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Study of ideal vacancies in CdS (wurtzite)
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The electronic states of ideal vacancies of Cd and S in the CdS lattice with the wurtzite
structure are calculated with the use of a Green's-function method. The electronic band
structure is computed within a tight-binding approximation by fitting the pseudopotential
energy bands obtained by Bergstresser and Cohen. When interactions up to second neigh-
bors are taken into account, both valence and conduction bands are accurately repro-
duced. We show that cation vacancies may induce bound states inside the fundamental

gap while anion vacancies induce bound states in the gap between the conduction s and p
cationic states.

I. INTRODUCTION

In recent years there has been considerable in-

terest in calculating the electronic structure of de-
fects in semiconductors because of the crucial role
they play in determining the electrical and optical
properties of these materials. The effective-mass
approximation has been shown to be able to suc-
cessfully describe the shallow impurity states. '

However, concerning the deep-level problem, the
dominance of a strong localized potential (as op-
posed to the long-ranged Coulombic potential for
the shallow levels) invalidates the assumptions in-
herent in the effective-mass theory. Alternative
methods must be used, among which those based
on the Green's-function technique seem to be the
most employed because of their great ability to be
used at different levels of sophistication. ' The
simplest and the most investigated of the defects
giving rise to such deep levels is the simple ideal
(unrelaxed) vacancy whose study may serve as a
basis for more involved calculations on more real-
istic models such as the relaxed neutral or charged
vacancies, divacancies, self-interstitials, antisite de-

fects, and aggregates of these. Self-consistent cal-
culations have been performed in the case of va-
cancies in silicon, ' and have been extended re-
cently to study the cation and anion vacancies in
AsGa. " However, little has been done theoretical-
ly on defects in II-VI compounds except for one
study on the electronic structure of S vacancies
and isoelectronie defects in ZnS in the zine-blende
structure. ' In this work our intent is to deal with
the isolated vacancy problem in hexagonal CdS.

Experimental results seem to indicate the presence
of levels induced by S and Cd vacancies in the
band gap of this compound. ' ' It was thus deter-
mined it would be interesting to investigate the
electronic structure of ideal (unrelaxed) vacancies
in this material. For this study the Green's-
function method has been used in conjunction with
the empirical tight-binding approximation. The
tight-binding study of CdS is exposed in Sec. II.
In Sec. III we present the results of our calcula-
tions on ideal anion and cation vacancies in CdS,
while Sec. IV is devoted to some discussions of our
results and the conclusion.

II. TIGHT-BINDING DESCRIPTION
OF THE ENERGY BANDS OF CdS

The electronic band structure of CdS in the
wurtzite structure has been obtained by a fitting of
the pseudopotential energy bands calculated by
Bergstresser and Cohen' with the empirical tight-
binding (ETB) method. The electronic states were
modeled with a tight-binding Hamiltonian, which
includes the S 3s and 3p orbitals and the Cd 5s and
Sp orbitals. The Cd 4d shell which is expected to
lie below the upper valence band' has thus been
omitted because it can be considered as a core level
which is not involved in the chemical bonding.
The omission of these cation d states has been in
fact a common practice in studying surfaces' and
defect' induced states in II-VI compounds.

Because of the presence of two Cd and S atoms
in the unit cell, the resulting ETB Hamiltonian is
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16)& 16. The fitting has been performed starting
from the universal form of the interaction parame-
ters proposed by Froyen and Harrison, ' and then
varying their values and their number until an ac-
ceptable description for both the conduction band
(CB) and valence band (VB) of Bergstresser was
obtained. Taking into account all first- and
second-nearest-neighbor interaction, we obtained a
rather accurate representation of the valence band
and a reasonable agreement for the conduction
band. The fitting error was less than 0.3 eV for
the valence band and about 0.5 eV for the lowest
conduction band which lies below 5 eV. For the
higher states our fitting errors were less than 0.7
eV if one excepts the K2 and Eq states which are
inverted in our calculation with respect to that of
Bergstresser. The most important parameter in-
volved in the fitting procedure was found to be the
"ionicity parameter" X, defined by Mele and Joan-
nopoulos' as the difference between the on-site en-

ergies of the cation s and anion p orbitals,

The band gap is actually very sensitive to this
energy difference, the role of s-p hybridization be-
ing of secondary importance. This behavior is
markedly different from that of the less ionic III-V
and purely covalent group-IV semiconductors
where the reverse is true (i.e., it is the hybridization
interaction which is responsible for the opening of
the gap). We think that it is, in fact, the rather
ionic character of CdS which enable us to obtain a
realistic TB Hamiltonian describing rather correct-
ly both the valence and the conduction bands, con-
trary to the more covalent III-V compounds where
the conduction band is at most fairly reasonably
described by such s-p Hamiltonians (see, for exam-
ple, Table III of Ref. 20). The value attributed to
7 in our fitting procedure is + 2.4 eV, in close
agreement with that assigned to CdS by Mele and
Joannopoulos' (-2.7 eV). This is an important
point to be noted, as it has been recognized by a
number for authors ' ' ' that 7 has a dominant in-
fluence on the position of the vacancies induced
states, whose determination is the main objective of
our work. The final parameters entering our CdS
empirical TB Hamiltonian are given in Table I.
The resulting band structure is given in Fig. 1(a),
while for comparison the pseudopotential energy
bands are drawn in Fig. 1(b). Missing from Fig.
1(a) is the lower valence band situated at —8 eV.
This band, which is very narrow (-0.5 eV}, ori-
ginates from the S 4s states which do not mix ap-

preciably with the other orbitals. The major
discrepancy between the two band structures is due
to the existence in the TB bands of a gap between
the upper (p-like) and lower (s-like) cationic con-
duction bands. Although this feature is absent in
the pseudopotential calculation of Bergstresser, ' it
must been noted that such a gap is indeed found in
the pseudopotential calculation of Collins2 et al.
on CdS and in band-structure calculations of ZnS
by Ren and Harrison and Rossler. ' However,
the influence of the upper conduction band on the
levels in the vicinity of the fundamental gap has
been found to be very weak and not to markedly
affect our results on the vacancies' induced levels.

D(E)=0,
while the total change in the density of states is
given by

aX(E)=—'
@ dE

where the phase shift 5(E}is defined as

5(E)=—tan i ImD(E)

(4)

(5)

(6)

Im and Re, stand, respectively, for imaginary part
and real part.

In the case of an ideal vacancy, the defect poten-
tial is obtained by removing from the periodic

III. CALCULATION OF THE IDEAL
NEUTRAL VACANCY LEVELS

The vacancy-induced states were calculated by
the Green's-function method. We here only recall
the basic features of this approach, more details
can be found, for instance, in Ref. 2.

Let the crystal containing the defect be described
by

(Ho+»
I 0& =E

I 0&

where Ho is the Hamiltonian corresponding to the
perfect crystal and U is the potential which charac-
terizes the perturbation introduced by the defect.
Integral information about the perturbed crystal
can be obtained from the knowledge of the func-
tion D(E) defined as:

D(E}=det~ ~1 —G'(E)U~ ~,

where

G (E)=(E H+iq) —', r)~0

is the perfect-crystal Green's operator. The ener-

gies of the bound states are determined by
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FIG. 1. (a) ETB energy bands compared to (b) pseudopotential energy bands of bulk CdS

solid the corresponding atom. This removal was
accomplished by shifting to infinity the on-site en-

ergies of this atom. Further simplification was

gained by symmetrizing the orbitals with respect to
the symmetry group of the vacancy, which is C3„
in the. wurtzite structure. s and p orbitals induce
the irreducible representations (IR) A i and E of
this group, s and p, being basis partners of the
one-dimensional IR A

&
and p„,p~ basis functions of

the two-dimensional IR E. The matrix elements of
the Green's function G (E) have been calculated
as

A~ (E')
G' (E)=PI. , dE' i~A. (E), (7)—g'

where P stands for principal part and the spectral
density of states A (E) is given by

E, = —20.8
E~ =—12.86
Ep+ ———10.47
E,+= —6.9

(s+spo )]= —0.18

(p+p 0 )~
——2.746

(p+p m ) i ———0.42
(s+p 0.)i ——1.945
(s p+0. )i

——1.865

(s+s+ o.)2
———0.057

(p+p+ cr )2——0.07
(p+p+ m')2 ———0.018

(s+p+ cr )~
—0.059

(s s cr)2 ——0.027
(p p 0.)2——0.062

(p p ~)2 ———0.02
(s p m. )2——0.041

A (E)= g (a
~

n k ) (n k
~

a')5(E —E„(k))
n(k)

(8)

TABLE I. ETB parameters for bulk CdS. Energies
are in eV. Sign + refers to Cd and sign —to S; 1

refers to first nearest neighbors and 2 to second-nearest
neighbors.
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FIG. 2. Imaginary part of the Green's function and
change in the density of states for an ideal Cd vacancy:
symmetry A &(s) (a.u.). Vertical arrow indicates the zero
of the Green's function corresponding to the ideal
vacancy-induced states.

FIG. 4. Imaginary part of the Green's function and

change in the density of' states for an ideal Cd vacancy:
symmetry E{p or p~) (a.u.). Vertical arrow indicates
the zero of the Green's function corresponding to the
ideal vacancy-induced states.
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FIG. 3. Imaginary part of the Green's function and
change in the density of states for an ideal Cd vacancy:
symmetry A1(p, ) (a.u.). vertical arrow indicates the
zero of the Green's function corresponding to the ideal
vacancy-induced states.

FIG. 5. Imaginary part of Green's function and

change in the density of states for an ideal S vacancy:
symmetry A1(s) (a.u.). Vertical arrow indicates the zero
of the Green's function corresponding to the ideal

vacancy-induced state.
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TABLE II. Energies of the states induced by ideal
vacancies in CdS. Energies in eV are measured from
the top of the valence band.
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Here
~

nk) are the unperturbed eigenstates of the
crystal with energies E„(k). These spectral densi-
ties of states were obtained by the Gilat-Rauben-
heimer method, summing over 250 k points in
the irreducible» Brillouin zone. However, it was
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FIG. 7. Imaginary part of the Green's function and
change in the density of states for an ideal S vacancy:
symmetry E(p„or p„) (a.u.). Vertical arrow indicates
the zero of the Green's function corresponding to the
ideal vacancy-induced state.
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FIG. 6. Imaginary part of the Green's function and
change in the density of states for an ideal S vacancy:
symmetry A &(p, ) (a.u.). Vertical arrow indicates the
zero of the Green's function corresponding to the ideal
vacancy-induced state.

) ImG~~(E)
5 (E)=—tan

ReG~~(E)
(10)

where a is s, p„or any of p„and p~ orbitals at the
vacancy site. The changes in the density of states
induced by the vacancy is then given by Eq. (5).
The imaginary part of the Green's functions which
is proportional to the spectral densities of states of
the perfect crystal and the changes in these densi-
ties of states induced by the vacancies are plotted
in Figs. 2 —7. The top panels of these figures give
the relative contributions of the sulphur and cad-
mium s and p orbitals to the total density of states
in CdS. The ionic character of CdS is apparent in
this figure, each band being principally formed by
one type of orbital, the mixing between them being
rather weak. It can also be seen from this figure
that the contributions of the p, and the p„(or p~)
orbitals to the total density of states is almost the
same. It is in fact only the introduction of the
second-neighbor interactions which differentiates
their contributions. The position of the bound
states in the gap (if any) can be determined from
the zero of the real part of the Green's function.
Cd vacancies are found to give bound levels in the
fundamental gap, while S vacancies give rise to
levels situated in the gap between the conduction s
and p cationic states. The positions of these levels
are given in Table II. The p, Ai states are found
to be quasidegenerated with the (p„,p~ ) states of
symmetry E; their separation is due to the second-
neighbor interaction which differentiates the wurt-
zite from zinc-blende structure in which these p
states are threefold degenerate. Such interactions
have been taken to be rather weak in our calcula-
tion, which explains this quasidegenerescence. The

found in the case of A j symmetry that the cou-
pling between the s and p, states, i.e., the matrix
elements G,,(E) was negligibly small which al-
lowed us to treat these two states separately.
Equation (4), which determines the position of the
bound states now simplifies as

G~ (E)=0,
while the phase shifts are determined by



27 STUDY OF IDEAL VACANCIES IN CdS (WURTZITE) 1249

~5 ~~~ ~~ ~~~ ~~~~~aO.

———Aq(s)

p.p m Ey

FIG. 8. Position (in eV) in the gap and occupancy of
the bound states induced by a neutral Cd vacancy in
CdS.

lower panels of Figs. 2 —7 give the relative contri-
butions of s and p states to the total change in the
density of states and to the phase shifts induced by
the Cd and S vacancies. The number of states
gained (or lost) in the energy interval E~ E2 is re--

lated to the difference in the phase shift at the lim-

it of the interval by

f 5N(E)dE = ——[5(E))—5(E2)] .

In particular, for each cation or anion vacancy cal-
culation, it is found that when the changes in the
densities of states of all symmetries are summed

up, the integral of 5 N(E) over the energy bands
including the bound states is —4 (not counting
spin), in accordance with I.evinson's theorem, as
four states have been removed from the lattice to
infinity.

The position of the Fermi level, and thus the oc-
cupancy of the bound states in the fundamental

gap, is determined by the charge neutrality condi-
tion

J 5N (E)dE = —M, (12)

In this work we have studied the electronic
structure of ideal vacancies in hexagonal CdS. We

where M is the number of valence electrons that
are removed (M=2 for a neutral Cd vacancy and
M=6 for a neutral S vacancy). The occupancy of
these bound states is given in Fig. 8 in the case of
a neutral Cd vacancy. The twofold degenerate E
level is thus partially occupied and is thus expected
to be unstable with respect to a Jahn-Teller distor-
tion.

IV. SUMMARY AND CONCLUSION

have first constructed an empirical TB Hamiltoni-
an describing the energy bands in the vicinity of
the fundamental gap. This Hamiltonian, which in-
volves first- and second-nearest-neighbor interac-
tions of the s and p orbitals of the constituent ions,
reproduces reasonably accurately the band struc-
ture obtained by the pseudopotential method.
Anion and cation ideal vacancies were then con-
sidered. The densities of states as well as the ener-
gies of the bound states were determined by a
Green's-function method. Two singly degenerate
A ~ levels and one twofold degenerate E level are
found in the fundamental gap in the case of Cd va-
cancies, while S vacancies are found to induce lev-
els between the conduction cationic s and p bands.

Several authors ' ' ' have argued that the ionici-
ty parameter X=e,' —ez has a major influence on
the position of the vacancies' bound states. They
found ', in fact, in III-V compounds (where X is
& 0) the cation (anion) vacancy levels tend to move
towards the lower (upper) edge of the gap as the
ionicity 7 is increased. On such grounds they
speculated that in the strongly ionic II-VI com-
pounds (X & 0) no vacancy levels are to be found
inside the fundamental gap. This is in fact what is
found here in the case of the anion S vacancy lev-

els which are situated -8 eV above the bottom of
the conduction band. However, our calculation
shows that cation vacancies may induce bound
states inside the fundamental gap. Yet it must be
said that before definite statements must be made
about the precise positions of such ideal vacancy
states, more sophisticated self-consistent calcula-
tions should be performed, taking into account the
change in the charge density produced by the re-
moval of an atom in the solid. Although at this
stage a rather crude calculation like this is not to
be compared with experimental data, our results
are not inconsistent with experimental works' '
which attribute levels near the top of the valence
band to Cd vacancies. This calculation, which is
the first pertaining to defect states in II-VI wurt-
zite compounds, seems thus sufficiently hopeful to
stimulate more sophisticated calculations involving
self-consistency studies of vacancies' charged states
and calculations of Jahn- Teller distortions. How-
ever, it is felt that before seeking more reliable
quantitative results, more experimental work is
needed, for example, the knowledge of the symme-
try of the relaxed vacancies should be very useful
for future theoretical work.
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