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Laser-induced periodic surface structure. I. Theory
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We develop a theory for laser-induced periodic surface structure by associating each
Fourier component of induced structure with the corresponding Fourier component of inho-
mogeneous energy deposition just beneath the surface. We assume that surface roughness,
confined to a region of height much less than the wavelength of light, is responsible for the
symmetry breaking leading to this inhomogeneous deposition; we find strong peaks in this
deposition in Fourier space, which leads to predictions of induced fringe patterns with spac-
ing and orientation dependent on the angle of incidence and polarization of the damaging
beam. The nature of the generated electromagnetic field structures and their relation to the
simple "surface-scattered wave" model for periodic surface damage are discussed. Our cal-
culation, which is for arbitrary angle of incidence and polarization, applies a new approach
to the electrodynamics of randomly rough surfaces, introducing a variational principle to
deal with the longitudinal fields responsible for local field, or "depolarization, "corrections.
For a p-polarized damaging beam our results depend on shape and filling factors of the sur-
face roughness, but for s-polarized light they are essentially independent of these generally
unknown parameters; thus an unambiguous comparison of our theory with experiment is
possible.

I. INTRODUCTION

Many researchers studying the interaction of in-
tense laser beams and solids are familiar with the
striking periodic damage patterns that can be pro-
duced on various surfaces when the power of the
beam is at or near the damage threshold. Grating-
like damage patterns, resulting from illumination
with single beams of intense laser radiation, have
been observed at the surfaces of targets made of
various intrinsic and extrinsic semiconductors, '

metals, " and dielectrics, ' using cw to picosecond
laser sources between 0.53 and 10.6 pm. Explana-
tions of this periodic damage have been given in
terms of properties of the laser beam, ' frozen sur-
face acoustic waves, and plasmon condensation. ' '
However, most of the damage patterns are remark-
ably similar and independent of material properties.
When the beam is normally incident the damage ap-
pears in the form of parallel, periodic lines of
separation A,, the wavelength of the incident light;
these lines, or "fringes, " run perpendicular to the
polarization of the incident field. If a scratch is
purposely placed on the surface prior to irradiation
and if the angle of incidence 8 is varied, two sets of
fringes on the sides of the scratch are found, s with
spacings of I,/( I+sin8).

The observation of fringes created near a scratch
indicates that, at least for a wide class of materials,
surface roughness is responsible for the symmetry

breaking necessary to produce periodic surface darn-
age. The occurrence of the fringes has been attribut-
ed to the interference of the incident beam with a
"surface-scattered wave" originating at the
scratch. ' Although this picture of the damage for-
mation is appealing, it is not physically consistent
for a number of reasons: Since the damage patterns
are presumably produced by the absorption of ener-

gy within the material, it is not clear why the
surface-scattered wave responsible should propagate
with a wavelength of A. as opposed to A./n, where n
is the refractive index of the material. Further, at
normal-incidence excitation, the scattered wave
would have to be longitudinally polarized; such
waves do not satisfy the Maxwell equations. In fact,
plane waves of any polarization, propagating paral-
lel to an interface, do not satisfy the Maxwell equa-
tions. Temple and Soileau' have recently argued
that nonradiative, short-range fields associated with
surface defects can perhaps account for the surface-
scattered wave. Approximating the dipole field
from a defect as only a retarded static-zone field,
and completely neglecting the presence of the sur-
face on the generated field, they have extended cal-
culations by Bloembergen' of enhanced fields
within defects to try to understand the development
of fringes external to isolated defects. In addition,
they have reported that at normal incidence the
fringe spacing associated with 10.6-pm-radiation
damage in NaCl is A, /n.
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FIG. 1. The geometry of light incident on a rough sur-

face.

Recently we have reported a new set of fringes
which are produced at the surface of nominally
smooth Ge samples by laser irradiation at 1.06 pm
and have a spacing of A, /cos0. ' These fringes,
which run paralle1 to the polarization of the incident
light, are produced only with p-polarized light at
large angles of incidence; in fact, A, /(1+ sin8),
A, /(I —sin8), and A, /cos8 fringes can under some
conditions be produced simultaneously. Further, we
have shown that a previously unappreciated richness
in the damage structure can be studied by observing
the intensity I(a) of the diffraction pattern pro-
duced by illuminating the damaged surface with a
weak probe beam; here ~ is the wave vector parallel
to the surface. The above-mentioned A, /cos8 fringes
appear as particularly bright spots in the diffraction
pattern, but in general there is damage produced
over a wide range of ~ 's. After a certain amount of
irradiation this diffraction pattern stabilizes; the fi-
nal I(ic) is remarkably independent of the specific
surface inhomogeneities that are initially present.

These results suggest that some insight into the
damage process can be gained by studying the dam-

age in ~ space, rather than by watching the develop-
ment of local damage around isolated defects on the
surface. A first attempt at the calculation of the in-

tensity function I(a. ), avoiding the difficulties of the
heuristic "surface-scattered wave" picture, is the
subject of this paper.

To do this we adopt a very simple picture of the
way in which damage occurs at the surface (see Fig.
1). A laser beam, idealized as an infinite plane
wave, is incident with a wave vector of magnitude
co=2m/A, on a rough surface; the wave-vector com-
ponent parallel to the surface is designated by a;,

I

a.; I

=co sin8. The roughness is assumed to be con-
fined in a "selvedge region" between z =0 and z = I,
where I/A, ~&1. If there were no surface roughness
present, only the usual refracted beam (with wave
vector a; parallel to the surface) would appear in the
bulk; owing to a Fourier component of surface
roughness at a, however, "scattered" fields appear

I

a;+a
I
=co (1.2a)

(1.2b)

These conditions include, as special cases, all the
fringe spacings and directions mentioned above. %e
show that Eqs. (1.2) correspond to the generation of
nonradiative field structures which we call "radia-
tion remnants"; in terms of these we can construct a
more satisfactory physical picture of the electromag-
netic aspect of the damage than that provided by the
phenomenological "surface-scattered wave" concept.
Further, we find that condition (1.2a) leads to the
peaks important in metals and in semiconductors
and dielectrics with large refractive indices; condi-
tion (1.2b) can apply for materials with n=l This.
is in general agreement with the experimental re-
sults. '- "

In addition, we find that not all the ~ satisfying
the appropriate condition (1.2) eXhibit a peak; the
specific values of Pc that do depend strongly on the
angle of incidence and polarization of the incident
beam. This dependence appears because of the vari-
ation with angle of incidence and polarization of the
relative amplitudes of the induced polarization
fields, in the selvedge, that are parallel and perpen-
dicular to the surface. To predict these amplitudes
correctly we have extended the usual perturbation
treatments of the electromagnetic properties of

in the bulk at Pc+ ——~;+x. These interfere with the
refracted beam to lead to inhomogeneous absorption
at z =0—with a wave vector ~ parallel to the sur-
face, and with a magnitude g(ic;a; )

I
b(ic) I; b ( a ) is

a measure of the amplitude of the surface roughness
at a, and g(a;ic;) is a response function describing
the efficacy with which surface roughness at a leads
to inhomogeneous absorption just below the selvedge
for a given incident field. Neglecting all feedback
processes that are undoubtedly important in the de-
tailed development of the damage, and considering
only the region of bulk material just below the sur-
face roughness, we simply assume that the damage
occurs first where this inhomogeneous absorption is
largest, leading to a prediction

I(a) ccrc(a;a;) I
b(a)

I
.

Perhaps the most interesting of our results is that
r)(ic;a;) exhibits very sharp peaks and thus, for a
nominally smooth surface, we can understand the
independence of I(a. ) on the details of the more-or-
less random roughness present; those details are re-
sponsible only for determining the exact form of the
more smoothly varying b (Pc).

The above-mentioned sharp peaks occur at values
of ~ that satisfy
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rough surfaces. ' In those treatments the shape-
dependent "local-field corrections, " which are cru-
cially important for materials of large dielectric con-
stant (in Ge, e=16 at 1.06 pm), would require the
summation of an infinite series for their correct in-
clusion. Instead we calculate the polarization field
components in the selvedge by first separating the
longitudinal and transverse components of the elec-
tromagnetic field. The latter, in the limit l «A, , can
be safely treated by a perturbation series which then
describes "multiple scattering"; the former, which is
short ranged and responsible for the local-field
corrections, is treated by constructing a variational
principle and finding an approximate solution for
the polarization field. Thus we take into account
the local-field effects which are so important here
and in other surface optics problems such as
surface-enhanced Raman scattering ' (SERS) and
which are usually described by phenomenological
models of rough surfaces as collections of spheres or
ellipsoids on a smooth surface; our approach is
more fundamental and more general.

We begin with an integral formulation of the elec-
tromagnetic problem, which we present in Sec. II;
the advantage of an integral formulation in other
problems in electromagnetic theory is well known.
In Sec. III we discuss the "radiation remnant" field
structures. Although the importance of nonradia-
tive fields in this problem has been suggested by oth-
er workers, ' ' this is the first time these field
structures have been identified, studied, and dis-
cussed in detail. In Sec. IV we decompose the elec-
tromagnetic field in the selvedge into longitudinal
and transverse parts, introduce the variational prin-
ciple, and present an approximate solution for the
polarization in the selvedge. This is used in Sec. V
to calculate il(K;K; }, the central result of this work.
The main features of this function are rioted; de-
tailed comparison of theory with experiment appears
in the following paper of this series.

II. THE SELVEDGE POLARIZATION
EQUATIONS

We begin by developing an integral equation for
the polarization in the selvedge region of Fig. 1.
Neglecting magnetic effects, the electromagnetic
field generated by the polarization P(r, t) in the
medium satisfies the Maxwell equations

V.E(r)= —4n. V P(r), V B(r)=0,
V XB(r)+icoE(r)= 4m.i Pco(r), —

for all fields f(r, t), and we have put co=co/c.
Fourier decomposing in the xy plane

f(r ) = f —
2 f (K;z)e' "'i',dK

(2m. )'
(2.3)

where (2.6)

S =K)(Z,

wo ——(co —K )'~, Rewo, Iinwo & 0,
Po+ =co (Kz+woK),

and 8(z) is the unit step function, 8(z)=1,0 as
z &0, z &0. The dyadic Green function (2.5) expli-
citly identifies the s- and p-polarized components of
the (propagating or evanescent) wave generated at
each K by the Polarization. The field Eo(K;z) is
the Fourier transform (2.3) of the appropriate homo-
geneous solution of Eqs. (2.1); for a beam incident
from z =+ 00, it takes the form

Eo(K;z) =Eo(K)e (2.7)

where Eo(K} can have an s and a Po comPonent,
corresponding to s- and p-polarized waves, respec-
tively.

Consider now points in the bulk region (z &0).
Using Eqs. (2.4) and (2.7), we may write

E(K;z)= Eo(K)e

+ f G(z z') p(K;z')dz—',
where

(2.8}

Eo(K) =Eo(K)+g (K) Q(K),

Q(K)=, e ' P(K;z')dz' .
(2.9}

where K =(K„,Ks) and P =(x,y), the solution of Eqs.
(2.1) for E, with the particular part satisfying the
outgoing wave condition at z~+ oo, is

E( Kz) =Eo(K;z)+f G(z z') P—(K;z')dz', (2.4)

where the K dePendence of G and Go

G(z —z') =Go(z —z') —4~z z%(z —z'),
(2.5)

Go(z —z') = g+(K)8(z —z')e

+g (K)8(z' —z)e

is kept implicit. We have set

g+ ( K }=2iriw o
'
oi (ss +Po+Po+ ),

V XE(r)—icoB(r)=0,
where we deal with stationary fields,

f(r, t) =Re[f(r)e '~'], (2.2)

From Eq. (2.8) it is clear that the material in the
bulk sees an effective incident field Eo(K ), including
the field generated by sources in the selvedge region.
If the bulk is characterized by a susceptibility X,
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P(r)=XE(r), (2.10) where

E(K;z)=e ' 't(K).Ep(K) (z&0), (2.11)

the response of the bulk material to the effective in-
cident field Ep(K) [the solution of Eq. (2.8)] has the
well-known form

E;(K'z) =Ep(K)e ' +r(K) Ep(K)e

S(z+z')= 2mw p 'co (r,s s 4-rppp+pp )

iso(.z+z')
Xe

(2.20)

where

t(K)=$ S t~+P Pp

Here

(2.12)

P =(roti) (Kz+WK),

w =(co s K)— (2.13)

where @=1+4' is the dielectric constant of the
bulk; p specifies the polarization of a downward
propagating (or evanescent) p-polarized wave in the
bulk. In Eq. (2.13), Imw & 0, and Rew & 0 if
Imm =0; n =e', subject to the same conditions.
The matrix t(K) involves the Fresnel coefficients for
s- and p-polarized light,

t, =2wp(wp+ w)

tp =2wprl(wpE+w)

(2.14)

r(K) =r,s s+r&Pp+Pp (2.16)

involves the Fresnel reflection coefficients for s- and
p-polarized light,

respectively. Equation (2.11) will be useful later, but
we presently need the electric field (2.4) in the sel-
vedge region. Separating the contributions to the in-
tegral in Eq. (2.4) into the regions —oo &z' &0 and
0&z'&l, we note that the former is just the field
due to polarizations in the bulk; since the bulk is
subject to an effective incident field (2.9), the re-
quired contribution is just

e ' r(K) Ep(K), (2.15)

where

The first term on the right-hand side of Eq. (2.19) is
the field that would be present in the selvedge region
if there were no polarization in the selvedge; the
second term is the field in the selvedge region due to
the polarization in the selvedge; the third term is the
field there due to polarization in the bulk induced by
the polarization in the selvedge.

%e now introduce a constitutive relation for the
polarization in the selvedge; we take the simple form

P(r)=X(r)E(r) (0&z&1), (2.21)

where

X(r)=Xb(r), (2.22)

and b(r ) =0,1, respectively, in the "unfilled" part of
the selvedge and in the region filled by material. %e
shall here assume for simplicity that the susceptibili-
ty of the material in the selvedge [X of Eq. (2.22)] is
the same as that of the bulk [Eq. (2.20)]; however,
we note that the generalization of the equations in
this and following sections to treat selvedge material
with a different susceptibility is straightforward.

Equations (2.19) and (2.21), using Eq. (2.22), com-
pletely determine the polarization in the selvedge
and, within the approximation of Eq. (2.21), do so
exactly. Note that they involve only the polarization
field at points in the seluedge itself; the effect of the
polarization in the bulk enters through the Fresnel
coefficients appearing in Eqs. (2.20). Once the po-
larization in the selvedge is determined from Eqs.
(2.19) and (2.21), the field in the bulk follows from
Eqs. (2.9) and (2.11); the field in the vacuum above
is simply given by

r, =(wp —w)(wp+w)

r =(wpe —w)(wpe+w)
(2.17)

E(K;z)=e r(K) Ep(K)

+ f G(z —z') P(K;z')dz' (z &l), (2.23)
0

E(K;z)=Ep(K)e +r(K) Ep(K)e
I

+ f, G(z —z') p(K;z')dz', (2.18)

or using Eqs. (2.8) and (2.9),

E(K;z)= E;(K;z)+ f G(z —z') P(K;z')dz'
1

+ , S z +z' P Pc;z' dz', (2.19)

respectively. Thus, for points 0&z&l, Eq. (24)
takes the form the first term being the field from polarizations in

the bulk and the second from the selvedge polariza-
tion [cf. Eqs. (2.4), (2.5), and (2.15].

III. RADIATION REMNANTS

Before considering a self-consistent solution of the
selvedge polarization Eqs. (2.19) and (2.21), we look
first at the electric field generated by a specified, im
posed Q(K) [Eq. (2.9)]. This is important because
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the field generated by a fixed
~ Q ~

is, as a function
of v, not analytic; there are discontinuities in the
first derivative of the function at certain critical
points and these "kinks" are crucial in the develop-
ment of fringes, as we will argue in Sec. V. The
presence of these discontinuities and their physical
interpretation are the subjects of this section. To aid
the discussion, we shall introduce a (complex) elec-
tromagnetic self-energy for the selvedge.

Consider first the general problem of an arbitrary,
specified P(r) confined to a region in space; other
polarizations may be present outside that region
which, unlike P(r), are induced and not imposed.
We define the electromagnetic self-energy of the
specified polarization P( r ) as

X= ——,
' f P (r) E(r)dr . (3.1)

To see the meaning of the real and imaginary parts
of X, we note that the rate at which the current due

to the imposed polarization j (r, t)=P(r, t) does
work on the electromagnetic field is given by

W= —f j (r, t) E(r, t)dr

= —f P(r, t) E(r, t)dr

= ——, Re f j (r) E(r)dr

= —,colm f P (r) E(r)dr, (3.2)

where in the third and fourth expressions in Eq.
(3.2) we have averaged over a period [cf. Eq. (2.2)].
Thus we have

=RE .

Combining Eqs. (3.3) and (3.6) we find

X=I' —, ic0 '—W .

(3.6)

(3.7)

Returning now to the problem of an imposed po-
larization in the selvedge, we have a self-energy

1

X=——,
' f f P'(r) E(r)dxdydz4 z=O ay= —m

(3.8)

instead of Eq. (2.2), where a(t)=0 at t= —00 and
grows to unity at t =0. For a slow enough, "adia-
batic" development of P(r, t) we may assume the
same form (3.4) for E(r, t) and, using the second
equation of (3.2), we find the energy required over
time dt is

d 8' = (dt) , a —(t)aiIm f P *(r ) E( r )d r

—(dt) —,a(t)a(t)Re f P'(r) E(r)dr, (3.5)

where we have averaged over a period. The first
term on the right-hand side of (3.5) is the rate at
which energy is radiated and possibly absorbed
while P(r, t) is being built up [cf. Eq. (3.2)]; the
second term is the contribution to the energy which
is stored in the field structure being developed. In-
tegrating the second term from t = —00 to t =0, we
find that the energy stored in the electromagnetic
field, which may be either positive or negative, is

8'= ——, Re f P'(r) E(r)dr

8 = —2coImX . (3.3)
where

This is the steady-state rate at which work must be
done on the imposed polarization to maintain it; in
general, some of the energy is radiated away to oo

while some is absorbed by the induced polarization
mentioned above.

Next, consider the electromagnetic energy stored
in the field distribution resulting from the imposed
polarization; to calculate this, assume P(r, t) is set
up slowly and take

X(~)= ——, f P'(a;z) E(a.;z)dz . (3.9)

For E(a;z) in Eq. (3.9) we use the expression (2.19)
but with E;(a;z) set equal to zero, since we here
consider a specified, imposed P(a;z). We find

l

X(a ) =cr(a )+nP'(s;z. ) Pz(za", z)dz,z=0

(3.10)
P(r, t) =Re[a(t)P(r)e ' '] (3.4) where

e(w) = f P'(K;z) [Gp(z z')+S(z+z')—] P(~,z')dz dz'
z,z'=0 (3.11)

col «1, ~l &&1, (3.12)

The second term on the right-hand side of Eq. (3.10)
is a purely real contribution to X(a ); further, it has
no explicit Pc dependence and so we shall rieglect it
in the following. In the limit of a selvedge of thick-
ness much less than the wavelength and of not too
large a ~,

I

we have wp [z —z
[ lpp iz+z

(
((1, and the other

term simplifies considerably [cf. Eqs. (2.5) and
(2.20)]. In this limit

Q(a )= f P(@z)dz, (3.13)

and, as can be seen by using approximations (3.12)
in the equations of Sec. II, the selvedge behaves as a
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f, (a) =2iro(wp+w)

f, (tc) =2ia rp 'e(w pe+ w)

f„(a)=2ipi 'wpw(wpe+w)

(3.15)

"dipole sheet" placed above the bulk with a dipole
moment per unit area of Q(a ); see also the general
discussion by Sipe. In this limit Eq. (3.11) reduces,
if the polarization is in the s direction,
P(gz) =sP, (a",z}, to the form

0'(K)= — 7TCO
~ Q (K)

~ f,(ir), (3.14)

while polarizations in the ~ and z directions lead to
corresponding expressions, where

0 1
4.p

I

3.0—

I

I

I

/

0.0

2.0—

1.0—

0 1
12.0

I I I I I l I

NORMALIZED K

In Sec. V we will see that response functions similar
to these f 's are important in determining the posi-
tion, in ~ space, of the fringes created during laser
irradiation.

The functions (3.15} are graphed in Figs. 2—4
both for the instance of an "isolated selvedge"
(e= 1) and for a selvedge above a material with opti-
cal properties (e=16) similar to germanium at 1.06
{ttm (see also Young et al ') Con. sid. er first f, (a)
and f, (lr), which for e= 1 are similar. For small I~

we find that f is imaginary, indicating the radiation
of energy to infinity; obviously, this occurs both

10.0—

8.0—

6.0—

4.0—

2.0—

0.0 a I I "f' —a- ~ I

NORMALIZED K

FIG. 3. (a) Ref, {a.} (solid line) and Imf, {a.) (dash-dots)
for an underlying bulk with e= 1 (vacuum). {b) Ref, {a')
(solid line) and Imf, (a) (dash-dots) for an underlying bulk
with @=16.
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FIG. 2. (a) Ref, {a.) (solid line) and Imf, {~){dash-dots)
for an underlying bulk with e= 1 (vacuum). (b) Ref, {a.}
{solid line) and Imf, {a){dash-dots) for an underlying bulk

with t.=16.

FIG. 4. (a) —Ref„{a) (solid line) and Imf„{~) (dash-

dots) for an underlying bulk with @=1 (vacuum). (b)
—Ref„{~}(solid line) and Imf„{a) (dash-dots) for an

underlying bulk with e= 16.
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above and below the selvedge with respective wave
vectors k =icic+

~
k,

~

z satisfying

K +kz CO (3.16}

the free radiation dispersion equation. As K~Fo
these f 's diverge, indicating the resonant, or
"phase-matched, " generation of radiation propaga-
ting parallel to the selvedge (

~

k,
~

—+0). For ic&co
the imaginary part of X must vanish, since the con-
dition (3.16) cannot be satisfied for a real k, ; the
fields above and below the selvedge become evanes-
cent and 8'=0.

The situation is changed drastically for @=16
[Figs. 2(b) and 3(b}]. First of all, radiation is possi-
ble up to K=nco, since the radiation dispersion equa-
tion in the underlying bulk is given by

s.z+k, =(con) (3.17)

iNX

E,(x) iV 2r(.c0 e -' ~ Q(c0)
X

(3.20)

if e= 1 (isolated selvedge). The component of Q(ic)
at the K that satisfies the dispersion relation for a ra-

where n =e. Since e is real and there is no absorp-
tion possible, the imaginary parts of the f 's however
do strictly vanish for K&neo, since in that regime
even the fields beneath the selvedge become eva-
nescent. Further, the divergences have disappeared,
since radiation fields propagating parallel to the sur-
face do not satisfy the Maxwell equations, regardless
of the value of ic. However, "kinks" in the functions
are present at both K=co and K=nco, the dispersion
relations for waves propagating parallel to the xy
plane in an infinite vacuum and in an infinite dielec-
tric medium, respectively.

We refer to the electromagnetic field structures
signaled by these kinks in the f functions —the only
nonanalytic behavior that remains in the presence of
an underlying bulk with e&1—as "radiation rem-
nants. " Some insight into these fields can be ob-
tained by considering the field generated by a source
Q(p), which is finite in at least one direction in the
xy plane. For example, consider a source

Q( ic )=2~z5(ic„)Q(ic„), (3.18)

where the function Q ( a „) is chosen so that Q (p ) is
bounded in the x direction, a "ribbon" of dipoles
still extending from y = —oo to y =+ oo. From Eq.
(2.23) we find that the z component of the generated
field, at z=l+ and within the approximations
(3.12), is given by

E,(x)=co f f, (ic)Q(ic)e'""dic . (3.19)

In the limit x~+ co, an asymptotic expansion of
Eq. (3.19) produces a leading term

diation field propagating parallel to the selvedge,
K=co, is the only component important in determin-
ing the generated E(x) in the far field; the x
factor is, of course, the characteristic signal of radi-
ation fields in this geometry. If e&1, however, the
leading term is found to be

1/2
~ in/4 iNX

1/2
iNlfX

3&&
Q(con)

X

(3.21)

Here the radiation fields have disappeared because
of the presence of the interface; however, the kinks
in f, ( )iclead to the important contributions in Eq
(3.19), those contributions at ic=co and ic=nco that
would lead to radiation fields in an infinite vacuum
and infinite dielectric, respectively.

The situation for an s-polarized source [Eq. (3.18)
with z replaced by s = —y] is similar; we find E,(x)
is given by Eq. (3.20) if e= 1 and by

im/4 iNX

E,(x)— (2mco)'i
(e—1) ,~, Q(c0)

lN tÃ—(2mFon )
'~ Q(con )

X

and

4 ~ in/4
K 2

1/2
iNX

,~, Q(co)
X

' 1/2
1 mnc0 e'".

2

if e&1 . (3.24)

In both cases we have x, nonradiative behavior
(although the limits e—+1 and x~ao do not corn

(3.22)

if eel. For a ic-polarized source the situation is in-
terestingly different; f„(ic) does not diverge even if
a=1 and in fact vanishes at K=co, since a radiation
field cannot be longitudinally polarized. In a sense,
we have a "radiation remnant" even if @=1, the po-
larization condition ruling out a radiation field, as
does the interface if eel for s- and z-polarized
sources. This picture is borne out by the asymptotic
behavior of the fields: For a Q(ic) given by (3.18)
with z replaced by ic ( =x here), we find

lNX

E„(x)- i +2moe—™I4Q(co) if e= 1 (3.23)
X
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mute).
We shall see in Sec. V that these "radiation rem-

nants" are the electromagnetic field structures
which, in a more exact theory, take the place of the
"surface-scattered wave" concept in phenomenologi-
cal theories of fringe formation. They are not radia-
tion fields, as shown by Eqs. (3.20)—(3.24); thus it is
not surprising that they can have either transverse (s
or z) or longitudinal (K) polarization. However,
they are similar to radiation fields in that they have
components at ~=6 and ~=neo, satisfying the
dispersion relations in vacuum and in the underlying
medium. Further, we note that the relative ampli-
tude of these components is dependent on n [cf., e.g.,
Eq. (3.21) and the relative sizes of the "kinks" in
Fig. 3]. This will have important consequences in
determining the spacing of fringes.

IV. THE SELVEDGE POLARIZATION

(S S+KK) PI(K;Z )

(ss+KK) P(K;z'),
@+1

(4.4)

z z Pi(K;z")= z z P(K;z'),
a+1

and using Eqs. (2.19) and (4.2)—(4.4) we find

f S~(z+z') P(K;z')dz'
0

GL (z —z") PI(K;z")dz",—I
(4.5)

P(K;z), 0&z&l
P, K;z='

0 otherwise

r

P, (K;z), 0&z&l
(4.6)

as physically expected. Defining an effective polari-
zation to include the selvedge and image polariza-
tions,

We now return to the selvedge polarization Eqs.
(2.19) and (2.21) and seek a self-consistent solution.
It is useful to begin by splitting the tensors 6 and S
into components which lead to a longitudinal and a
transverse field,

G=Gg+GT,

P, (K;z)= 'Pi(K;z), —l&z&0
0 otherwise

and writing

GT(z,z')—:GT(z —z')+ST(z +z'),

Eq. (2.19) becomes

(4.7)

S=SL+ST .
(4.1)

E(K;z)=E,'(K;z)+ f Gl (z —z') P, (K;z')dz',

This is easy to do, since the longitudinal parts of 6
and S can be recovered in the limit c~~, where

(4.8)

GL= limG,
C~oo

(4.2)

E (K;z) =E;(K;z)+ GT(z, z') P(K;z')dz' (4.9)
0

SL, =—lim S .
C —+oo

We will not write down GL and SL, but they may be
found directly from Eqs. (2.5), (2.20), and (4.2). The
contribution to E(K;z) in Eq. (2.19) from the longi-
tudinal part of S is [see the discussion after Eq.
(2.20)] expected on physical grounds to be that due
to an image polarization in the bulk. We can identi-
fy this by defining an image polarization PI.

P, (r) (4.10)

now contains the complete transverse field to which
the selvedge is subject. Expressions for the longitu-
dinal part of the field from a polarization P(r) are
well known; transforming Eq. (4.8) back to real
space we find

E(r)= E,'(r)+ f T(r —r ') P, (r ')dr '
a(f r —r 'f)

(x x+y"y") PI(x,y, z")
for points r with z & 0, where

T(r ) =(3r r U)jr— (4.11)

(xx+yy) P(x,y,z'),
a+1

(4 3)

spz z PI(x,y,z")= z z P(x,y,z'),
@+1

where 0 &z' & I and z"= —z', Fourier transforming
Eq. (4.3) we have [cf. Eq. (2.3)]

is the static dipole tensor, U being the unit tensor.
The notation a (

~

r —r '
~

) indicates that the integral
is to be evaluated excluding points r' satisfying

~

r ' —r
~

&5, and then 5 is to be allowed to ap-
proach zero. Equations (2.21) and (4.10) determine
the polarization in the selvedge.

Equation (4.10) separates the longitudinal, short-
range part of the dipole-dipole interaction from the
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We would still have to solve for P( r ) self-
consistently, since E;(r) involves P(r) [Eq. (4.9)].
However, it is easy to verify that GT(z,z')-co' in the
limit (3.12). Further, since the appropriate dimen-
sionless parameter in G and S is ca/co=v/co, the
limits c~ oo and a~ Do are the same, and [see Eqs.
(4.1) and (4.7)] O'T(z, z') —+0 for a~Do. Thus we
can expect, from these limits and Eq. (4.9), that

E;(r) &E;(r)+O(col)P(r) . (4.13)
I

transverse, long-range part. Let us suppose that
Eqs. (2.21) and (4.10) could be solved for P(r) in
terms of E;(r),

P(r)= f r(r, r ') E,'(r ')Zr ' . (4.12)

For Gl «1, we neglect the second term on the
right-hand side of Eq. (4.13); a more exact treatment
would take it into account in a perturbation ap-
proach involving the small expansion parameter
(col). Such a development, which could be pursued
using the formal approach of, for example, Bedeaux
and Mazur, would be in a sense a true "multiple-
scattering" expansion, since only the transverse field
would be treated iteratively; the longitudinal field
would be included exactly, or at least as exactly as
the solution (4.12) could be found.

Neglecting multiple-scattering corrections in this
sense, we combine Eqs. (2.21) and (4.10) and seek a
solution of the approximate equation

P(r)=X(r) E;(r)+ f T(r —r') P, (r')dr' — P, (r) (4.14)

for points r with z~0; introducing an image dipole tensor TI,

e —1 3p p+2(p —z )zz+3zzp —U(p +z )TI(p, z)=-
a+1 ( 2+ 2)5/2

we may write Eq. (4.14) in terms of the selvedge polarization P, (r) only,

(4.15)

P, (r)=X(r) E;(r)+ f T(r —r ') P, (r ')dr ' — P, (r)

+ f TI(p —p ';z+z') P, (r ')dr ' (4.16)

It is also convenient to change the shape of the excluded volume in the integral involving T; as that shape
changes, the additional term —4~rP, (r)/3 must change accordingly to yield the same total longitudinal field
(29). If we change the excluded volume to a cylinder with its axis parallel to z, and with a height to radius ra-
tio of 2g, it is easy to show that

+4ir[ —, —g(1+)') '~']P, (r) —4irzz P,(r), (4.17)

where a(r —r ') denotes this new excluded volume. Equation (4.17) is found simply by integrating the dipole
field from the volume between the sphere and the cylinder; since both excluded volumes are infinitesimal in the
limit of interest, P, (r ) can be assumed uniform over the "difference volume. " If we now take the limit (~0
we obtain an infinitesimally thin slab parallel to the xy plane as the excluded volume, and
a(r —r ')~a(

~

z —z'
~

); combining Eqs. (4.16) and (4.17) in this limit we have, for points r with z & 0,

P,(r)=P(r). E;(r)+ f T(r —r ') P,(r')dr'+ f TI(p p';z+z—') P,(r')dr', (4.18)

where

p(r) =P b(r), P =zz(e —1)/(4ne)+(xx+yy )(e . I)/4ir . —

Since

(4.19)

Tl(p;z) V=V TI( —p,z), T(r).V=V T( —r), (4.20)

for any vector V, it is easy to verify that Eq. (4.18) may be derived from the variational principle 5U=0, where
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U= ——, f Pg(r) P
' P, (r)dr —f P, (r) E;(r)dr ——, f P, (r) T(r —r') P,(r')drdr'

——, f P, (r) TI(p —p ',z+z') P, (r ')dr dr ', (4.21)

and where the integrals in Eq. (4 21) are to range only over the points for which b( r &)b(r ') = 1.
Ideally, for a given b(r ) one would solve Eq. (4.18), numerically if necessary, for P, ( r ). Here we shall mere-

ly use the variational principle to construct an approximate solution which, however, takes into account the
"shape" of the surface roughness. We first note that, except for its variation in the xy plane, E;( r ) may be tak-
en as uniform over the selvedge [see Eq. (2.20)] in the approximations (3.12). We then assume a selvedge polar-
ization of the form

P, (r)=pb(r) (4.22)

for points in the selvedge, where p is a vector, yet to be determined, that "adiabatically" follows the varia-
tion of E;(p) in the xy plane. Putting Eq. (4.22) in Eq. (4.21), we can then extend the integration to all points
in the selvedge; we find the best value of p overall by minimizing the ensemble average of the resulting expres-
sion,

U'=(-,'p P 'p-p —E, ) .f (b(r)&dr ——,
' f, p T(r- -') p—{b( )rb(r'))drdr'

——, f p Ti{p p', z+z—') p(b(r)b(r '))dr dr ', (4.23)

where the angular brackets denote an ensemble aver-
age. In writing Eq. (4.23) we have neglected the
variation of E; and that of p in the xy plane; we will
see that, in cases where the variation should be taken
into account in the {b(r )b(r ') ) terms in Eq. (4.23),
the contribution from those terms is negligible.

To model the surface roughness, we adopt the
simple picture shown in Fig. 5 and put

b(r)=b(p) . (4.24)

where
(4.25)

1 as p~O
c( )~'

O asI (4.26)

Although a Gaussian function might be a more ideal
model, we use

c(p) =e(I,—p)

FIG. 5. A simple model of the surface roughness.

Defining the filling factor F= (b(p) ), we note that
(b(p)b(p'))~F as p'~p while, assuming the
roughness is uncorrelated at large distances, we have
(b(p)b(p '))~F' as

~ p —p
'

~

~ a). Thus we
write

{b(p)b(p') &=F'+(F F')C(
~ p p'—

~
), —

I

instead, where I, is a transverse correlation length, to
make the calculations tractable. Putting Eqs.
(4.24)—(4.27) in Eq. (4.24) and setting BU'/Op=0,
we find

p=y, zz E;+y,(xx+yy) E;,
where

4my, =(e—1)I e—(1 —F)(e—1)

X [h (s)+Rhl(s)]]

4~y, = (e —1)I 1+ —,(1 F)(e 1)— —

x [h (s) —Rhr(s)] I

(4.28)

(4.29)

Here we have defined a shape factor s = 1,/1 and set
R = (e —1)/( e+ 1), while

h(s)=(s +1)'i —s,
hI(s) = —,[(s'+4)' '+s] —(s'+1)'~',

(4.30)

the term involvi~n hI(s) coming from the image in-
tegral involving TI in Eq. (4.23~) the h (s) term com-
ing from the integral involving T.

Although a host of approximations have gone
into deriving Eq. (4.28), that equation does at least
qualitatively capture the dependence of the effective
susceptibilities y, and y, on the shape and filling
factors of the selvedge. Consider first the limit
s~ oo (slab or "pancake" shape). We find

y, ~(e—1)/(4m@), y, ~(e 1)/4n, — (4.31).
as expected for a dielectric slab parallel to the xy
plane; in fact, these values are nearly reached for
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s =l, /I& only about 10. Since we have assumed
a.l »1 [Eq. (3.12)], this limit is reached long before
variations in E;(p) are important over the range of
C(p); as the result (4.31) can be derived from Eq.
(4.23) with the neglect of the last two integrals in
that equation, this justifies the statement made after
Eq. (4.23). We also find Eq. (4.31) in the limit
F~l, regardless of the value of s, as expected; in
this limit we approach a "full" selvedge. However,
for F&1, y, and y, are strong functions of s, espe-
cially for large e, as "depolarization effects" become
important. While for s —+oo we have y, (&y„ for
s —+0 (spike or "banana" shape) we find

V. ENERGY DEPOSITION

We can now look at the inhomogeneous energy
deposition just below the selvedge. Combining Eqs.
(4.22), (4.24), and (4.28), we find

P(p)=b(p)y E;(p), (5.1)

tions of Eq. (4.13) while recovering the important
depolarization corrections immediately, if only ap-
proximately. Of course, our result [(4.22) and (4.28)]
could be used as the initial approximation in Eq.
(4.18) to lead iteratively to an even better approxi-
mate solution.

y, ~(e—1)/4n. ,

y, ~(e —1)/2'. (e + 1), (4.32)
where

y=y, zz+y, (xx+yy ) (5.2)

for F=O, and here y, »y, . If we neglect the image
contribution by setting hl ——0 in Eq. (4.29), in the
limit I' =0 we find

and

E;(p)=E;e (5 3)

y, =y, =3(e—1)/4ir(e+2), (4.33)

1.2
0

0.8

the effective susceptibilities for an isolated sphere, '
5

for the not unreasonable value of s =—„. In Fig. 6
we graph the full y, and y, [Eq. (4.29)] as a function
of s, for F=O, taking e=16. The large variation of
y, /y, will be important in Sec. V, where we will see
that the type of fringes created depends critically on
that ratio.

We conclude this section by noting that the usual
theories of the scattering of light by randomly rough
surfaces' give, in their first order, results
equivalent to Eqs. (4.28) and (4.31); that is, they im-

plicitly assume s &&1. In those theories, both the
"depolarization" corrections and "true multiple
scattering" that result from correlations in b(i') are
taken into account in the same iteration procedure,
since the electric field is not split into longitudinal
and transverse parts. Thus an infinite number of
iterations would be required to obtain the correct
qualitative ratio y, /y, for s=l. Our approach al-
lows us to neglect the indeed small radiative correc-

Here v; is the component of the incident wave vec-
tor parallel to the surface and

E;= [U+r( a.;)].Ep (5.4)

follows from Eq. (2.20), where we have used the ap-
proximations (3.12) and assumed an incident infinite
plane wave for simplicity. For the moment we look
at just one Fourier component of the roughness
function b(a)and put.

b(p) =b(a )e'" I'+b" (a )e'

in Eq. (5.1), with Eq. (5.3), to obtain

Q(p) =Q+e' "' '+Q e' "-'
from Eq. (3.13) where a+ ——a;+II and

Q+ b(II)l y
——E;,

Q =b'(a)l y E; .

(5.5)

(5.6)

(5.7)

From Eqs. (2.9), (2.11), and (5.6) we can now find
the electric field in the bulk,

E(r) =E' '(r)+E"'(r),
where

0.4

i Pc..p —uu( x -)z=Ee ' e (5.9)

0.0

is the refracted field that would be present without
the selvedge, and

t K+'p —IN(K+)Z

FIG. 6. Effective susceptibilities y, (solid line) and y,
(dash-dots) as a function of s for F=O, @=16.

s K ~ p &ur(x )z+Ee e (5.10)
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is the field from the selvedge, where

E+——t(a+).g (ap) Q+

=2—ncoh(tc+) Q+'. (5.11)

Now the energy absorbed in the bulk is proportional
to A (r)—:

~

E(r) ~, and assuming the field from the
selvedge is a small perturbation we take

~

E"'~ &&
~

E' '~ and find

A(r)=2Re[E' ' (r) E"'(r)] (5.12)

for the inhomogeneous part of A(r). At z=0-
this reduces to

radiation remnants. However, the situation is com-
plicated by the fact that h(tc+) and h(a ) must be
added "in phase" [Eq. (5.14)], corresponding to sum
and difference combinations between the incident ~;
and the surface roughness a [Eq. (5.10)], and by the
fact that the h;~ will appear with different factors
due to different angles between sc and the appropri-
ate polarization components in the selvedge. Fur-
ther, for p-polarized light, y, and y, will appear with
factors that vary with the angle of incidence.

The final expression for v(a+) is found to be

v(a+)= [h„(a+)(a+ x) +h«(tc+)(tc+ y) ]

A(p)=4mFolReI b(a)[v(a+)+v'(a )]

xel K'p
I

where we have set

v(a+)=E, h(a+) y E; .

(5.13)

(5.14)

(5.19)

for s-polarized light, where we take a; in the x
direction. For p-polarized light we find the more
complicated expression

v(a+)= [h„(a'+)(K+'y) +h„„(a+)(Ic+ x)']

Clearly the magnitude of A(p) in Eq. (5.13) is pro-
portional to

~

b(a )[v(a+)+v'(a }]~; for a sum of
Fourier components of roughness we will obviously
obtain

X yc ~
t,

~
+h«(a+)(a+x )yget„.'t,

+h,„(a+)(ice x )y, t,'t„

+h (ic+)y,ei4 i', (5.20)

~(a)~n(a a
)~

b(a)l (5.15) where t, and t,
where the efficacy factor for the inhomogeneous en-

ergy deposition at ~, due to an incident beam
characterized by a;, is given by

t„=w(a;)(con) 't~(a;),

t, =ic; (con ) 'tp(tc; ),
(5.21)

ri(tc;a;)=2m
i

v.(tc+)+v'(tc )
i

. (5.16)

Recalling our simple model that predicts large dam-
age wherever A (p) is large, we recover the predic-
tion (1.1) for the intensity of the diffracted probe ra-
diation. We note that, because b(p) is a real func-
tion [Eq. (5.5)], we have I(a ) =I( tc). —

To find the dependence of rt(@a;) on a, we note
first that Eq. (5.11) gives

h(a ) = g h;Je;ej, (5.17)

where e; =s, a, and z, and

h„=2ico(wo+ w)

h« 2iwwoco ——'(woe+w)

h~ =2EK co '(woe+ w)

h,„=2iawoco '(woe+w)

h„,=2iwaei '(woe+w)

(5.18)

with all other hfJ vanishing. These functions are
similar to the f 's of Sec. III; since h(a+) appear in
rt(a;a; ), we can expect "kinks" (and perhaps peaks;
cf. Figs. 2—4) in rt(a;a;) at values of Pc satisfying
one or both of Eqs. (1.2), signaling the generation of

give the amplitude of the x and z components of the
refracted beams; in Eqs. (5.20) and (5.22) we have set

Because of the complicated form of the efficacy
factor g(a;a; }, we defer a detailed discussion of its
dependence on K and ~; to a comparison of theory
and experiment. We here present only a few com-
ments on the general form of ii. First we note that,
although for p-polarized light g depends on the ratio
y, ly„and thus on the roughness parameters s and F
of the selvedge, for s-polarized light rl is indepen-
dent of that ratio. Therefore, although for s-
polarized light the overall magnitude of the predict-
ed I(Pc) depends on s and F, the a dependence of
that function does not, except insofar as the a
dependence of

~
b(a)~ is importan. t. To a good ap-

proximation, then, if
~
b(a)~ is indeed 'a slowly

varying function, the predicted I(a ) for s-polarized
light is independent of any adjustable parameters
that might be used to model an imperfectly known
surface roughness spectrum. The comparison of our
predicted results with the experimental results for s-
polarized light thus will yield a critical test of our
simple picture for damage formation.

A second point is that, although the values of
f, (a.) at a =co and con are equal, and in fact the con-
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~=co[@/(e+ 1)]'~ (5.22)

In Fig. 7 we show f„(~) for an underlying bulk with
n =1.8+i9.3, the value for Al at A,=1.06 pm.
Since, for

~

e
~

&&1, Eq. (5.22) gives a=co, we can
expect that metals, as well as materials with large
and positive e, will show damage structure following
condition (1.2a), although the details will, of course,
be different.

VI. SUMMARY

We close by summarizing our results: We have

developed a theory for the periodic damage patterns
produced by laser irradiation near the damage
threshold, based on the assumption that the damage
patterns result from inhomogeneous energy absorp-

tribution from @=con is more important in the
asymptotic expansion (3.22), this does not hold for
f„(a) and f,(a). In those functions a much stronger
magnitude appears at ~=co-than at ~=con, , as seen
from Figs. 3 and 4. As we noted in Sec. III, the
asymptotic expansions indicate this is because we
chose n »1 and indeed calculations of f„(a) and

f,(a) for n &1 give much larger relative contribu-
tions from the neighborhood of @=con Th. us, on the
whole, we can expect condition (1.2b) to apply only
for dielectrics with such values of n. In detail, how-
ever, the situation is fairly complicated: For n =1.5,
for example, the imaginary part of f„(a) in fact ex-
hibits a peak at ~=1.25co. We plan to turn to the
problem of damage in low-index dielectrics in a fu-
ture publication.

Finally, we consider the problem of damage at
metal surfaces, where at frequencies corresponding
to visible and infrared light the real part of e is large
and negative. Here we find that f,(a) =h~(a) exhi-
bit small kinks at a=co; but f„(a), f, (a.), and the
other It;J of Eq. (5.18) show a sharp resonant struc-
ture due to the excitation of surface plasmons:

(woe+ w) ' diverges at the (complex) surface-
plasmon wave number, given by

0.9
1.5

1.0
I

O.Q

-1.5
NORMALIZED K

FIG. 7. —Ref„(s) (solid line) and Imf„(s. ) (dash-dots)
for an underlying bulk with e=n, , n =1.8+i9.3.
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fjon just beneath the surface, induced by surface
roughness. Our detailed predictions for the damage
structure in s space, Eqs. (1.1) and (5.16)—(5.21),
are, except for overall magnitude, independent of the
details of the roughness if the damaging beam is s
polarized; this should lead to an unambiguous com-

parison of theory with experiment. For a damaging
beam that is p polarized, we predict a dependence on

shape and filling factors of the roughness, a depen-

dence which has been calculated by a new approach
to the electrodynamics of randomly rough surfaces
based on a separate treatment of the transverse and

longitudinal electric fields, including local field ef-

fects, by introducing a variational principle to deal

with the latter. A cursory examination of our pre-
dictions indicates condition (1.2), which includes

many fringe spacings and directions observed to
date as special cases, should result; we defer a de-

tailed comparison of theory and experiment to the
following paper.
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