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We prove a theorem which gives necessary and sufficient conditions under which
charge will be fractional, in a certain well-defined sense. The model of Su, Schrieffer,
and Heeger, which gives fractional charge, is completed in several ways which illustrate
the theorem and the postulates made to prove it. The theorem applies to a chain of arbi-
trary complexity which consists of charged regions separated by long stretches of electri-
cally neutral and electrically insulating chain. The theorem states that the integral of the
charge density over a charged region will be a noninteggr multiple of the charge on the
proton if and only if the electrical polarity of the neutral chain is different on the two
sides of the charged region. In short, fractional charges in the sense here discussed exist
only on ferroelectric domain walls. Further, these charges will not be simple fractions,
but will be irrational multiples of the protonic charge. A brief discussion is given of how

fractional charges may exist in other senses with an experimental meaning.

I. INTRODUCTION

Considerable interest has been aroused by the
possibility that certain topological solitons in phys-
ically realizable quasi-one-dimensional systems
may carry fractional charge. In particular, Su,
Schrieffer, and Heeger' have produced a model,
applicable to polyacetylene, for which the solitons
have half integral electronic charge for each spin.
Since there are two spins, however, the total charge
is integral. This model is a close analog to an ear-
lier field theoretical model of Jackiw and Rebbi,?
which has been discussed recently by Goldstone
and Wilczek.> It has been generalized by Su and
Schrieffer* to one which displays charge 1/n. (We
speak of all models in this class as SSH models.)
They suggest that such a system with # =3 may be
realized in tetrathiafulvalene-tetracyanoquino-
dimethane.* Other cases are NiSe; (Ref. 5) and
TaS; (Ref. 6), which have parallel chains of
charge-density waves with commensuration four
(or close to it). The discommensurations are topo-
logical sohtons which carry 4 charge per spin, or
charge - all told. Bak’ has mterpreted existing
data’® as verlfymg this prediction.

Several meanings can be attached to the term
“fractional charge.” A fundamental particle, e.g.,
a quark, may be fractionally charged. Even if only
integer charged particles are admitted, fractional
charge may occur as an average. The average may
be quantum, it may be a time average, or it may be
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an average over many species of charged entities.
Generally, if an average is involved, fluctuations in
principle exist. However, Kivelson and Schrieffer®
(KS) have introduced an operator which, in their
model, has as its expectation value the charge that
couples to a slowly varying electric field and which
has arbitrarily small fluctuations. This operator is
exhibited in the Appendix. It is not an electron
“number” operator, not having integral eigen-
values. The number operator, as standardly de-
fined, continues to have this property in the finite
systems under consideration, of course.

There is, in fact, one type of average which is
known to exhibit nonfluctuating fractional, indeed,
irrational, charge. That is the average made in the
macroscopic theory of electromagnetism.” That
the charge may be nonintegral is illustrated by the
fact that the total charge within a Gaussian sur-
face surrounding a test charge g is q /€ where € is
the dielectric constant of the medium within which
the test charge and Gaussian surface are embedded.
The fractional part of the charge is due to the po-
larization, and the _polanzatlon charge density is
pp=—V- P where P is the electrical polarization,
the dipole moment per unit volume, of the medi-
um. There are charges on the surface of any po-
larized material which must also be taken into ac-
count. The fluctuations are not identically zero,
but are “macroscopically small,” that is, small in-
sofar as the averaging volume contains many ele-
mentary charges. The classical theory is indepen-
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dent of the quantization of the elementary charges,
of course. It is this type of average which gives
fractional charge in the SSH models. The total
macroscopically averaged charge density is

p=pr+pp where pr is the density of “free” charges.

We are interested in an electrically insulating
quasi-one-dimensional system, which we call a
chain, whose length is great compared with its
transverse dimensions. (A conducting chain would
screen any charge, so this case is of no interest
here.) We further assume that p is negiligible (and
has negligible integral) except in a finite region U,
that is, the chain is electrically neutral except for
U. The total charge Qin Uis Q= fp dV where
the integral is over any region containing U. [We
do not need to use KS’s definition (although that
would not be incorrect) since p is already macro-
scopically averaged and vanishes outside U.] A
test charge g located a long distance R from U will
experience a force of magnitude gQ /R (Since
classical electromagnetic theory is consistent, any
other method of measuring Q based on that theory
would give the same result.) We may also have
other charged regions on the chain lying at great
distances from U, with corresponding changes in
the definitions.

We speak of U and Q as being electrically isolat-
ed. This is distinguished from a charge on matter
which is physically isolated, by which we mean that
the matter is far from any other matter. (We con-
sider electrical isolation only in the quasi-one-
dimensional sense and do not deal with charges
embedded in surfaces or volumes of material.)

We now state three postulates on which we base
our theorem. The first two of these are very gen-
eral and are believed to hold for any physical sys-
tem, or acceptable model of a physical system.
The third is also quite general and is true in the
models we are discussing.

The first we call the postulate of locality. This
postulate, whose physical content has been clear
since Einstein, states that matter in one locality is
neither directly influenced by nor directly influ-
ences matter in a distant region, but rather the
matter in a specific locality is influenced only by
the local electromagnetic (and gravitational) fields,
and of course by the short-range interactions with
matter in neighboring regions. In particular, quan-
tities such as charge are locally conserved, and net
charge cannot be created in a particular region
even if compensated by charge of the opposite sign
created in a distant region.

The second we call the oil-drop postulate. This

states that the charge on matter which is physical-
ly isolated must be an integral multiple of the fun-
damental charge. In other words, if the charge as
measured in a Millikan oil-drop experiment is frac-
tional, say e /3, it must be concluded that an isolat-
ed quark or some new particle with fundamental
charge e /3 is present on the drop and not that the
ordinary matter of the oil drop has taken up some
unusual configuration.

The third is the postulate of quasistatic metasta-
bility. Here we assume that the matter in the
chain is in a state sufficiently slowly varying in
time and is in a sufficiently stable condition, that
the local electric properties of the material in the
chain cannot be altered by, e.g., weak electromag-
netic signals or sound waves propagating down the
chain from distant events. (This postulate may not
be strictly necessary if relativity is invoked.)

II. THEOREM

We prove first the following lemma.

Lemma. All neutral oriented chams may be
classified by a parameter p, wher¢ —5 <p<5. A
chain is oriented by giving a coordinate x whlch
increases in the positive direction of the chain.

Proof. Consider cutting a neutral chain, say
with a spark cutter or laser, at points y,z with
y <<z. By the postulate of quasistatic metastabili-
ty, this will affect only a finite region near the
cuts, and by the postulate of locality, the results of
the two cuts are independent of one another.

There may be a nonvanishing total charge on the
newly cut ends. We enumerate the charges on the
end of the chain with x <y which result from each
possible cut. These charges a,a;, . . ., are the
elements of a set we call E <(y). Similarly, the
other end near y will have possible charges
BB . .., forming a set E>(y). (The fact that
the a’s and ’s may be correlated is of no interest.)
There are also sets E <(z) and E >(z), which have
no correlation with the sets associated with y.
Since the chain between y and z is now physically
isolated, and since the only charge on the chain is
near its ends, we have by the oil-drop postulate
that a+B=ke for all a in E <(z) and all B in
E>(y) where k is an integer. This can only hap-
pen if every a is of the form ne +pe and every B is
of the form me —pe where n and m are integer and
—5<p< -—. By considering other hypothetical
cuts it is easﬂy proven that all charges in the sets
E <(x) have the form ne +pe and charges in the
sets E ~(x) have the form me —pe, with p indepen-
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dent of x. The value of p is thus uniform along a
neutral chain, and characterizes the chain.

The quantity P=pe has an easily deduced mean-
ing. It is the noninteger part of the total electric
polarization along the chain. Since, in one dimen-
sion, the polarization charge density pp(x)
= —dP /dx, and since by assumption dP /dx van-
ishes except near the ends of the chain, and P must
vanish outside the chain, it follows that a chain
will have charges P and —P at its two ends. A
chain with p =0 is an ordinary dielectric chain. A
chain with p ———% is exceptional. It may be reflec-
tion symmetric, but will be a (one-dimensional) po-
lar crystal. Other chains will have a preferred
direction and will be ferroelectric. (These cases are
illustrated in Fig. 3.) We say, for short, that the
value of p (or P) is the polarization characterizing
the ferroelectric state of the chain. We are now in
a position to prove the main theorem.

Theorem. An electrically isolated charge Q will
be nonintegral if and only if the charged region is
connected to chains in different ferroelectric states.
If the chain to the negative side of Q has polariza-
tion P, and to the positive side has polarization P’,
then Q =P — P’ + ke with k integer.

Proof. We proceed as before, with the region
bearing the charge Q now somewhere between the
cuts at y and z, and far from either of them. The
value of Q cannot be affected by the cuts nor can
it affect the results of the cutting. From the lem-
ma the chain on the two sides of Q must be
characterized by polarizations P and P’, which pos-
sibly are different. The total charge which is phys-
ically isolated after the cuts is Q +P'—P +ke
from which the result follows. We are thus enti-
tled to assert that any electrically isolated nonin-
tegral charge must be at a ferroelectric domain
wall.

III. SSH MODEL

The theorem applies to models of chains which
obey or can be extended so as to obey the postu-
lates. We shall examine the class of models of
Refs. 1, 2, and 4, completed in ways which illus-
trate aspects of the theorem. We first describe the
SSH model and derive the fractional charge in a
way equivalent to that of the originators of the
model.

The SSH model speaks explicitly of a linear
chain of sites, with elastic forces of general charac-
ter between them. The electronic Hamiltonian is

He:—2t(ui—ui+1)(aifai+1+aif+lai) > (1)
i

with qg; the electron-annihilation operator on site i.
The hopping matrix element ¢ is a function of the
displacements u; of the sites from the nominal site
position at, for example, jd. The number of elec-
trons (of a given spin) on the chain in its ground-
state configuration is taken to be one for every n
sites. The cases n =2 and 3 have been considered
in detail."* The metallic ground state is unstable,
the Peierls instability, and the lattice n-merizes so
that the lattice constant is nd.

SSH consider the case of solitons in this chain.
We may reproduce their results by considering a
very long closed loop consisting of N n-mers and
N electrons. Imagine removing an rn-mer with its
electron, and letting the chain heal. The electron is
then taken from the removed n-mer and discarded,
the n-mer is split up into its constituent sites, and
each of these is inserted interstitially at widely dif-
ferent points of the loop. There are again nN sites,
but there is now a deficit of one electron. Finally,
the lattice positions are again allowed to relax.
The configuration near each of the inserted “inter-
stitials” cannot relax back to perfect n-merization,
since there will always be an extra site which can-
not be accommodated into an n-mer. The result
may be termed a topological soliton, because the
lattice configuration interpolates between regions
of essentially perfect n-merization, or in the
nomenclature of Jackiw and Rebbi® the configura-
tion interpolates between equivalent “vacua.”
After relaxation, each disturbed region approaches
the perfectly n-merized configuration in an ex-
ponential way and is in this sense confined to a
finite length of chain. This process is illustrated in
Fig. 1 for n =2.

FIG. 1. Schematic construction of solitons in an n-
merized loop with n=2 and spinless electrons. The
solid circles represent sites. Electrons can hop to
nearest-neighbor sites. The lines delineate regions con-
taining one electron on the average. (a) is perfectly
dimerized, (b) has one dimer removed, and (c) shows the
solitons, centered to left and right. A possible set of
positive charges giving neutrality is shown by the pluses.
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Each soliton is completely equivalent, and there-
fore must share the electron deficit equally between
them. Therefore, each has a deficit of 1/n and the
charge on each soliton is +e/n. Further, this
charge is localized exponentially on the soliton and
there is no net charge density between solitons.
(We stress this because there seems to be a com-
mon intuition that fractional charge can be “ex-
plained” by supposing that a complementary frac-
tion is spread thinly out along the perfect chain.
This can indeed happen in the model of a metal
formed of noninteracting electrons. However, in-
teracting electrons in a metal will always screen a
static charge so as to maintain strict charge neu-
trality. The noninteracting electron model is not a
satisfactory one unless it is complemented by a
Friedel sum rule which ensures charge neutrality.)
This argument, based on symmetry, is simple and
apparently compelling, but we shall show below
that it is not applicable when the theorem applies.

For completeness, we consider the energy bands
associated with the chain. Before n-merization
there is a single band containing nN electron states.
After n-merization, but before introducing the soli-
tons, there are n bands each containing N states of
which the lowest is filled. The solitons introduce
midgap states, each of degeneracy n. There is one
midgap state (in each gap) associated with each
soliton. These states are localized (exponentially)
on each soliton. The total number of states in the
lowest band is N —1. In the situation as we have
envisaged it, the lowest band is full, and all
midgap states are empty. Thus the electrons are in
a nondegenerate ground state, separated from excit-
ed electronic states by a finite gap. The deficit
electron, or hole, cannot then be shared quantum
mechanically by the » solitons. If that were so the
state would be nearly degenerate, since the relative
phase of the hole on widely separated solitons is
energetically irrelevant. This rules out a second in-
tuitive “explanation” for fractional charge.

We give in Fig. 2 the electronic charge density
near a soliton in an illustrative case for n =2.
Only two values of the hopping elements ¢ are in-
volved, which we denote by #; and ¢, with
(t,/t)*=m < 1. The figure gives the bond se-
quence and site labels. In this case, the midgap
state has a wave function odd about the center of
the soliton. The expected electronic number densi-
ty on site j, is 5 for j even, and is T —ni1—m)
for j =2/ +1>0. Fig. 2 shows the case 1]:%.
Note that the expected electron number on a large
number of sites containing the soliton and includ-
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FIG. 2. Electronic number density near a soliton
which has charge % in the SSH model. Solid circles
represent sites, labeled ... —7, ... +7, ... . The bond
alternation is also shown. Vertical bars on each site
represent expected electron density (above) and density

deficit (below) which approach %(O) far from the soli-

1

ton. The figure assumes (t,/t,)*= % A total of 7—

electrons occupy the sites pictured.

ing only complete n-mers is integral. (A direct
evaluation of the charge which avoids the concept
of cutting the chain can be made in simple enough
models, such as this one.)

There are other topological distinct solitons, and
midgap states may or may not be filled. A handy
mnemonic method for computing the charge and
seeing the general features of the midgap states
and bands is to consider the case in which the elec-
tron transfer between n-mers is very small, so that
the n-mers approximate independent linear n-sited
molecules. The soliton we have considered is then
approximated by a molecule with »n +1 sites and
one electron. This preserves all the topological
features of the soliton. (Other solitons may be
formed by “molecules” with m sites and other
numbers of electrons, where m mod n=40.) The
soliton has charge +e/n because it has the nega-
tive charge of one electron but a positive charge of
e(1+1/n) since the charge on each site is +e/n,
as required by charge neutrality of the n-merized
chain.

IV. EXTENDED SSH MODELS

In the original SSH model n =2, but the spin of
the electron was accounted for so the total charge
of each site was +e. In that model there is no
need to introduce charges other than on the sites of
the model and on the electrons. Indeed the sites
physically represent carbon ions. In the extended
versions of the model it is necessary to introduce
other sites or introduce some other device to avoid
endowing the sites with fractional charge. This
was not spelled out in Ref. 4 but KS as well as
Schrieffer'® have made clear the situation that was
in mind.
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The situation envisaged is that the chain expli-
citly studied in the SSH model is complemented by
parallel chain or chains of net positive charge
which is electronically inert. It is further approxi-
mated that the positively charged chain does not
move appreciably from its original configuration
when the solitons are created. (Some minor move-
ments may also be contemplated.) In this case, the
positive-charged chain drops out of the problem of
finding the charge on the soliton, since when one
considers the macroscopically averaged charge den-
sity of the positive chain it will be constant, and
just such as to cancel the charges of the n-merized
chain on the average. It is then possible to com-
pare the electronic charge with and without soli-
tons in order to find the charge on any one soliton.
When the SSH model correctly describes the elec-
tronic charge, then under these assumptions the
charge will be nonintegral. We shall see that there
is a very simple way of calculating the charge in
this model, which gives exactly the results found
by the methods of Ref. 8.

In order for the SSH models to fit within the
framework of the theorem, the positive charges
must be explicitly placed. We have already ruled
out that only the sites actually appearing in the
model are charged, if they are all equivalent. In
versions of the SSH model making contact with
field theories, a continuum limit is usually taken,
which amounts to treating the positive charge as
jellium. This version of the model does not satisfy
the oil-drop postulate which clearly depends on the
explicit quantization of all charges. [In the
Jackiw-Rebbi model,? the positive background nev-
er appears (except perhaps as a renormalization
constant). The oil-drop postulate is satisfied but in
the sense that insofar as the model is correct, it
predicts a particle with fundamental charge a frac-
tion of the protonic charge.]

We therefore place the positive charges on a
parallel chain, which we imagine has no dynamic
coupling to the SSH chain. One possibility is to
have one unit positive charge for each n-mer.
Several configurations are illustrated in Fig. 3 for
n=2. Figure 3(a) is a ferroelectric domain wall of
the usual valriety. ;I'he values of p and p’ in this
case are — and 7, respectively. In Fig. 3(b), the
state of the chain to the left of the soliton has
p=-, while to the right p’'=0.

Next we imagine introducing a parallel chain
consisting of » positive ions of charge +e for each
n-mer of the SSH chain, and which will contain
n —1 electrons for each n ions. If this chain has
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FIG. 3. Configurations of solitons and positively
charged sites needed for charge neutrality which illus-
trate the theorem of the text. Solid circles are un-
charged sites of the soliton-bearing chain. The center of
the soliton is at the circled site. Pluses are positions of
charges +e. The vertical bars represent either charges
+e/2 or charges +e which have associated an electron
for every two such sites. (a) has net charge Q= +e/2,
polarization to the left P= —e /4, to the right P'=e /4,
(b) has Q=+e/2, P=e /2, P'=0; (c) would have
Q =e /2, except the positively charged chain is metallic,
and would either dimerize or screen out the charge; (d)
has Q=+e/2, P=e /2, P'=0; () has Q =P +P'=0; (f)
has Q=P =P'=0. By the definition of Ref. 9, the elec-
tronic charge of the soliton-bearing chain is +e /3, the
(protonic) charge of the positive chain —e /3; (g) would
have Q = —e /2. The charge of the soliton chain is
—2e /3, the charge on the positive chain is +e/6. The
positive chain, however, is metallic.

periodicity d, there will be a charge of precisely
1/n near each ion, and is illustrated in Fig. 3(c).
This model fails to satisfy the postulates because it
is metallic. If the positive chain is also allowed to
n-merize, or if the hopping between positively
charged sites is arbitrarily changed to prevent me-
tallic behavior, then the kind of situation envisaged
in Figs. 3(a) and 3(b) is recovered, e.g., as in Fig.
3(d).

An easy way to find the fractional part of the
charge consists of first finding the net (positive or
negative) displacement a of the perfect n-mers on
the positive side of the soliton, relative to their po-
sitions in the absence of the soliton. The nonin-
tegral part of the charge is then ea /nd. Note that,
in the absence of additional constraints, the charge
need not be rational, that is, a may not equal d.
Thus the method of KS is in principle different
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from the arguments which are based on the sym-
metry of the solitons and their charge deficit.

We now relax the condition that the parallel
chain of positive charge be independent of the soli-
tons. We give two configurations which satisfy the
postulates of the theorem and give integral charge.
In Fig. 3(e) the parallel chain is the same as
without the soliton but the forces between it and
the original chain are imagined to compress the
soliton-bearing chain in such a way as to make
p=p’'=0. The effect of this compression is to re-
store integral charge to the soliton. In Fig. 3(f) we
imagine that the parallel chain is distorted by the
existence of the soliton in such a way that the
same result is achieved. This of course means that
its contribution to the total charge becomes non-
trivial. In this case, each chain has fractional,
indeed irrational charge, if calculated by KS, but
the net charge of the two chains together is in-
tegral. Finally, in Fig. 3(g) we modify 3(c) by al-
lowing the positive charges to move slightly so as
to make p =p’=0 even though a4d. This gives
charge e /n but the positive chain is again conduct-
ing so the charge would be screened out if the
Coulomb interaction were taken into account. We
thus see that the SSH model can be readily extend-
ed to satisfy the postulates and will indeed give
nonintegral charge if and only if the soliton inter-
polates between chains in different ferroelectric
states. Subbaswamy and Brill'! have also produced
examples emphasizing the importance of explicit
consideration of the positive charges.

V. DISCUSSION

At this point we reconsider the argument based
on the symmetry of the solitons. This argument is
somewhat misleading in the sense that the lemma
implies that it is impossible to have symmetric soli-
tons, that is, a chain with multiple solitons, all of
which are equivalent, cannot exist, unless the
charge on each soliton is integral or half integral.
The half-integral case is rather special, as we shall
see.

We dispense with the proof of this assertion, and
simply note that it is impossible to assign polariza-
tions to the neutral chains separating the solitons,
so as to have nonintegral charge for each soliton,
and each soliton equivalent to all others. The ex-
ceptional case is an alternation of polarizations 0
and % This case is special because these two po-
larizations do not determine a preferred direction
along the chain. Figure 1(c) illustrates this case

(approximately). Assuming symmetric solitons
therefore tacitly implies a breakdown of the postu-
lates, e.g., a use of fractionally charged sites.

Without symmetry, there is no reason to expect
rational charge. The polarizations will be deter-
mined by energetic, not topological, factors and the
charge at ferroelectric domain walls will be irra-
tional.

Although fractional charge is a polarization
charge, we note that the polarization induced by ei-
ther the test charge or the charge on the soliton
plays no role, since its effect can be made arbitrari-
ly small by taking the region U and/or R large
enough. If the medium between the test charge
and the chain is not vacuum, as we have assumed,
then it is necessary to include the dielectric con-
stant € in the definition of the force on the test
charge.

For completeness, we briefly discuss models of
chain cutting which consist of making particular
bonds become longer and longer with the concomi-
tant vanishing of the corresponding hopping ma-
trix elements. If a hopping which was originally a
relatively weak one connecting two n-mers is al-
lowed to vanish it turns out that no charge is in-
duced on either of the freshly cut ends. If a rela-
tively strong bond internal to an n-mer is cut there
appear midgap “end” states which become degen-
erate in the limit of complete cutting. The electron
or electrons which occupy these states must then
choose one end or the other as the ends become
well separated.

We have thus seen a number of ways in which
simple models can illustrate the theorem and the
postulates. We have not, however, discussed them
all. The reader is invited to consider the situation
in Fig. 1(c) and to reconcile the symmetry predic-
tion e /2 with the result of direct calculation ea /d.

A final remark is that the chief idealization of
the theorem is that it is assumed that between the
charged regions there lie arbitrarily long stretches
of neutral chain. In practice, for the kind of sys-
tems physically envisaged by SSH, there will be
many solitons in parallel strings of atoms which
are extremely close to one another. The chains
may be rather short as well. The positive charges
may be associated with more than one soliton bear-
ing string. With many solitons present, it could
well be that, on the average, the positive charges
do not respond, and thus, on the average, the soli-
tons would carry the charge predicted by the SSH
theory. This kind of argument is at the basis of
the discussion of Bak.” A more delicate and
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specific discussion is needed to decide what charge
will be observed in an experiment measuring the
“shot noise” due to a current of charged solitons.
If the solitons are well isolated, and there is no fer-
roelectricity, then the result must be integral
charge, but if they are not, fractional, or multiple
charge could well result, depending on the correla-
tions between solitons.

We have shown that electrically isolated nonin-
tegral charge can indeed arise, in fact by a known
effect, that of the ferroelectric domain wall. There
are specific situations, however, where fractional
charge which is not electrically isolated can be a
useful concept in the absence of ferroelectricity.
Each case must be considered separately, but it
seems likely that the concept of fractional charge
introduced by SSH will be useful.
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APPENDIX

For completeness, we give the definitaion of
charge used by Kivelson and Schrieffer® and com-
pare it to the definition used in standard classical
electromagnetic theory. Let p,,(x) be the micro-
scopic charge density. Then define macroscopic
density

plx)= ff(x—x’)pm(x’)dx’,
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where f(x) is some function with unit integral,
which is relatively large over a region containing
macroscopic numbers of charges, and drops off
smoothly to zero. It is known that the results are
independent of the detailed choice of f(x). Ac-
cording to our hypothesis, p(x) vanishes except in
a region U. Thus f p(x)dx is well defined, and
equals f Pm(x)dx whenever the latter is defined.
Kivelson and Schrieffer introduce

Or= fpe(x)F(x)dx ,

where F(x) is a function essentially unity for x in
U, and which drops off smoothly, for example, ex-
ponentially, outside U. The integral is over the
electronic charge density p,., however, not the total
charge. The charge on the soliton is given by
Qs=Qr—{Qp )0, where (Q} ), is the value of the
QOr in the situation with no soliton. Clearly,
—{(Qr )y is the positive charge in the neutral, no-
soliton situation, so if the positive charge is as-
sumed not to change upon introduction of the soli-
ton, Qg will give the total charge. If F(x) is
chosen as

F(x):ff(x—x')dx',

where the integral is over some region containing
U and sufficiently larger such that F is effectively
unity for x in U, we have an exact correspondence
between the two methods. Qpf is not a number
operator. The electron number operator associated
with some volume V is

Ny= fViie(x)dx/(—e) ,

where the integral is that of the electron charge-
density operator over a specified volume V. N
has integral eigenvalues, and its expectation value
is the average number of electrons to be found in
the volume in the given state.
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