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The local densities of states associated with antisite and vacancy defects in the III-V semi-
conductors GaAs, GaP, InP, InAs, and AlAs have been studied using the large-cluster re-
cursion approach of Haydock, Heine, and Kelly. The resonant states and localized states
induced by these native defects and the associated electron-charge redistributions are calcu-
lated and discussed. The principal states in the fundamental energy gaps corresponding to
these defects are found to be the following: for ideal cation vacancies, localized T, states in
the lower parts of the gaps, for ideal anion vacancies, T, states in the upper parts of the
gaps, and for anion antisite defects, states of 4, symmetry in the upper parts of the gaps.
For cation antisite defects in AlAs and GaAs, no gap states are found. An ideal divacancy
in GaAs is found to introduce four gap states. The properties of intrinsic defects near an
ideal GaAs-AlAs (100) interface also have been studied. It is found that the interface does
not affect the general features of the local density of states induced by the defect. The total
electronic energies of interaction between the defects and the interface are calculated by a
generalized zeros-and-poles method, and the resulting interactions between the defects and
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the interface indicate that nonstoichiometry may result there.

I. INTRODUCTION

Defects which introduce “deep” electronic states
with ionization energies of the order of the width of
the band gap are thought to be a main factor limit-
ing semiconductor device performance and reliabili-
ty. In III-V semiconductors, vacancies, interstitial
defects, and antisite defects represent the basic na-
tive defects which produce nonstoichiometry and
deep localized levels. In binary compounds, an
anion (cation) antisite defect is formed when an
anion (cation) occupies a cation (anion) site. This
occurrence is favored when the differences in size
and electronegativity between the two constituent
atoms are small. Thus, in principle, it is more
favorable in GaAs than in GaP.

Experimental evidence for anion (cation) antisite
defects has been reported for binary semiconductors
in which the cation (anion) has more shells of elec-
trons than the anion (cation). Examples are the
anion antisite in GaP (Refs. 1—5) and in GaAs
(Refs. 6 and 7) and cation antisites in GaSb (Ref. 8)
and AISb (Ref. 9). ESR gives strong evidence for
the identity of the defect center from its characteris-
tic nuclear-spin hyperfine-structure and ligand
hyperfine-structure patterns. The absolute position
of the energy levels of the deep centers generally
have not been determined experimentally, however.
Several levels (E1, E2, E3, E4, E5, and H1), which
are detected by deep-level transient spectroscopy in
GaAs,!° have not yet successfully been identified
with specific types of defects.
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There has been increasing interest in theoretical
investigations of native defects in the III-V materi-
als in recent years.!!~'> Scheffler et al.!! and
Bernholc and Pantelides!! carried out self-consistent
pseudopotential Green’s-function calculations on na-
tive defects in GaP. Their results support the identi-
fication of the antisite given in ESR studies but con-
tradict the identification of cation vacancy in GaP.
They attribute the ESR spectrum previously attri-
buted to the Ga vacancy to carbon at Ga sites.
However, more recent work by Kennedy and Wil-
sey'® does not agree with the carbon identification
for experimental reasons. Because of the controver-
sy existing in the current literature, more
comprehensive investigations of the deep centers is
desirable.

Other areas of importance concerning the defect
problem are the defect interaction with an interface
and the defect-defect interaction. These effects
form the basis of understanding the likelihood of the
formation of certain defect complexes and can pro-
vide information about the selective diffusion of de-
fects. Previously there have been some suggestions
concerning the existence of defect complexes in III-
V semiconductors.® Diffusion of defects has also
been observed across semiconductor-semiconductor
interfaces.

To investigate the deep-center problem theoreti-
cally, various approximate methods are being used.
In the case of III-V compounds, use has been made
of the pseudopotential method'? and of empirical
variants of the Green’s-function method.!" These
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methods have a number of shortcomings, including
a considerable amount of computation time required
in carrying out k-space integrations and difficulties
in determining the local parameters of deep centers.

In the present work, we employ a continued-
fraction recursion method which has been applied
successfully to amorphous materials and to the
surface-adsorption problem.!” We find that this
method is especially useful in dealing with localized
states in semiconductors. Previously this method
has been applied to study defect states in semicon-
ductors in a preliminary way using smaller clusters'®
or limited expansion of the continued-fraction ex-
pressions.!> In the present work we examine care-
fully the convergence of the results and the effects
of the tight-binding interatomic interactions on the
results. Based on this continued-fraction approach,
a new formalism' is adapted here to evaluate the
defect-interface interactions. Details of the present
method will be discussed in the next section. Sec-
tion III gives our calculated results for vacancy and
antisite defects in a series of III-V semiconductors
and for defects near a model GaAs-AlAs interface.
Section IV is a summary of the work. Preliminary
reports of some aspects of these results have been
published in Ref. 20.

II. THE CALCULATIONAL METHOD

There are a number of methods for solving the
Schrodinger equation for the case of a deep impurity
in a semiconductor. Early interpretation of the ex-
perimental results for transition-metal impurities in
III-V  semiconductors relied upon crystal-field
theory. However, this approach does not provide a
satisfactory quantitative theory because the approxi-
mations involved do not allow for the effect of co-
valent bonding. Subsequently, theoretical analyses
of deep-center energy spectra employed the pseudo-
potential method,'>!® the small-cluster augmented-
plane-wave method,?! the scattering theoretical
method!! and self-consistent Green’s-function tech-
niques.2 All of these methods make use of the per-
fect periodicity of the unperturbed system to simpli-
fy the computation. Thus they have limited capabil-
ities in studies of many important aspects of deep-
center problems, for example, for deep defect centers
near surfaces and interfaces where periodicity is sub-
stantially altered, for defects in the presence of lat-
tice relaxation, or for extended defect complexes.

When a deep defect center or a cluster of defects
is incorporated into a bulk solid or solid surface, it is
logical to seek an approach which is not based on
the translational symmetry of the lattice but rather
is based on the local atomic environment. The re-
cursion method provides such an approach. It does
not utilize k-space representations at all even where

there is lattice periodicity. Therefore, one need con-
sider only the real-space Green’s function. The at-
tractive features of this method as compared with
alternative approaches can be summarized as fol-
lows:

(1) Tt does not require crystal periodicity to sim-
plify the calculation. Thus the existence of surfaces,
interfaces, or lattice distortions can be incorporated
without additional complexity.

(2) Three points related to calculational efficiency
are as follows:

(a) In the local atomic environment approach to
solid-state physics, the Hamiltonian of a large clus-
ter has a matrix that is usually too large to store in
the computer, but its matrix elements are simple to
compute. The recursion method has the advantage
of computing with vectors from the space operated
on by the Hamiltonian but not by the matrices.
Therefore, there is no need to store a large matrix
and no restriction on the size of the cluster on this
account.

(b) The recursion relation is an easy algorithm to
program. With the existing Cambridge Recursion
Method Library routines, the computer time re-
quired to obtain the density of states of pure GaAs
by this method using a cluster of 512 atoms is an or-
der of magnitude less than that from a pseudopoten-
tial k-space integration method. The results, on the
other hand, agree well with the pseudopotential cal-
culations.

(c) Because of the calculational efficiency, this
method is suitable for a large-cluster system. Unlike
the small-cluster approach, surface effects become
irrelevant in such a large cluster, and there is no dif-
ficulty in locating the band edges. However, it
should be noted that one should be particularly care-
ful in choosing the shape of the cluster when the re-
cursion calculation is performed. As mentioned in
Ref. 17, a regularly shaped cluster tends to add up
boundary corrections from all parts of the boundary
coherently in phase at the center. Thus one finds
that even for a sufficiently large cluster, the boun-
dary will introduce some spurious resonance peaks
in the local density of states (LDOS) curve for the
central atom if one chooses a spherical cluster. This
can be eliminated by using a cluster with a shape as
irregular as possible while retaining the symmetry of
the Hamiltonian.

(3) The generalized “zeros-and-poles” method!’
which has been developed recently based on the re-
cursion approach is useful for calculating very small
differences in the total energy between two similar
large aggregates of atoms with a sufficient accuracy
to extract useful information. Therefore, it becomes
feasible to study the interaction energy involving de-
fects within the bulk, and at interfaces or surfaces.
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In the recursion method one exploits the sparse-
ness of the representation of a tight-binding Hamil-
tonian H and performs a unitary transformation on
the local-orbital basis |aR;) to produce a tridiago-
nal representation of the Hamiltonian. Here |aR;)
represents the state of the ath orbital of an atom at
R, site. New normalized basis functions | U, ) are
then defined iteratively so as to guarantee that each
new member interacts only with the preceding and
following members, i.e.,

|Ug)=|aR;) , (1a)

by | U =H—a,_)|Uy_1)—b,_1|U,_3),
(1b)

(U, | U, )=1. (1)

After the transformation, the tridiagonal representa-
tion of the Hamiltonian matrix takes the following
form:

a,,, n=m
bm+17 n=m —+—1
<Um|H|Un)= b::,, n=m—1 ()

0, otherwise .

The matrix elements a;,b; are related directly to the
continued-fraction coefficients in the expansion of
the real-space Green’s function G4 (E):

GuiatlE)={aR; |[E—H]'|aR;)

. 1
bi
E—a0~ b2
2
E——al—— b2
3
E—a,—
a E_

3

As a result, the matrix elements in Eq. (2) give the-

complete description of Gyjq(E), which in turn
gives the physical quantities characterizing the sys-
tem such as the local density of states N (E) for the
ath orbital at R; site, the electronic occupancy 74
of the |a,R;) state, and the total energy U of the
system via

Ny(E)=—m"" ImOGalal(E—{—ie) , 4)
€—>!
Ep
na1=f_wNa1(E)dE s (5a)
Ey
U= [_ (E—EpN(E)E . (5b)

This real-space approach is especially useful be-
cause the action of the Hamiltonian on a particular

orbital at a particular site can be considered in-
dependently in Egs. (1)—(3), and thus the contribu-
tion from each orbital to the physical properties of
the system can be obtained separately. The
continued-fraction coefficients a;,b; given by Eq. (2)
are related to the (2i)th-power moments of the
LDOS as a function of energy. Therefore, the recur-
sion method is analytically equivalent to computing
the moments. These a;,b; are found to converge to
constant values for increasing i. The constant a;,b;
for large i gives the correct analytical spectrum.
[E —E(edge)]'/? near the band edges, and the a;,b;
for small i modulate the semielliptical spectrum
with the local information extracted from H. It
should be noted that for clusters of finite size the
a;,b; for large i deviate substantially from the corre-
sponding moments in the infinite cluster. This
occurs when more and more paths which contribute
to the a;,b; lie outside the boundary of the finite
cluster. Thus care should be taken in practice con-
cerning where to terminate a;,b;.

The convergence of the recursion approach has
been examined in detail in the review articles in Ref.
17 for clusters of narrow—d-band transition metals.
In semiconductor systems the second-neighbor in-
teractions become more important than in the case
of transition metals, and therefore we have exam-
ined the convergence of the present calculations
carefully.

The atomic-orbital basis functions |aR;) in Eq.
(1) are chosen to be orthonormal in this calculation.
The tight-binding Hamiltonian matrix elements are
then related to the Slater-Koster parameters as will
be discussed in Sec. IIIA. To examine the conver-
gence of the calculation for a given set of Slater-
Koster interaction parameters which reproduce the
bulk energy bands accurately for GaAs, we vary N,
the size of the cluster, and L, the length of the
continued-fraction expansion. The a;,b; are calcu-
lated explicitly for i =1 to i=L. The results for the
density of states (DOS) of such GaAs clusters are
displayed in Fig. 1.

Because the N and L constitute independent
sources of approximation, one must select the size of
the cluster and the length of a;,b; of the expansion
to produce the most accurate results consistent with
given computing resources. As seen in Fig. 1, the
best agreement with the pseudopotential results of
Chelikowsky and Cohen?® is for the cases N =216,
L=19, and N =512, L =25. With second-neighbor
interactions taken into account, the minimum num-
ber of interaction steps from the central atom to the
boundary of the clusters is four for N =512. Ac-
cording to an empirical rule of thumb,!? the recur-
sion then should be carried to L ~8. However, be-
cause the total bandwidth W of the semiconductor
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FIG. 1. Densities of states (DOS) obtained from recursion method using continued-fraction expansions of lengths

L=17,13,19,25 for pure GaAs clusters of 64, 216, and 512 atoms.

GaAs is rather wide (~24 eV), L must have a
higher value in order to achieve a better energy reso-
lution which is proportional to W /L.

Our calculations shown in Fig. 1 indicate that the
LDOS of a cluster containing 64 atoms deviates sub-
stantially from the pseudopotential calculation, and
thus a cluster of size less than 200 atoms does not
give a reliable approximation for the bulk crystal.
On the other hand, there is no significant difference
between the LDOS of clusters containing 216 and
512 atoms, and they all agree with the pseudopoten-
tial results quite well. [See Ref. 20(a), Fig. 1a.] We
conclude that the 512-atom cluster has reached the
desired convergence for the accurate representation
of the bulk crystal. Also shown in Fig. 1 are the ef-
fects of increasing L, the length of the continued-
fraction coefficient. For a 64-atom cluster and
L =19 and 25, the LDOS contains many resolved 8-
function distributions near the band edges. This is
consistent with the explanation that the resolution of
individual levels moves in from the extremes of the
spectrum as L increases.”” For even larger L, the
LDOS turns into a complicated series of spikes.

Although the LDOS is not a stable convergent
function of E, the physical quantities in which we
are interested are satisfactorily convergent with in-
creasing size of cluster.!” Such physical quantities
are represented by integrals over all the states of the
system as given by Eq. (5). Indeed, the problem of
stability and convergence does not affect localized
states as much as extended states, and this also helps
to justify the use of the present approach for the in-
vestigation of deep levels. The numerical uncertain-
ty of the cation vacancy level in GaAs, for example,

is found to be #0.12 eV for L >19 and N=512
atoms.

In Fig. 2 we show the convergence of the integrat-
ed quantities of Egs. (5a) and (5b) with respect to the
size of the cluster and the length of the continued-
fraction expansion for the pure GaAs cluster
described above. The convergence of the total ener-
gy in Eq. (5b) has been reached for L >19 and

M
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-1.44 +
w w
2 +3.80 E
w - +
& 1.46
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FIG. 2. Test of convergence of the integrated quanti-
ties of the local density of states in GaAs when the length
L of continued-fraction coefficients changes. f NdE is
the number of electrons, and f EN dE is the total elec-
tronic energy at one site. Solid curve, dashed curve, and
dash-dotted curve are for clusters of 512, 216, and 64
atoms, respectively. The energies are in rydbergs.
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N >216 atoms. The difference in this energy for
216 and 512 atoms evaluated at L > 19 is less than
0.015 eV.

In this method, a rudimentary form of self-
consistency in LDOS calculations can be used to
provide the correct total electron occupancy of the
atoms and a uniform Fermi energy in a solid. In
general, for a defect or impurity the local potential
is a strong function of the charge transfer into the
impurity orbitals with a resulting change in the local
potential which must be incorporated into a new cal-
culation of all the LDOS until the correct total elec-
tron occupancy is achieved for a given Fermi ener-
gy. A simple scheme involving the changes of self-
energies alone can be used to capture the essential
physics. In this way in more elaborate calculations
the local hopping integrals are also changed.

In order to determine the interaction energies be-
tween defects or between defects and surfaces or in-
terfaces, we utilize a generalized zeros-and-poles
method.’” The interaction energy is the small
change of total electronic energy of the system when
a defect is introduced in the vicinity of another de-
fect or a surface. The introduction of a defect in a
large system produces a local perturbation and hence
a very small change in the total electronic energy of
the system. The subtraction of two large quantities
arising from the total energies before and after the
perturbation to obtain a small quantity in general
will give rise to a large uncertainty. Moreover, when
a local perturbation is turned on, the local density of
states at not only the perturbed site changes, but also
the local density of states over a large volume sur-
rounding the perturbed site will change. This can be
due to charge transfer or to the relaxation of atoms
in the neighborhood of the defect. Under such con-
ditions, the summation over all the local densities of
states to obtain the total density of states becomes
impractical. A new formalism designed to circum-
vent the above difficulty is used here. This formal-
ism gives the change of the total energy directly
without the necessity of finding the total densities of
states of the system before and after the local pertur-
bation. The formalism is exact. The only approxi-
mations occur in the modeling of the solid via a
tight-binding cluster.

~ In the tight-binding picture, the change of the to-
tal density of states of the system for complex ener-
gies E can be expressed as

AN(E)=N(E)—Ny(E)
=TrG —-TrG, . (6)
Using the identity

9

Tr(EI—H) '=
( ) 3E

[Indet(EI —H)] (7)

and the relation from the theory of determinants

S
P=TIIM ) s (8)

i=1

(detM )~

where M is a square matrix of order s, and M;_,
represents a matrix formed by deleting the first i —1
rows and columns of M, and

[(M;_ )~ T

is the (1,1) element (at the upper left-hand corner) of
the matrix (M;_,)~!, we obtain

"'”il {[(EI—H,); 117}

AN(E)=
( i=1 OE ! {([(ET—H); 11"}

9)

H, and H are the Hamiltonians of the system,
respectively without and with the local perturbation.
The system has n sites and at each site there are m
orbitals. Therefore the summation in Eq. (9) is over
the total of the nm orbitals in the system. Suppose
the local perturbation affects only sites [ =1,2,. . .,k;
then we have (EI —H,); =(EI —H); for i > km, and
Eq. (9) reduces to

km 9 —0 —
AN(E)=2 —ln(G,_l/G,_l) (10)

=1 9E
Here we use the notation G;_; and G;_; to denote
the (1,1) matrix elements of [( EI Hy); ]_1 and
[(EI —H);]7}, respectively. The G "1 and G;_, are
the Green’s functions associated with the ith orbital
in an unperturbed and perturbed system, respective-
ly, with the first to (i —1)th orbitals missing. Equa-
tion (10) is greatly simplified when compared with
Eq. (9) because we need only to evaluate km Green’s
functions instead of nm functions. The change of
one-electron energies of the system under the local
perturbation is

EF
AF=[ " (E_Ep)AN(EME (11)

E
where f _idE represents the contour in-
tegral (2i)— 1¢ dE around a contour enclosing all
the eigenvalues up to Eg.

Equation (11) has an especially simple form when
we expand the G; in terms of its zeros and poles in
the following manner:

L
[IE-P)! (12)

=1

L-1
= H (E—Z,[)

=1

where Z,, (P;) are the zeros (poles) of G;. A similar
expression holds for G?. We obtain
d _  L-1
——InG;= E—-Z;)~ E—Py)~ .
TRl 2( T
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Equation (11) then has the following form:

=_2Z11+2P11_ NP N) F
il il

il i
Here N, (N,;) and N, (N, 9) are the total numbers of
poles and zeros of S G; and Y G, , respectively,
with energies below Er. The sum over i in Eq. (14)
is from O to km —1, and the sum over [ is from O to
L.

The numerical calculation of Eq. (14) can be per-
formed by considering two fictitious densities of
states N*E) and NP(E) which contain all the
correct poles and zeroes in Eq. (14), respectively.
Thus the summations in Eq. (14) become the

contour integrations f ENP(E)dE  and

¥ EN*E)dE and can be evaluated via the recur-
sion method.

The evaluation of Eq. (14) involves an integrated
quantity and therefore requires a smaller value of
the length L of the continued-fraction expansion
than for the LDOS discussed above. For such in-
tegrated quantities it has been suggested that L
should have a value related to the number of steps
from the atom to the boundary.!” We have per-
formed an evaluation of the effect of L on the re-
sulting change of energy of the system when one

(N)—NDEg . (14)

T T T T
-26.0 T
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FIG. 3. Change of electronic energy vs the length of
continued-fraction expansion when a Ga atom of a 512-
atom cluster of GaAs is removed. Solid curve is for the
Ga atom removed from the central site of the cluster.
Dashed curve is for the Ga atom removed from second-
neighbor to central site.

DENSITY OF STATES

LDOS

/\‘ AlAs

E (eV) E(eV)

FIG. 4. DOS curves of pure GaAs, GaP, AlAs, InP,
and InAs obtained by the present calculation.
atom is removed from the system. When the central
atom of a GaAs cluster (of size 512 atoms) is re-
moved, the change of energy of the system, in addi-
tion to the energy of that atom at infinity, is shown
in Fig. 3 as a function of the length L. The solid
curve indicates the change when the central Ga
atom is removed. The dashed curve is the change
when a Ga atom occupying a site which is second-
near neighbor to the central site is removed. For an
infinitely large cluster these two curves should coin-
cide. However, the two curves deviate from each
other after L > 10 because the paths of the Hamil-
tonian interactions which reach the boundary from
these two locations become different after L > 10.
Both curves also become oscillating after L > 10.
The curves shown in Fig. 3 are for Er=0. Because
of the existence of a localized defect state in the gap
for the Ga vacancy, the change of total electronic
energy depends upon the position of Er in the gap.
In other words, it depends upon the doping and the
filling of the defect states. From the above discus-
sions for Er=0 we see that the boundary of the
cluster introduces an uncertainty of energy ~0.02
eV in the results of the zeros-and-poles method

‘when we use a 512-atom cluster and retain L =10

coefficients. Therefore, meaningful results can be
obtained only if the change of total energy due to lo-
cal perturbation is greater than ~0.02 eV.

III. RESULTS

A. Pure bulk crystals

Using the first- and second-nearest-neighbor
Slater-Koster parameters of Osbourn and Smith*
for GaAs and of Daw and Smith?’ for GaP, AlAs,
InP, and InAs, we obtain the DOS curves shown in
Fig. 4 for these systems. These results agree well
with corresponding pseudopotential calculations.??
The main difference between the two involves the

sharpness of the Van Hove singularities. The

finite-cluster calculations cannot reproduce this
sharpness because the cancellation of the effects
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TABLE 1. Electron distributions at anion site 4 and
cation site C in pure III-V semiconductors. N;” denotes
the number of electrons of /-type with energies lying in
the ith valence band. N denotes the total number of elec-
trons at a given site.

GaAs GaP AlAs InP InAs
N(4) 1.43 1.47 1.53 1.58  1.49
N(4) 002 001 001 001 001
N(C) 029 024 024 013 0.13
N(C) 026 028 022 028 037
NP(4) 2.87 307 290 312 3.03
N2(C) 0.8 081 075 0.85 097
N(C) 215 198 216 193 187
N(C)/N(4) 080 071 075 067 0.73

from the cluster boundaries breaks down when the
energy approaches Van Hove singularities. The
present method also gives the LDOS for each orbital
and hence gives the electron distribution for each
band. In Table I, the results of the present calcula-
tions for the distributions of s and p electrons at
anion and cation sites are given for the valence
bands. As shown in Fig. 4, the valence bands of the
III-V materials are separated into two parts by a
heteropolar energy gap due to the potential differ-
ence between the two atoms in the unit cell. The
lowest valence band for these materials is found to
have s electrons concentrated more densely at the
anion sites. This band is predominantly s-like about
the anion atoms and s- and p-like about the cation
atoms. For GaAs, the numbers of s and p electrons
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near the anion (cation) site are 1.43 and 0.02 (0.29
and 0.26), respectively. The second (upper) valence
band is found to be much more covalent in charac-
ter. The numbers of electrons on the anion and the
cation sites are nearly equal for GaAs and are slight-
ly different for GaP. This indicates that GaP is
somewhat more ionic. The ionicity of these materi-
als can be seen from the deviation of the last line in
Table I from the value 0.6 for the perfectly ionic
case. The corresponding values for pure AlAs, InP,
and InAs are also listed in Table I for comparison.

The above results agree with the results of pseu-
dopotential calculations?® for the relative charge dis-
tribution near the anion and cation sites. In view of
the above general agreement between the present re-
sults and the results of other calculations in the case
of pure bulk crystals, we consider the sets of Slater-
Koster parameters given in Refs. 24 and 25 as ade-
quate to be used in the calculation of defect prob-
lems.

B. Ideal vacancies

Vacancies are expected to be common intrinsic de-
fects in semiconductors. To date, there is little clear
experimental evidence for the nature of the vacancy
defects in III-V semiconductors. The type of vacan-
cy defects (anion, cation, neutral, charged, monova-

" cancy, or divacancy) depends on many conditions

during the preparation and post-growth treatment of
the crystal.
The ESR detected after 2-MeV electron irradia-

TABLE II. Energies of defect states introduced by cation vacancies V,, anion vacancies V,,
anion antisite defects 4,, and cation antisite defects A, in III-V semiconductors. Energies are
in'eV and are measured from the top of the valence bands. 4; and T, denote the symmetries
of the states. E, is the energy gap in the pure materials.

GaAs GaP AlAs InP InAs
E, 1.52 2.35 2.11 1.41 0.37
A, —9.03(—9.02)* —9.42 —8.37 —8.92 —9.18
A, —0.74(—0.60)* —0.55 —0.60 —0.55 —0.54
V. T, 0.44(0.63)* 0.44 0.81 0.44 0.27
A, —9.99 —9.35
A, 0.34 0.77
Vs, T, 1.21 1.58
Ay —12.80 —13.10 —11.70 —11.10 —11.63
A —7.45 —-7.77 —6.63 —8.11 —8.17
A,y Ay 1.25 1.70 1.54 1.33 1.02
Ay —7.49 —5.79
A, A 4.39 5.30

2Numbers in parentheses are the energies when the atoms next to the vacancy are relaxed out-

ward by 5%.
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FIG. 5. Change of local density of states (ALDOS)
evaluated at the anion site next to the cation vacancy in
bulk GaAs (solid curve) and for a Ga vacancy next to

GaAs-AlAs interface (dashed curve).

tion of GaP was initially interpreted as due to the
isolated Ga vacancy. Recently there have been ques-
tions about this identification because of disagree-
ment with calculations.!! It is therefore interesting
to examine in detail vacancies in III-V materials.
We have examined ideal cation vacancies in GaP,
GaAs, InP, InAs, and AlAs and ideal anion vacan-
cies in GaAs and AlAs. The positions and sym-
metries of major features of the electronic states of
these defects are given in Table II and Figs. 5 and 6.

An ideal isolated cation vacancy (with no lattice
relaxation) introduces bound states of symmetry T,
in the lower parts of the energy gaps of these III-V
semiconductors (except for InAs which has a small
gap at 0.37 eV, and a T, state lying in midgap). The
T, state is a dangling s-p hybrid which is predom-
inantly p-like with a small s admixture at the first-
nearest-neighbor anion sites. The percentage of p
character of the T, state is 88.8% (83.7%) in GaP
(GaAs). 76.1% (70.8%) of the electrons in this state
in GaP (GaAs) are located at the first-near-neighbor
sites indicating its highly localized character and

/i
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FIG. 6. ALDOS evaluated at the anion site next to the
cation vacancy in AlAs, InAs, InP, and GaP.

justifying the use of the localized tight-binding ap-
proach in this calculation. The corresponding re-
sults for other III-V materials are listed in Table III.
Three electrons occupy this level in the case of a
neutral cation vacancy. When it is partially occu-
pied, the T, state is subject to a symmetry-breaking
Jahn-Teller-like distortion which will split the level
and can change the charge state. We shall not con-
sider this effect here.

Other major features of the ALDOS (the differ-
ence between the LDOS and that for the DOS in the
bulk crystal) for ideal cation vacancies are a local-
ized 4, state near the top of the s-bonding band and
an A; resonant state near the top of the valence

TABLE III. Percentage of p character of the T, states (n,/n) and the percentage of elec-
trons (n's'/N) of the T, states located at first-neighbor sites of a cation vacancy or anion va-

cancy (subscript ¢ or a) in III-V semiconductors.

GaAs GaP AlAs InP InAs

(np/n)e 0.84(0.873)* 0.89 0.89 0.89 0.89
(n'$Y/N), 0.71(0.73) 0.76 0.67
(ny/n), 0.65 0.70
(n'st/N), 0.58 0.71

“Numbers in parentheses are the values when the atoms next to the vacancy are relaxed out-

ward by 5%.
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band. The former state is a purely s dangling-bond
state localized primarily on the first-neighbor anion
atom and extending slightly onto the neighbor; the
latter is a resonant state mainly p-like about the
first-near-neighbor anion (and second-near-neighbor
cations).

We have also performed a calculation for a vacan-
cy in GaAs with a 5% uniform outward dilation of
the surrounding atoms. This relaxation results in a
shift of the T, state to higher energy from 0.44 to
0.63 eV. This is equivalent to a change of
AE(T,)=1.56 eV/A for outward relaxation. The
shift in energy of the gap state as a result of uniform
dilation is relatively small and may be smaller than
the splitting of the level due to the Jahn-Teller ef-
fect. The percentage of p character in the T, state
increases to 87.31%, and 73.12% of the electrons in
this state are located at the first-near-neighbor sites.
This stronger p character and greater localization
are a result of the lattice relaxation of the ligand site
away from the center. The lower 4, resonance state
remains almost unchanged at —9 eV, but the higher
A; resonance state moves to higher energy,
AE(A4,)=1.7 eV/A. Thus the two A;-symmetry
states are pushed even farther apart while the T,-4,
splitting increases slightly from 1.18 to 1.23 eV.
The positions of these levels are shown in Table II.
These changes are similar to the changes calculated
for the case of relaxed ligand atoms surrounding a
Ga vacancy in GaP.?’ Also, the rate of change of
the energy of 4, and T, with dilation resembles the
change of nitrogen-impurity levels in GaAs during
dilation.® The ESR spectrum which has been inter-
preted as that of the cation vacancy in GaP has
overall cubic symmetry.!~* It is a matter of current
debate whether this ESR signal comes from the va-
cancy center or from a deep impurity center or if it
results from rapid dynamical Jahn-Teller distortions
associated with both T-symmetry phonons and E-
symmetry phonons. (The former leads to a trigonal
distortion and the latter to a tetragonal distortion.)

The states of the cation vacancies in the other
III-V systems are similar to those in GaAs. Their
features are given in Fig. 6 and Tables II and IIL

We have also examined the arsenic vacancy in
GaAs and AlAs. The positions and characters of
the important structures in ALDOS for these cases
are given in Tables II and III. The features of the
ALDOS shown in Fig. 7 resemble those for the ca-
tion vacancy only in energy region near the gap. An
ideal As vacancy introduces a T,-symmetry state in
the gap at an energy higher than that of the state in
the gap for the cation vacancy. This gap state is
formed by the s-p admixture of the dangling-bond
states of the first-nearest-neighbor Ga atoms, and it
is also highly localized at the first neighbors of the
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FIG. 7. ALDOS for anion vacancy in GaAs and AlAs.
Solid curve evaluated at cation site next to the vacancy
and dashed curve evaluated at the anion site which is the
next near neighbor to the vacancy.

vacancy. However, unlike the T, state for the ca-
tion vacancy, the p-electron contribution to T, has
decreased substantially (e.g., from 83.7% to 65.0%
in GaAs). This is presumably due to the fact that
the Ga (As) atom at the first-nearest-neighbor site
has fewer (more) p electrons. For a neutral As va-
cancy, the T, level in the gap is occupied by one
electron and, as with the case of the cation vacancy,
it is unstable with respect to a Jahn-Teller distortion,
which would lower its symmetry from that of the
cubic case. To date, however, ESR corresponding to
an anion vacancy has not been detected in the III-V
semiconductors.

For these As vacancies a resonance state of A
symmetry is found to lie even closer to the valence-
band edge than the corresponding resonance in the
case of the cation vacancy. The lower A, resonant
state near the top of the s-bonding band has quite
different character from that in the cation vacancy.
It is a resonant state for the second-nearest-neighbor
orbitals and an antiresonant state for the first-
nearest-neighbor orbitals because of the missing ar-
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senic s-bonding electrons. This indicates that the s
electrons redistribute and move from the first-near-
neighbor sites to the second-neighbor sites to form
bonding states instead of dangling-bond states at
that energy.

Our results for the vacancy levels in general agree
with calculations for GaP and GaAs by Scheffler
et al.'! and by Bernholc et al.,?” except that the po-
sitions of our 4, and T, states for the anion vacancy
appear at lower energies. Our results for the 4; and
T, levels for cation vacancy appear at higher ener-
gies than their results. Our results, however, differ
from those in several other calculations.®!3!* Srivas-
tava finds an 4, gap state for the anion vacancies in
GaP and InP.® Madhukar and Das Sarma find
both 4; and T, gap states for cation vacancy in
InAs.' Our results agree quantitatively with the cal-
culations of Daw and Smith?® who use the same set
of tight-binding parameters. The results of our cal-
culation for the ideal vacancies will not be compared
with experiment here. The present calculations
serve primarily to help to understand the properties
of the antisite defects which are discussed in the
next section.

C. Antisite defects

In studying the antisite defects we have examined
several sets of interaction-matrix elements between
the defect and its neighbors. For GaAs these in-
clude a set obtained from a fit to the band structure
of bulk As and a set corresponding to these for bulk
GaAs itself. The resulting LDOS has similar
features for these choices. The relative positions of
the localized states, however, differ somewhat. We
believe that keeping the hopping-matrix elements for
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FIG. 8. ALDOS evaluated at the anion antisite in
GaAs (solid curves) and at an anion antisite next to a
GaAs-AlAs interface (dashed curve).

the antisite defect unaltered from the bulk is more
reasonable than using matrix elements obtained
from different tight-binding fits for different ma-
terials. The present calculations are done using the
hopping-matrix elements of the pure crystal and
varying only the site energies of the defect atom.

The results calculated here for ALDOS for anion
antisite defects in the III-V semiconductors are
given in Figs. 8 and 9. They exhibit three localized
bound states, all of 4; symmetry. There are 4,
states below and above the lower valence band and a
state in the upper part of the gap (except for InAs).
The physical origin of these states can be understood
on the basis of a simple molecular model. In this
model the defect anion is placed into an ideal cation
vacancy, and the wave functions of the defect atom
then hybridize with those of the ideal vacancy. The
free-anion-atom s orbital hybridizes with the lowest
A, resonance state of the cation vacancy and pro-
duces a bonding-antibonding pair of states below
and above the s-bonding valence band. The upper
A, resonant state of the vacancy is pushed up into
the gap by interaction with the antisite s orbital and
becomes a localized state in the upper part of the
gap. For a neutral antisite defect, this 4, gap state
is occupied by two electrons. The T, gap state of
the ideal vacancy interacts with the p orbital of the
antisite defect state and forms two resonant states,
one in the conduction band and one in the valence
band.

AlAs

s V
e\ \/ N /\/‘VU
TV

A LDOS

E (eV)
FIG. 9. ALDOS evaluated at the anion antisite in
AlAs, InAs, InP, and GaP.
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In the case of GaP the wave function of the 4,
gap state and the anion antisite contains 95.2%
atomic s orbital. At the four ligand sites, the hybrid
orbital, which is toward the central P site, has
80.9% p character. This value indicates that the
bonding states have more p character than sp* even
without relaxation of the ligands away from the cen-
tral P site. Relaxation is usually caused by contribu-
tions from the antibonding character of the s orbital
at the central site. Thus the outward relaxation
which has been invoked to explain such hybridiza-
tion observed in ESR measurements* is unneces-
sary. The p character of the localized gap state of
the antisite is less than that of the ideal cation va-
cancy. We also find that 21.3% of the wave func-
tion of the A, gap state is at the central site, 58.8%
is at the first-near-neighbor sites, and 18.9% is at
the second-near-neighbor site. Therefore, most of
the wave function is accounted for inside the
second-near-neighbor shell, consistent with the fact
that the A4; state associated with the antisite is a
well-localized state.

The antisite defect in GaAs has similar properties
to that in GaP. There is an 4, gap state at 1.25 eV
above the valence-band edge. 14.9% of the wave
function is at the central site, 44.8% is on the first-
near-neighbor sites, and 39.8% is on second-near-
neighbor sites, again indicating a highly localized
state. At the central site the wave function has
87.0% atomic s character. At the ligand sites the
wave function has 75.2% p character. For the case
of GaAs, the p character has increased considerably
compared with the case of GaP and approaches that
of perfect sp* bonding. Because Ga has an atomic
number closer to that of the As atom than that of
the P, replacing the Ga atom by an As atom results
in a smaller perturbation than replacing it by a P
atom. Thus the antisite state is slightly more ex-
tended in GaAs than in GaP, and the distortion
from sp® bonding is less pronounced for the antisite
in GaAs than in GaP. Experiments are not yet ac-
curate enough in the case of GaAs to determine
whether there is any relaxation around the antisite
defect. We have examined the effect of relaxations
of the ligand atoms up to 8% of the lattice spacing
for the antisite defect in GaAs. The resulting
change of the defect gap state is only —0.10 eV. On
the other hand, a decrease of the antisite self-energy
by 0.68 eV changes the gap-state energy by —0.12
eV. From such studies we have found that the posi-
tions of gap states are relatively insensitive to the
possible uncertainties in the site energies in the
tight-binding Hamiltonians. Our present cation an-
tisite defect level for GaP at 1.7 eV is closer to the
levels determined by Jaros'? and by Bernholz et al.?’
at 1.7—2.0 eV and 1.9 eV, respectively. Buisson

TABLE IV. Electron distribution of 4; gap state at
anion antisite and its neighbors in III-V semiconductors.
nsi,Nping; denote the s, p, and total electron density at site
i, respectively. i =a,l,2, for the anion site, first-neighbor
site, and second-neighbor site.

GaAs GaP AlAs InP InAs
(ngy /ny) 0.87 0.95 0.90 0.94 0.86

(Mp1/ney) 0.75 0.81 084 082 086
Ny /2 0.15 0.21 020  0.17
4n,, /2 0.45 059 065 048

12n,,/2 0.40 0.19

et al.,”® on the other hand, obtained 0.6 eV for GaP
and 1.1 eV for GaAs. The latter values differ from
our results because of the different tight-binding
parameters being used. Buisson et al. considered
only first-neighbor interactions but they included an
excited s state as a basis state in their calculation.

Anion antisite defects in electron-irradiated,
neutron-irradiated, or heavily-doped GaP and GaAs
are now being detected experimentally by ESR.!~7
These defects in other III-V semiconductors have
not yet been observed, but they are expected to be
present. Therefore, we also study these defects in
AlAs, InP, and InAs. They exhibit features similar
to those of anion antisite defects in GaP and GaAs.
A summary of the positions of the defect levels is
given in Table II and their electron distributions in
Table 1V. From Table II, we observe an interesting
trend. The A, gap state of the anion antisite defect
moves farther away from the valence-band edge as
either the cation or the anion becomes lighter (that
is, from InAs to GaAs,AlAs; from InP to GaP or
from GaAs to GaP; from InAs to InP). This indi-
cates that the s-like bonding state 4; between the
antisite defect and its neighbor deviates progressive-
ly from the p-like band state in the pure crystal
when the cation or the anion becomes lighter.
Presumably, this is caused by the progressive in-
crease of s-electron contribution at the antisite to the
A level as shown in Table IV.

Recently Lagowski et al.? proposed that the EL2
level observed in deep-level transient spectroscopy
(DLTS) in GaAs (0.82 eV below the conduction
band in GaAs) could be associated with the anion
antisite-defect level. From our results, the antisite-
induced level in the gap is higher in energy than
EL2. We shall consider an alternative possibility for
EL2 in Sec. IIID.

Cation antisite defects in GaP and GaAs so far
have not been detected although they are believed to
exist in GaSb (Ref. 8) and AISb (Ref. 9). We have
carried out calculations for cation antisite defects in
AlAs and GaAs in order to investigate the possibili-
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FIG. 10. ALDOS evaluated at the cation antisite (solid
curve) and its near-neighbor site (dashed curve) in AlAs.

ty of a gap state in III-V semiconductors when the
group-III element is lighter than the group-V ele-
ment. The result is shown in Fig. 10 for AlAs. No
gap state is found. A localized state of 4; symme-
try appears near the top of the s heteropolar gap.
We interpret the cation antisite-induced states as
coming from the interaction of As vacancy-induced
states with the orbitals of the cation antisite. The
cation atomic—s-oribital energy lies near the
valence-band edge, and it interacts with the 4, gap
state of the anion vacancy. As a result, a localized
“bonding” state at —5.79 eV is formed of 4; sym-
metry just at the top of the heteropolar gap, and a
resonant 4, state appears in the conduction band at
5.30 eV. The Al p orbitals interact with the T, gap
state of anion vacancy and create two resonant
states, one in the valence band at —0.68 ¢V, the oth-
er in the conduction band at 7.18 eV. Several other
resonant and antiresonant features also appear in the
ALDOS of the antisite and the first-nearest-
neighbor sites as shown in Fig. 10. Similar features
are found for the cation antisite in GaAs.

The present results for the wave functions of the
gap states for anion antisite defects in GaP and
GaAs are consistent with recent ESR measurements
as discussed in detail in Ref. 20(b). We note also
that our results for the anion antisite defect in GaP
are consistent with the calculations of Bernholc
et al.?’ and of Jaros,'?> who used k-space Green’s-
function techniques with self-consistent and non-
self-consistent pseudopotentials, respectively. We
have considered here only the neutral defect. It is
expected that, as in the case of the vacancy state in
Si,%° the positively charged state of the antisite de-
fect lies below the neutral-defect state. More con-
clusive evidence concerning the charge state of the

defect and the positions of the defect levels awaits
further experimental work.

D. The ideal divacancy defect in GaAs

A divacancy defect in a III-V semiconductor is
formed when a cation atom and one of its first-
near-neighbor anion atoms are removed. In the case
of Si, the divacancy defect has been found to be
more stable than two single vacancies separated by
one or more atoms.>! It is suggested that this is true
also in the case of GaAs. The divacancy defect in
GaAs is particularly interesting because its proper-
ties are found to be consistent with the experimental
results for EL2 level.> Although an alternative ex-
planation for EL2 associated with the antisite defect
was given by Lagowski et al.,” the gap-state energy
level of the antisite defect obtained in the present
calculation does not seem to be consistent with the
observed position of EL2.

We have carried out a calculation for the deep
levels of a divacancy defect in GaAs. Gap states are
found at energies 0.13, 0.48, 0.82, and 1.17 €V above
the valence-band edge. These states are related to
the T, gap states for the single cation vacancy and
the single anion vacancy. The 0.82-eV state corre-
sponds better in energy to EL2 than does our result
for the anion antisite. Sankey and Dow?® have
found a state at 0.9 eV for divacancy defect. An
ideal divacancy defect lowers the symmetry of the
crystal to trigonal symmetry, while an antisite defect
does not alter the tetrahedral symmetry of the crys-
tal. If this trap state can be detected by ESR, the
symmetry analysis of the spectrum will determine
whether EL2 is associated with a divacancy defect
or an antisite defect. Unfortunately, experimental
conditions for DLTS always require a highly con-
ducting sample whereas ESR requires a highly insu-
lating sample. Thus it is difficult to perform both
experiments on the same sample. Our results with a
gap state close to the energy of EL2 provide en-
couraging support for the suggestion that the diva-
cancy defect may be associated with the EL2.

E. Defects near GaAs-AlAs interface

The GaAs-AlAs interface is technologically in-
teresting and is a particularly attractive case for
both experimental and theoretical investigation. It
is known that GaAs-AlAs has perfect lattice match-
ing. The valence-band discontinuity is also available
experimentally. In the present calculations defects
near an ideal (100) interface (IF) are considered, and
the valence-band discontinuity is taken to be 0.035
eV, which has been used in previous theoretical in-
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vestigations®® and is similar to that observed experi-
mentally on GaAs-Al,Ga, _, As heterostructures.’*

In the present calculation, we choose a cluster of
nearly cubic shape. The interface plane (IF plane) is
a plane of As atoms with the Ga atoms of GaAs on
one side and the Al atoms of AlAs on the other.
There are alternatively eight and seven planes of
atoms on each side of the IF plane. The site ener-
gies of the Al atoms have been decreased by 0.035
eV so as to produce the desired valence-band discon-
tinuity. The site energies of the As atoms on the IF
plane and the transfer-matrix elements between the
As atoms along the IF plane are taken to be the
average of these quantities in bulk GaAs and AlAs.
The second-neighbor interaction-matrix elements be-
tween Al and Ga atoms across the IF are taken to be
the average of Ga and Al in the respective bulks.
We consider a defect in GaAs next to the IF plane.
The defect-induced changes of the density of states
ALDOS at the As site next to the Ga-vacancy defect
is shown by the dashed curve in Fig. 5. The dashed
curve in Fig. 8 is the result of ALDOS at an anion
antisite next to the IF. It is seen that the IF causes
only modest changes in the electronic states.

In order to investigate the interaction between de-
fects and the interface, we use the zeros-and-poles
method to calculate the changes in the total elec-
tronic energy of the As antisite and of the ideal va-
cancies as functions of position relative to the in-
terace. The interaction energy of a defect with an
interface arises from the sum of the energy changes
from all parts of the LDOS of the system when the
defect is placed near the interface. It involves both
the localized states and extended states. Because of
the complicated cancellations between the contribu-
tions of the various parts of the spectra, it is diffi-
cult to predict without calculations whether a given
defect will be attracted to or repelled from the inter-
face. The zeros-and-poles method allows the change
of the integrals over the total density of states of the
system to be carried out efficiently and accurately.

Our results show that the interaction energies of
the defects with the IF are dependent on Ep, i.e.,
upon the filling of the gap states. For Er=0, i.e., at
the top of the valence band, the differences of the
total electronic energies for defects on cation sites
located in the plane adjacent to the IF less those
three planes away from the IF are as follows:

=—0.06 eV, for the cation vacancy in GaAs, and
= —0.10 eV for the As antisite defect in GaAs. For
Er=1.36 eV, the gap states of the antisite defect
and of the cation vacancy are filled. The corre-
sponding changes of electronic energy at the above
two positions are found to be larger: =1.1 eV for
the Ga vacancy, and ~—0.15 eV for the antisite de-
fect. These results indicate that native defects may
be attracted to or repelled from the interface during
material formation or during processes involving de-
fect motion, thus causing interface non-
stoichiometry. The defect states may then pin
Schottky barriers and affect other physical proper-
ties. We might note that nonstoichiometry at the IF
of the GaAs-Ga, Al|_, As heterostructures has been
reported recently by Petroff et al.?

IV. SUMMARY

We have carried out the detailed theoretical inves-
tigation of native defects (vacancies and antisite de-
fects) in the III-V semiconductors GaAs, GaP,
InAs, AlAs, and InP, and near a model GaAs-AlAs
interface using a large-cluster tight-binding recur-
sion approach. The positions and symmetries of the
defect-induced resonant states and localized states
have been analyzed. It has been found that the char-
acter of the wave functions corresponding to the gap
states in the forbidden gap are in agreement with the
results of recent ESR experiments. A divacancy de-
fect in GaAs has also been studied, and four gap
states are found with one state at approximately the
energy of EL2. The defect-interface interaction en-
ergies have been calculated by a generalized zeros-
and-poles method. The results suggest that the de-
fects may cause nonstoichiometry near the IF dur-
ing formation because of the interaction.
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