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Bonding and equation of state for MgO
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The bonding charge density in MgQ is analyzed by the fitting of Slater-orbital expressions

to the muffin-tin charge density derived in a self-consistent electronic-structure calculation.
The ion densities that result suggest that a fully ionic bonding model is appropriate. Pair
potentials, derived with the use of the Gordon-Kim method, are employed in the quasi-

harmonic approximation to calculate an equation of state and other properties of MgO.
The results are analyzed in the light of previous similar calculations for alkali halides.

I. INTRODUCTION

The number of electrons transferred from one
atom to another in forming a bond is a measure of
the ionicity of the bond. Theoretical approaches
which do not account for the change in crystal
charge density as a function of ion displacement
lead to ambiguities in the definition of this quantity.
However, it has been shown that if the displacement
of the ions is considered, a unique construction of a
pseudoatom (ion) charge density exists. ' Thus, in
principle, a unique definition of ionicity can be
achieved by merely integrating the pseudoion densi-
ties to determine how much charge is transferred
from one atom to the other. In practice this would
require a knowledge of the charge density of the sys-
tem to first order in the displacements of the nuclei:
this, of course, is not easily achieved. Nevertheless,
it is important to understand that ionicity acquires a
precise meaning in the framework of pseudoatom
theory.

Recently Muhlhausen and Gordon obtained quite
accurate results for static properties of a large num-
ber of ionically bonded materials, including oxides,
from calculations based on density-functional theory
together with the assumption of full ionicity. In
these calculations spherically symmetric charge den-
sities for the iona in the crystalline environment
were derived using a technique similar to that of
Watson. The quality of their results suggest that
these fully ionic densities constitute reasonably accu-
rate approximations to the true pseudoion densities.
This conclusion is further supported by the work of
Redinger and Schwarz, who find a favorable corn-
parison of overlapped Watson densities with the
crystal density obtained from augmented-plane-wave
(APW) calculations.

In this paper (Sec. II) a method for approximating
the pseudoion charge densities for Mg0 is employed

which, in principle, should be more accurate than
the Watson sphere model. The pseudoion charge
density is expressed in terms of Slater orbitals (SO)
with the SO parameters derived by fitting to a
"known" crystal charge density. (For this work the
self-consistent muffin-tin charge density of laein
et al. is used. ) Ideally, the SO parameters should
be determined by fitting the overlapped SO density
to the known density everywhere in the unit cell.
However, for MgO, satisfactory results were ob-
tained by simply fitting the charge density of a sin-

gle ion to the density inside its muffin tin.
The premise, which seems to be borne out by the

results, is that by fitting realistic expressions (e.g.,
SO's) to the charge density inside the muffin tins,
reliable estimates of the tails of these functions are
extracted as well. The accuracy of the SO represen-
tation is demonstrated by the fit to the 02s density:
Only four SO terms are required to obtain four-
place accuracy. When the charge densities of the
resultant pseudoions are integrated to infinity their
net charges turn out to be very near the fully ionic
values.

Similarly derived pseudoion charge densities, with
net charges constrained to be exactly the fully ionic
values, are used (Sec. III) to calculate the equation of
state. The method employed in the equation-of-state
calculations follows that used previously in similar
calculations for the alkali halides. The essential
difference is that the charge density of the alkali-
halide crystal was taken to be the sum of free-ion
densities, while the present results for Mg0 are
based on an electronic-structure calculation for the
solid, a refinement which is absolutely necessary for
oxides since the free 0 ion is unstable. The
charge densities are used to calculate pair potentials
using the Gordon-Kim method. The pair poten-
tials are then used in the quasiharmonic approxima-
tion to calculate the equation of state. Theoretical
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results for elastic constants, phonon frequencies,
thermal expansion, and melting temperature are
compared with experimental data.

is chosen to represent this spherically symmetric
density. In Eq. (1) r is the distance from the nu-
cleus, a; and P; are parameters to be determined by
fitting to the known density in the appropriate muf-
fin tin, and the n; are integers (0 or 1 in our case).
The fit is more easily obtained by working with the
square root of Eq. (1). Specifically, the parameters
a; and p; are selected to give the least-squared devi-
ation of

n. prS=g Pp(r~) —ga;rz'e
J l

(2)

II. CHARGE DENSITY

%e want to approximate the pseudoion charge
densities for magnesium and oxygen in MgO from
the total charge density obtained in a self-consistent
band-structure calculation in the muffin-tin approxi-
mation. The energy levels of MgO form six
separate filled bands corresponding to 1s, 2s, and 2p
levels of Mg and 0. The charge density of a Mg (0)
band is assumed to be a sum of spherically sym-
metric densities located on the Mg (0) sites. For
each band, an expression of the form

2

p(r)= ga;r 'e

where ~Pp ~

is the square root of the known charge
density (pp) and the r~ are selected points in the
muffin-tin sphere. The wave function of a 2s state
has one node at a value of r which depends on its en-

ergy within the band. However, the nodes for dif-
ferent states within a band are near enough together
they pose no real difficulty in fitting the total charge
density of the band to a single orbital; the sign
change in Pp being selected to coincide with the
minimum in pp(r). This question does not arise for
the 1s and 2p states since they have no nodes.

The charge density of the deep (low-energy)
"bands" is, of course, localized almost entirely
within the muffin-tin spheres. For these levels,

Mg 1s, Mg 2s, Mg 2p, and O 1s, the exponential
parameters (p;) were taken from the tables of
Clementi and Roctti. ' For the 02s and O2p levels
the p's as well as the a's were varied to give the best
fit to the densities. Optimum values obtained for
these parameters are listed in Table I. Following the
notation in Ref. 10 the coefficients, C;, are related to
o,'; by

p
)2(n;+3/2)

4n. [2(n;+1)]!

where Zf ——2 (6) for s (p) states. The parameters in
the first six columns of Table I were obtained by
minimizing S with the added constraint, imposed
by the Lagrange multiplier technique, that the in-
tegrated charge,

TABLE I. Slater-orbital parameters for the various energy levels in Mg0 obtained by fitting to the muffin-tin charge
density.

Mg 1s' Mg 2s' Mg 2p' 0 1s' 02s 02p 02sb 02@'

17.0027
11.4473
10.7043
4.97455
3.30779

17.0027
11.4473
10.7043
4.97455
3.30779

12.5886
6.0S091
3.40S 54
2A46 51

13.8996
7.681 81
6.47042
3.14295
1.88606

16.0207
6.395 15
2.853 88
1.409 17

7.74442
3.249 18
1.21246

16.0207
6.395 15
2.853 88
1.409 17

7.74442
3.249 18
1.21246

0.13161
0.805 70
0.09220

—0.028 90
0.02127

—0.01893
—0.231 26
—0.095 54

0.41067
0.69140

0.010 15
0.30928
0.461 68
0.292 95

0.05294
0.88609
0.10806

—0.091 61
0.093 42

—0.00437
—0.27302

0.621 75
0.506 15

0.01548
0.39089
0.721 99

—0.00440
—0.27291

0.62043
0.509 31

0.015 83
0.388 50
0.729 59

'P's obtained from Ref. 10.
"Unconstrained total charge (Z=2.01).
'Unconstrained total charge (Z= 6.06).
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Z=4w r pr r, (4) TABLE II. Four-term Slater-orbital fit to the 02s
muffin-tin charge density (P'=p).

equal Zf exactly. As expected, for the localized
states, Z and Zf are nearly equal without the con-
straint. Somewhat surprisingly Z and Zf were
found to be about equal for the 02s and 02p states
as well. The proximity of Z to Zf (Z=2.01 for 02s
and Z=6.06 for 02p) suggests that the bonding is
fully ionic. The last two columns (Table I) give the
SO parameters obtained with no constraint on Z.
The values for P; obtained in the unconstrained Z fit
were then held fixed in the Z =Zf fit.

The quality of the fit for the 02s density is
shown in Table II. We see that four-place accuracy
is attained with only four terms in Eq. (1). A simi-
lar quality fit was obtained for the 02p density us-
ing three SO terms, the parameters for which are
listed in the last column of Table I. The fact that
highly accurate fits, with reasonable values for Z,
are obtained with only a few parameters give some
measure of confidence in the tails of these functions.

III. EQUATION OF STATE

The approximations used in the present calcula-
tions of the equation of state for MgO are discussed
in Ref. 8 and briefiy outlined below. First of all, it
is assumed that the electrons stay in their ground
state as the nuclei move (adiabatic approximation).
Notwithstanding the higher temperatures considered
here (-3000 K or 0.25 eV) this approximation is ex-
pected to remain valid for MgO because its band
gap, Es-8 eV, is much larger than kT (corrections
entering as e & ) and several orders of magnitude
larger than typical phonon frequencies (corrections
entering as hvlEs). The Gordon-Kim method for
calculating pair potentials employs two approxima-
tions: (1) the rigid-ion approximation, in which the
charge density of an ion pair is taken to be the sum
of the densities of the constituent iona, and (2) the
electron-gas approximation, in which the energy
density is related to the charge density as though it
were locally a free-electron gas. Next, the total po-

. tential energy of the crystal is assumed to be the

r
(bohr)

0.0211
0.0511
0.0955
0.1732
0.3641
0.5239
0.6216
0.7104
0.7814
0.8880
0.9590
1.0301
1.1011
1.1722
1.2787
1.3853
1.4563
1.5984
1.7760
1.9891
2.1312

0

(True
value)

—3.1478
—2.4404
—1.6295
—0.6870

0.2831
0.4770
0.4925
0.4748
0.4503
0.4054
0.3738
0.3426
0.3127
0.2846
0.2472
0.2125
0.1926
0.1581
0.1246
0.0936
0.0775

(Fitted
value)

—3.1484
—2.4401
—1.6293
—0.6872

0.2832
0.4769
0.4918
0.4748
0.4503
0.4055
0.3739
0.3428
0.3129
0.2848
0.2465
0.2128
0.1929
0.1585
0.1243
0.0935
0.0776

Deviation

0.0006
—0.0002
—0.0001

0.0002
—0.0001

0.0002
0.0007

—0.0000
0.0000

—0.0001
—0.0002
—0.0002
—0.0002
—0.0003

0.0007
—0.0003
—0.0003
—0.0004

0.0003
0.0001

—0.0001

sum of all the pair potentials (pair-potential approxi-
mation). Once the pair potentials are determined, it
is a straightforward matter to calculate the classical
normal-mode frequencies [v;(V)] of the crystal at
any volume (V) we choose. By simply doing the
lattice-dynamics calculation for a sequence of select-
ed volumes we obtain the volume dependence of the
frequencies, which in turn, provides the mechanism
for thermal expansion. The vibrational part of the
free energy of the crystal with volume V is obtained
by assuming (quasiharmonic approximation) that its
vibrational energy levels are those of independent
harmonic oscillators with frequencies v;(V). The
sum of the vibrational free energy and the potential
energy of the static crystal gives the total free ener-

gy. Differentiating these terms with respect to Vde-
fines vibrational and static pressures, P„and P„

TABLE III. Values obtained for y and g by fitting the exponential form, ye &', to calculat-
ed values of the short-range Coulomb (SRC), kinetic-energy (KE), exchange (ex), and correla-
tion (corr) contributions to the indicated pair potentials in the range ri to r„. Results are in
atomic units with energy in hartree.

Ion pair

Mg-0
Mg-0
0-0
0-0

SRC

—3.4244
1.6670

—147.496
1.7485

KE

78.3726
1.8062

81.6919
1.4386

ex

—7.6821
1.5333

—8.8949
1.1426

corr

—0.1692
1.1763

—0.2786
0.8730

3.8
3.8
5.2
5.2

4.5
4.5
6.6
6.6
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Wave
vector

X

calc
expt'
calc
expt'
calc
expt'

410
400
350
280
290
280

Frequencies
(cm-')

1100
730
490
430
370
350

500
450
670
550

840
550
870
600

'Reference 11.
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corrections included, a value of 4.34 A was ob-
tained.

Calculated and experimental results for thermal
expansion are compared in Fig. 2. The results at
low temperatures (T&1000 K) are too low by
-40%%uo while at high temperatures the discrepancy
is reduced. This trend has been explained for the al-
kali halides as arising from inaccuracies due to the
pair-potential assumption, which are partially can-
celled at high temperatures by the neglect of anhar-
monic corrections. The error in the low-temperature
thermal expansion for MgO is larger than that gen-
erally found for the alkali halides. This is to be ex-
pected because of the big difference between the size
of the Mg + and 0 ions (see argument in Ref. 8).
However, another factor which could be important
for MgO, is the neglect of any volume dependence
in the pseudoion charge density. To include this ef-
fect would require self-consistent electronic-

structure calculations for several lattice constants.
Finally, we note that the critical temperature

T, =3160 K, above which the solid is unstable due
to the P„(T) curves no longer intersecting P, (see
Fig. 1), and the melting temperature (T -3070 K)
are nearly equal. At T, the isothermal bulk
modulus, B&, is zero. While the close agreement be-
tween T, and T~ is partly due to the cancellation of
errors discussed above, it nevertheless provides fur-
ther evidence ' that the B&——0 instability and
melting are casually related.
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