principles are minimization of
the free energy and a certain degree of continuity with the liquid state. We achieve the
minimization of the total energy due to pair potentials or pseudopotentials by a variational

method and the use of a seed structure as boundary condition. The seed structure, which

has to be selected from several possible structures according to the shape of the pseudopo-
tential is more or less propagated by these so-constructed structures. A rather flat pseudo-

potential is required for a bcc solution, while a sharper one results in an amorphous struc-
ture which extends the icosahedron structure. Planar cuts, the pair-distribution function,

packing efficiency, energy, and coordination number are derived for this fairly stable com-

plex structure. Numerous excited states of low energy are shown to occur because of inho-

mogeneities and defects such as vacancies.

INTRODUCTION

For the last thirty years the number and variety of
the observed amorphous or glassy systems have in-
creased so much that now one can speak of a fourth
state of matter as already introduced by Gibbs and
DiMarzio. ' Because of the improvement of the
cooling techniques, amorphous systems are observed
even in the cases of simple metal atoms interacting
via simple pseudopotentials. The definition of an
amorphous structure which can generate numerous
low-energy excited states, ' and thus introduces
nearly continuously the liquid state, implies several
conditions. Even when one neglects the dynamic
conditions the amorphous structure is submitted to
two conditions. First, because it is a metastable
structure, i.e., physically stable, at 0 K it must mini-
mize the free energy F=E —TS and, therefore, the
total energy E. Second, it must have a large number
of low-lying excited states iri order to have a large
entropy and to give rise to a minimum of free ener-

gy at a finite temperature. The previous studies of
amorphous structures have emphasized one of these
two features. Dense random packing (DRP) em-
phasizes the energy minimization by means of
geometrical remarks with hard spheres and later
with soft spheres. On the other hand, Monte
Carlo techniques used in molecular dynamics en-
abled several authors to obtain liquid structures and

then to freeze them. In their case one may not be
sure of the complete relaxation, and the structure is
quite complex, while in the case of DRP the choice
of the initial structure is rather arbitrary and the
number of the low-lying excited states is not very
well known. In this paper we use a systematic
method to obtain metastable states at 0 K and deter-
mine a solution which satisfies a stable cluster nu-
cleation. Some excited states of this solution are
studied and the evidence for a great number of low-

energy excited states is given. The large number of
these states is due to the abundance of large holes in
the structure in spite of its density and this is quite
in accordance with the free-volume theory.

Section I deals with the principles of the calcula-
tion while results are given in Sec. II. In Sec. III we
study some excited states and make some concluding
remarks.

I. PRINCIPLES OF CALCULATION

A. Total-energy minimization

In terms of the local density n(x) and of the pair
potential or pseudopotential V( x) the total energy E
reads

E=
z g V(xj —x;)n(x;)n(xj),
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where the x; belong to a simple-cubic lattice of lat-
tice parameter arbitrarily small.

One can use a continuum representation of the
atomic density n(x) and then make infinitesimal
variations of n. Or, one can express the Hamiltoni-
an in a local form on n ( x) and its derivatives while
keeping the discrete character of x. Then one can
admit infinitesimal Dirac-function-like variations of
the density for this generalized Landau-Ginzburg
Hamiltonian. In both cases the result of the varia-
tional method is the equation

n(k) V(k) =0 (2)

in the reciprocal space. This equation neglects the
boundary conditions which give other contributions.
Its general solution reads

n(x)= QC~exp(ikj x),
J

(3)

where the constants CJ are defined for the nodes kj
of the Fourier transform V(k) of the pair potential
V(x).

One can notice the continuity of the solution ob-
tained for the density. As it is classical when going
from discrete to continuous problems, ' one will

take the location x,„of the maxima of n ( x ) to
make the discrete density N ( x ) of the network:

N(x)= g 5(x —xm, „) .
max I

(4)

Because of the variational method used here, N(x)
which is not very different from n(x) will still give
rise to an extremum value of E the total energy.

B. Boundary condition on a cluster

The boundary condition is expected to determine
which among the C~ and kz's of Eq. (3) are the com-

patible ones. In the case of a radial potential such as

the LJ one used here, there is a complete angular in-

determinacy for the kj, and the restriction to a few

parameters will be quite convenient for the sake of
simplicity. We choose to express the boundary con-
ditions on a small stable cluster because in the pic-
ture of the nearly continuous glassy transition, ' a
series of stable or metastable configurations is ex-

pected to occur from the first nucleation step to the

amorphous "ground state": the amorphous phylum.
Equation (3) defines at the same time a series of con-
figurations of different sizes, so this choice of boun-

dary condition ensures a clear link between the first
step of nucleation and the last ones of the amor-

phous structure.
Now the choice of a small stable cluster is easily

reduced to a choice among a few ones because of the

size and stability conditions. Namely, the simplest
clusters are the nine-atom cluster "BCC," which is
the unit cell of the bcc lattice, and four 13-atom
clusters, which correspond to the fcc unit cell

(FCC), one hexagonal cell (H), and two pentagonal
structures: one with a planar symmetry (P) and the
other one with a central symmetry (I). Among the
13-atom cluster Frank" demonstrated that if some
relaxation is allowed, i.e., if the pair potential is not

too sharp, the icosahedral structure I is the stable
one because it is the more isotropic one and a central
contraction can be used to improve the coordination
of all the peripheral atoms at the same time. The
central coordination number N, is 12 while N, for
the peripheral atoms is 5. If the pair potential is

sharper, fcc and hexagonal clusters are more stable.
Now in the bcc structure, the coordination number
is 14 if the pair potential is rather flat and allows a
13% central contraction. After the eight or six first
neighbors located at a distance av 3/2 of one typi-
cal atom, there are six or eight next-nearest atoms
located at a distance a, which is the bcc lattice
parameter, so a smoother potential gives rise prefer-
ably to a bcc structure with a lattice spacing larger

by a few percent than the optimal interatomic dis-

tance deduced from the potential minimum. In oth-
er words, there are three types of solidification of
the materials which have a purely radial pseudopo-
tential: If the potential well is soft, they crystallize
with the bcc structure; if it is sharper, they produce
stable pentagonal clusters; if it is very sharp, they
crystallize in the fcc or hexagonal structures. Such
a remark is well in accordance with the observa-

tions. ' As has been already noticed by Alexander
and MacTague, ' the high-temperature crystal struc-
tures of all the metallic elements on the left-hand
side of the Periodic Table (groups IA, IIA,
IIIB—VIB), with the exception of Mg together with

almost all the lanthanides and actinides, are known

to be bcc near the melting line at low pressure.
Most, however, transform to other structures at low

temperature. Altogether there are at least 40 ele-

ments with bcc as their high-temperature phase.
There are also indications that monocrystalline

solids, presumably representing the situation when

crystal nucleation was inhibited, tend to have
icosahedral local structure. ' There is a close agree-
ment with the previous prediction because metallic
elements with a few external electrons are expected
to have a radial smooth pseudopotential and that the
pseudopotential is softened at high temperature be-

cause of the thermal dilation.
Here we want to study the typical amorphous

structure so we choose the icosahedron I for defin-

ing the boundary condition. We use a Lennard-
Jones (L-J) potential,
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' —12

V(x)=
a

' —6
X—2
a

with a for atomic unit length a.u., which allows
some relaxation to occur. In order to define the per-
tinent kj we made a Fourier transform of the densi-
ty of I and classified its maximum values. To each
node of the transform of L-J potential corresponds a
sphere in the three-dimensional reciprocal space.
On the first and on the second sphere (ki =2m/a.
and k2-4ir/a ), one finds twice twelve peaks of the
Fourier transform of I, which are, of course, dual of
the twelve summits of I. Because of convenience it
appears more useful to introduce in Eq. (3) the peaks
of the second sphere (k =13.85) than the first one.
But the practical result of the construction does not
depend on this choice. When selecting only twelve

kj we select one special order of interference. Be-
cause of the symmetry of the icosahedron I all CJ
have the same modulus and a good choice is to take
them all equal to 1, so the density given by Eq. (3)
reduces to a sum of twelve exponential terms, i.e.,
because of the central symmetry to a sum of six
cosine terms. Each of these cosine terms has a max-
imum value 1 reached for a series of regularly
spaced parallel planes. The maximum values of this
equation will define a simple-cubic lattice in a six-
dimensional space.

C. Operating rules

As already said, we take the maximum value of
n( x) in order to define a discrete network, i.e., it de-
fines a projection from a six-dimensional simple-
cubic lattice into a three-dimensional amorphous
structure. This involves the loss of some of the
maxima. The convenient rule used in our numerical
calculations if two locations of maxima of n are
closer than d =0.9a is to take into account only the
one with the highest value of n. The list of sites
starts at the origin and then on spherical shells of in-
creasing radii. So we built a 1681-atom cluster com-
puted on the IRIS 80 of CII Honeywell Bull at
Universite Paris VII. This 1681-atom cluster A de-
fines a part of an amorphous structure. A contains
663 peripheral atoms and so it is convenient to de-
fine a central cluster C of 1018 atoms which is the
internal part of A.

Thus too closed a contact is avoided, but holes
may appear because of the selection. Such holes
were sought in a systematic way. There are 12 holes
0.96a in diameter at a distance 1.96a from the origin
and 20 at a distance 3.26a from the origin. One can
define a completed cluster CC of 1050 atoms and a
completed amorphous cluster CA of 1713 atoms.

The practical interest of these structures lies in
their stability which can be checked from relaxation

processes such as used hereafter. In these relaxation
studies, at each step the forces F;= dE—/r)r; are
calculated on each site, then all sites are moved by
the respective displacements 5; =A,F; and the energy
E is computed for this configuration. After a
smooth decrease of the energy E during the first
steps of relaxation, E becomes constant, i.e., we
reached a rather correct metastable state with rela-
tive fluctuations of about 10

One can notice that this relaxation process does
not break the symmetry of the initial state, and thus
the convergence is quite rapid. We define two kinds
of relaxation according to different boundary condi-
tions, i.e., different external hydrostatic pressures.
In the cluster relaxation all atoms relax; we speak of
a relaxed configuration X' obtained from an initial
one X. In the amorphous relaxation, the peripheral
atoms remain blocked and the others relax, we speak
of a relaxed configuration X". The interest of these
small perturbations of the initial configuration and
of their shifts after a relaxation process is an accu-
rate determination of the actual amorphous ground
state. As a matter of fact, during the relaxation pro-
cess we admit a strong screening effect realistic in
metallic alloys by cutting off the L-J interaction
after a distance 1.3.

II. RESULTS

A. Planar cuts

Different planar cuts regularly spaced and per-
pendicular to a given direction, here pentagonal axis
Oz of the 13-atom cluster, are given. Each atom or
element has been taken as a sphere of diameter D
(=0.96 a.u. ) because in the 13-atom cluster I there is
a central contraction and the shortest distance be-
tween atoms is 0.96a." These small spheres do not
overlap. The choice of the plane direction brings
out the extension of the pentagonal structure. These
planes have the equations z =h, with the respective

FIG. 1. Planar cut of the 1681-atom cluster A at h =0.
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FIG. 2. Planar cut of the 1681-atom cluster A at
h =0.25D.

FIG. 4. Planar cut of A at h =0.75D =0.72 a.u.

values: Fig. 1, h=0; Fig. 2, h=D/4; Fig. 3,
h =D/2; Fig. 4, h =3D/4. These figures show the
cluster A. One has to point out that similar clusters
of about 500 atoms have been calculated with a
center far from the origin, i.e., (10,10,10) or
(20,20,20). One sees the propagation of the fivefold
symmetry without that of a translational periodicity.
When one tries to define some packing units for the
network, one may distinguish icosahedra I and 43-
atom clusters M which are shown in Fig. 5. In the
surroundings of this cluster M there are many other
M's which are imbricated together and thus incom-
plete, as can be shown in the central cut reported in
Fig. 1.

The relaxation process tends towards a better bal-
ance of forces, i.e., a reduction of the inhomo-
geneities. This is shown in the planar cuts of CA',
the completed amorphous cluster after amorphous
relaxation given in Figs. 6—9. These cuts are along
the z =h plane at different levels h as in Figs. 1—4.
One can notice that the general features of the initial
configuration A, such as the fivefold symmetry,

remain conserved. It is a proof of the stability of
this configuration and of the fivefold symmetry as
recently observed in simulated liquids. ' We did not
reproduce all the data on these different perturba-
tions of the initial configuration A, but we want to
point out two main features of the relaxation pro-
cess. As a consequence of the relaxation process

FIG. 3. Planar cut of the 1681-atom cluster A at
A =0.5D.

FIG. 5. Stacking sequence of the 43-atom cluster ac-

cording Oz axis. Hatched atoms belong to the internal

13-atom icosahedron.
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FIG. 6. Planar cut of the relaxed completed amor-

phous cluster CA' of 1713 atoms with h =0.
FIG. 8. Planar cut of CA' with h =0.75D =0.72 a.u.

there is a general dilation of the configuration, espe-
cially for the cluster relaxation when large holes
have been filled, i.e., CA'. And the configurations A

and A" are the closer ones, i.e., 3 is nearly insensi-
tive to an amorphous relaxation. In other words, A

is stable.
One can notice different kinds of inhomogeneities.

First of all, at the global level of blocks of about 50
atoms there are packing units rather well defined,
which are joined by interfaces more badly defined.
I'his is due to the impossibility of building a regular
set with fivefold symmetry as is well known. '

Moreover, such a superstructure of inhomogeneities
has been observed in the results of Egami and co-
workers on relaxed frozen liquid structures. On the
local point of view there is an inhomogeneity of the
coordination number N, . By setting the minimal
coordination distance at 1.3 we obtain for CA and

CA" the following results: 80% of the 1000 inner

atoms have eleven nearest neighbors while about
10%%uo have twelve or ten nearest neighbors. A few

inner atoms have nine nearest neighbors. The high
level of binding in this structure and the absence of
bcc clusters may be noticed.

B. PDF and RDF

The pair-distribution function (PDF) and radial-
distribution function (RDF) of the computed models
are displayed as histograms with a 0.01-a.u. pitch.
The results with the cluster C of 1018 atoms without
relaxation, extracted from the cluster A of 1681
atoms, are plotted on Fig. 10 for the PDF and Fig.
11 for the RDF. The first peak on these figures lies
at a distance 0.96 a.u. This justifies the extensive

o oQ

o

FIG. 7. Planar cut of CA' with h =0.25D =0.24 a.u. FIG. 9. Planar cut of CA' with h =0.5D =0.48 a.u.
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FIG. 10. Pair-distribution function (PDF) as a function of distance in atomic units for the 1018-atom cluster C.

use of this value for the contracted diameter, espe-
cially when comparing with the hard-sphere prob-
lem and in the planar cuts. The other peaks of the
PDF occur at 1.4 a.u. with two distinct peaks at
1.40, 1.43, 1.64, and 1.90 a.u. , which is distinct from

1.93, 2.16, 2.30, and 2.32 a.u. These peaks are rath-

er sharp but their positions are typical of amorphous
structures.

On the PDF curve given in Fig. 10, the two peaks

near 1 a.u. at 0.96 and 1.02 are characteristic of the
icosahedral structure with a central contraction and
an external dilation. The distances 1.64 and 1.90 or

1.92 a.u. are the other characteristics of the
icosahedron. The peak which appears at 1.40 a.u. is
characteristic of the internal structure of the 43-
atom cluster shown in Fig. 5. The same distance
separates the atoms of the internal icosahedron from
those of the external crown of 30 atoms. Thus the
intensity of this peak at 1.4 is rather weak compared
with the intensity of such a peak for a fcc structure

where this distance stands between next-nearest

neighbors. Thus this amorphous structure is very

different from the fcc one. Other peaks of the 43-

atom cluster shown in Fig. 5 are located at 2.30,

z
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FIG. 11. Radial-distribution function (RDF) as a function of distance in atomic units, for the 1018-atom cluster C.
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FIG; 12. PDF of the central part of the relaxed amorphous cluster A" in atomic units.

2.32, 2.51, 2.65, 2.84, 3.11, and 3.27 a.u. All these
peaks appear in Fig. 10. This confirms that these
43-atom clusters are amorphous. The PDF and
RDF of the amorphous cluster A' are shown in Figs.
12 and 13. One can see a weak broadening of the
lines because of randomization and a general shift of
the peaks towards higher distances because of the
expected dilation. As a matter of fact, the experi-

mental results, such as those quotes by Cargill for
instance, show a stronger broadening. And the usu-
al theoretical results show stronger broadening than
in the experimental situation. However, here we are
speaking of a cluster of N atoms, so there can be
only N distances between pairs of atoms, while in
numerous theoretical results the size of the cluster
was increased by a large number of refiections on

0
I

X

LL.

80
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20

R r"j
FIG. 13. RDF of the central part of the relaxed amorphous cluster A" in atomic units.
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event, it is a proof for the existence of such long-
range networks.

When filling the holes with extra atoms, new in-
teratomic distances appear as shown in Fig. 14
where the PDF of the completed cluster CC is
shown. This gives rise to a number of extra small
peaks in this figure. After a cluster relaxation one
obtains CA', the PDF of which is plotted down in
Fig. 15. Here both the dilation and the stability of
the main features are obvious.

V=(m /3)[2r +2ro+d 3d(a —ro)], — (6)

C. Density

Density is a main feature of structural models.
Although this model does not deal with hard
spheres, it is interesting to calculate the packing effi-
ciency of the hard-sphere model with which it can
be associated. Because of the previous remarks on
the peaks on the PDF, we choose hard spheres with
a diameter of 0.96 a.u. while considerations based
upon the potential minimum give a diameter of 1

a.u. , which will give a density value higher by about
12%%uo. The packing efficiency is calculated accord-
ing to the method used by Mason' and by Adams
and Matheson for spheres S(R) centered at the
origin as a function of their radius R. First the
atoms lying completely in S(R) are counted. Then
for all the atoms cut by S(R), the volume of the
atom inside S(R) is computed. The volume com-
mon to two spheres of radii r and ro with a distance
d between the centers is

where

a=(r +d ro—)/2d
and

r&ro.
The density calculated for the initial cluster A of
1681 atoms is plotted in Fig. 16. After some classi-
cal Friedel-type oscillations of decreasing amplitude,
there is a maximum of density of 0.614 for a radius
of 4.93 a.u. , then a slight decrease to 0.59 for 6 a.u.
When one takes into account the amorphous relaxa-
tion, there is a slight change of the density curve but
only for radii smaller than 2 a.u. In the case of a
cluster relaxation, i.e., with free boundaries, there is
a small decrease of the density as shown in Fig. 16.
This decrease corresponds to the dilation already
shown. These results are close to those obtained for
hard spheres by Scott and IQlgour, ' Matheson,
and Ichikawa. ' They are about 5% lower than the
admitted limit for a hard-sphere packing: 0.64. We
are dealing with a soft-sphere model, so it is quite
reasonable to admit a diameter unity for ro instead
of the used 0.96 a.u. and to introduce the interstitial
atoms. Then, as shown in Fig. 17, the density
reaches a value of 0.722 for a radius of 4.90 a.u. and
decreases to a value of 0.68 for a radius 6 a.u. This
packing efficiency is quite close to that obtained by
Egami et al. ,

' 0.73 using soft spheres and smaller
interstices. In other words, this model, easily tract-
able because of its analyticity, consistent with the as-
sumption of local order, is practically as efficient for
the density as the best random models now avail-
able.

1.N

(~ .1 ]
FIG. 16. Atomic density D(R) as a function of the distance R from the origin for spheres S(R) centered on the origin,

with hard-sphere diameter 0.96 a.u. The solid line is the plot of the density of the 1681-atom cluster A while by the dashed
line one considers the fully relaxed 1013-atom cluster C'.
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1.00

0.72

R[- ']
FIG. 17. Atomic density D(R) for spheres S(R) centered at the origin, with hard-sphere diameter 1 a.u. The solid line

shows the density of the relaxed completed amorphous cluster CA' while clusters A and C' are shown by the long- and
short-dashed line, respectively. One notes the uniformity of the solid curve, which is due to the filling of holes near R =2
and 3 a.u. The crystalline value of D is 0.74.

D. Interaction energy

This model has been defined theoretically by a
minimization of the total energy in order to obtain
stable and metastable configurations. As has been
shown in the previous sections dealing with the re-
laxation process, one obtains from the theoretical
considerations quite metastable configurations
which are relaxed after a few cycles with small
changes only. Of course, it is of interest to consider
the actual value of the total energy of interaction. It
has been shown that in the last steps of relaxation
the total energy fluctuates with an amplitude of
tenths of an energy unit, where the energy unit (e.u. )

is the binding energy of two atoms interacting via
the Lennard-Jones potential when placed at the po-
tential minimum, i.e., distant from 1 a.u. Thus the
fluctuation operates on only 0.1 bond for the total
cluster, i.e., 10 bond for each atom.

In order to avoid the boundary effect when
measuring the total energy, we consider a central
cluster, the centers of which are located in a sphere
centered at the origin and of radius 6 a.u. Thus
such centers have their full number of neighbors.
Here we screened the Lennard-Jones potential total-
ly at a distance of 1.5 a.u. The alternative of the to-
tal energy when changing this cutoff values from 1.5
to 1.3 a.u. is of about 10% in relative values. For
the 1018 central centers taken into A", the total en-

ergy is —11296 e.u. which gives a mean energy per
atom of —11.2 e.u. For the 1050 central centers

taken into the completed CA', the total energy is
11 165 e.u. , with a mean energy per atom of —10.65
e.u. The occupancy of interstitial sites by the same
atoms does not modify strongly the mean energy.
Of course, one can expect that with smaller atoms
this occupancy will be more favorable, even for
smaller interstices. Different potentials have been
used by workers working on these sphere packings,
so the comparisons are not so easy. Thus the value
of 11 e.u. is a mean bonding energy per atom, which
means there is an average number of eleven neigh-
bors per atom. It confirms the value 11 for the
coordination number N, . As for the other features,
the result is consistent with a dense nonuniform
packing, and this complex structure looks like a ran-
dom one.

CONCLUDING REMARKS

From the interaction given by a pair potential,
and by means of a variational method, with refer-
ence to an initial 13-atom cluster we built a meta-
stable structure. This structure follows the symme-
try of the seed structure which has been chosen to be
the icosahedron in conformity with the deductions
of stability for the small cluster. " As a matter of
fact, this structure propagates the seed structure
with the necessary transition regions. Moreover, the
imbrication of amorphous units which are icosahe-
dra and systems of 43 atoms is well proved and oc-
curs in a rather complex manner which seems to
have been unattainable from simple considerations.
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In order to study the stability of this amorphous
structure we have considered several other structures
which can be derived from the same one or by ad-
junction of some vacancies or by a relaxation pro-
cess due to external forces. In other words, we have
studied several accessible excited states, and it has
been proved that their energies lie in a narrow range,
exactly within a relative fluctuation of 5% of the
binding energy of the cluster. Thus one deals with
low-lying excited states as expected for an amor-
phous structure. ' Practically amorphous struc-
tures of isotropic atoms are obtained from a rapid
cooling of the liquid state; the amorphous structure
keeps a memory of this high-temperature state be-
cause of the nonequilibrium process. From a freez-
ing temperature Tf, one can define a Boltzmann
factor exp( —U/iVkTf) for an excited state of X
atoms of excitation energy U. Thus the occurrence
of such excited structures in a large sample is quite
probable. This explains the extra modulation of the
experimental PDF and RDF. Finally, before a
study of the excited states of this amorphous struc-
ture can be complete, one must notice the evidence
for other low-energy excited electronic states. As a

matter of fact, this amorphous structure is fairly
nonuniform; hence crystalline fields cannot be ex-
pected to be uniform, and locally excited electronic
states occur. This is an explanation for the well-
known local fluctuations of anisotropy in magnetic
amorphous materials. Quite obviously the oc-
currence of many low-energy excited states is due to
the inhomogeneities which include vacancies, i.e., to
a free-volume effect as in the free-volume theory of
the glassy state. Finally the amorphous structure
described here and its excited state define a "phy-
lum" to the liquid state when the effective pseudo-
potential is radial and displays a well neither too
sharp nor too flat.
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