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The electronic structure of an n-channel inversion layer in the Si-SiOz metal-insulator-
semiconductor system is investigated at finite temperatures for the '(100) surface. The
subband energies for the ground state and the low-lying excited states are calculated (i)
within a Hartree self-consistent-field formulation and with exchange-correlation correc-
tions treated perturbationally in the plasmon-pole approximation and (ii) by employing a
finite-temperature version of the local density functional (LDF) technique. Many-body
effects are found to be important even at room temperature. A comparison of results of
the two methods shows that the LDF works quite well also at finite temperatures for the
unprimed subband ladder. Our results for the unprimed subbands are in good quantita-
tive agreement with recent experimental results. For the primed subbands our results
agree only qualitatively with the experiments and the two methods give considerably dif-
ferent results. Finally the critical temperature for the two-valley to one-valley transition
is calculated to be about 4.5 K for electron densities around 10" cm

I. INTRODUCTION

During the last decade a number of calculations
of the electronic structure on n-channel inversion
layers in the Si(100)-SiOz metal-insulator-
semiconductor (MIS) system have appeared in the
literature. ' Early work concentrated on low
temperatures where it was shown that many-body
effects contribute significantly to the subband ener-

gies. A review of this work has been given by
Ando. Comparison of theoretical and experimen-
tal " results has also shown that inclusion of
exchange-correlation effects in the calculation is
essential for good agreement.

Recently, theoretical efforts on the calculation of
the electronic structure of Si inversion layers have
been extended to finite temperatures. There is a
number of reasons for this interest in the effects of
temperature in this system: (i) The Fermi tempera-
ture TF of these systems is quite low, ranging from
7 to 700 K for electron densities between 10" and
10' cm, unlike bulk metals where T~ is of the
order of 10 K. Thus a variation of the tempera-
ture from liquid helium to room temperature
changes the system from a degenerate quantum

system to a nondegenerate, almost classical system.
(ii) At finite temperatures several subbands are
thermally occupied by the electrons, making the
system a truly multicomponent plasma. Since the
wave functions for the different subbands are very
different from each other, the screening behavior
of the system is drastically affected by the tem-
perature, giving rise to an implicit temperature
dependence of the subband structure because of the
occupancy changes in addition to the exp1icit tem-
perature dependence described in (i). (iii) Since
many-body effects are significant at low tempera-
ture, it is important to explore their relative impor-
tance with increasing temperature. Again, the low
value of TF makes such an investigation interesting
and relevant, since low-temperature expansions
used in metal physics are not sufficient. (iv) Actu-
al MIS devices in technological use are operated at
room temperature, and (v) recent experiments in
infrared absorption spectroscopy' ' have shown
that the subbands remain well defined so that tran-
sitions between them can be observed even up to
room temperature.

Especially motivated by the latter experimental
results, we have carried out a calculation of the
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electronic structure of the n-channel inversion layer
on the Si(100) surface for a variety of temperatures
0 & T & 300 K and inversion-layer densities 10"
cm &N, &3)&10' cm . In this paper we re-

port the results of this calculation and compare
them with the experiments. In an earlier commun-
ication we presented some of the results and con-
clusions of our work.

Compared with earlier work ' on subband struc-
ture at finite temperature, our present calculation
differs in several aspects. Nakamura et al. used a
static random-phase approximation (RPA) to ob-
tain the many-body corrections to the Hartree
one-electron energy values. This approximation is
good only in the limit of T~ oo, ' restricting their
calculation to high temperatures. At low tempera-
ture it is known ' that inclusion of dynamical
screening gives the most important contribution to
the correlation-energy corrections. Our calculation
takes account of the essential dynamical aspects of
RPA, but for actual computation we have used a
plasmon-pole (PP) approximation' ' generalized
for the finite-temperature multicomponent system
as in Ref. 5. The differences for the self-energies
in RPA and PP are known to be small at T=0 in
both three' and two dimensions, and it has been
shown by Kalia et al. and Das Sarma et al. that
the plasmon-pole approximation gives the same re-
sults as static RPA at high temperatures for Si in-
version layers. Thus our calculation is essentially
the random-phase approximation at finite tempera-
ture.

Compared with the calculations of Das Sarma
et al. , the major improvement is that we use as a
basic set the exact numerical solution' of the
finite-temperature Schrodinger equation in the
Hartree approximation instead of variationally
determined wave functions. This is important
quantitatively, since the variational Hartree sub-

band energies are inaccurate by 10—20%. Anoth-
er quantitatively small correction is included in the
present work by adjusting the chemical potential of
the interacting system to give the correct density in
a self-consistent way.

In parallel with the perturbational method we
have also employed a finite-temperature generaliza-
tion of the local density functional (LDF) tech-
nique ' to obtain the subband energies. In this
method one solves the one-electron Schrodinger-

type equations derived by Kohn and Sham' in
which the effective potential contains, in addition
to the Hartree potential, an exchange-correlation
potential for the inhomogeneous electron gas. It

was demonstrated by Ando ' that for the zero-
temperature case this method gives good results for
the subband energies compared with experiments,
and that the method is computationally much
simpler than the perturbational many-body calcula-
tion. The immediate difficulty in extending the
LDF method to finite temperature is the fact that
no exchange-correlation potential at finite tempera-
ture has been computed for our semi-infinite sys-
tem."

We circumvent this problem by simply taking
the exchange-correlation potential to have the same
density dependence at finite temperature as at
T =0. Thus temperature enters only implicitly in
that the occupancies and thereby the density distri-
bution change with temperature. Such a calcula-
tion can of course only be justified a posteriori by
comparing final results with other methods and ex-
periments, so our reason for doing this parallel cal-
culation is twofold. On the one hand, the LDF
calculation neglects any explicit temperature
dependence of the many-body effects. A compar-
ison between it and the perturbational calculation
which contains both explicit and implicit (through
the change in occupancies) effects of temperature
gives us information on the relative importance of
those two effects. On the other hand, we use the
calculation to establish the temperature range in
which the LDF method can be applied quantita-
tively. This is of interest not only for subband cal-
culations since the method is very easily applicable
to other problems. We mention that our approxi-
rnation is in principle the same as the one that has
been widely used in calculating thermodynamic
and other finite-temperature properties of
electron-hole droplets ' in bulk silicon and ger-
manium and to equation-of-state calculations of
solids. To our knowledge, ours is the first direct
comparison between a finite-temperature LDF cal-
culation and a perturbational calculation in the
same system to check the validity of the simple
LDF method. We find that the method works at
least up to room temperature for the unprimed
subband ladder.

The plan of the present paper is the following.
In Sec. II we pxesent the theory describing the
finite-temperature Hartree calculation, the self-
energy calculation within the PP approximation,
and the LDF calculation. Although some of the
material overlaps considerably with earlier papers,
especially Refs. 1, 5, and 18, we provide it for
completeness. In Sec. III we present and discuss
our results for subband self-energies, subband ener-



S. DAS SARMA AND B. VINTER 26

gies, and subband occupancies. We compare the
results of the various approximations with each
other and with the infrared absorption measure-
ments.

For the unprimed subbands we find good agree-
ment between the theories that include many-body
effects and the experiments. For the primed sub-

band system, which is only occupied at higher tem-

peratures, the agreement is less convincing and the
LDF results also differ considerably from the per-
turbational ones. Having established the applica-
bility of the LDF method for the unprimed sys-

tem, we use it to investigate the critical tempera-
ture for the predicted valley condensation in the
Si(100) inversion layer. We conclude in Sec. IV by
discussing the approximations involved in our cal-
culation and possible ways to improve them. We
also discuss effects that we have neglected. Final-

ly, we suggest some new experiments which would

illuminate more clearly the role played by many-

body effects, particularly with respect to the
primed subband ladder.

II. THEORY

A. Hartree approximation

Within the effective-mass approximation the
Hartree envelope wave function can be written as

p,. k (r,z) =2 '~ e' " ' "g;(z),

where k and r are two-dimensional vectors in the
plane parallel to the inversion layer, A is the area, z
is in the direction perpendicular to the interface,
and the subband wave function g;(z) is determined

by a one-dimensional Schrodinger equation

d
, + &jg(z) g;(z) =E;g;(z) .

m 3i dz

In Eq. (2), m„ is the relevant' mass for motion
perpendicular to the surface. The energy of the
state (1) is given by

E;(k)=E;+A' k &/2m ';+A' kz/2m2;,

where m ~; and m2; are the masses for motion
parallel to the surface. The Hartree potential
VH(z) contains the depletion potential arising from
the fixed charge Sz-ND per unit volume from ion-

ized acceptors and donors in the depletion layer of
width zd, and the potential due to the inversion-

layer electrons themselves with charge distribution

n(z) =gN;
~
g;(z)

~

Here the occupancy X; of subband i at temperature
T is given by

gvimdi

)& in[ 1+exp[ P(E; ——p] I, (4)

where P=(ks T) ', g„; is the valley degeneracy,

md; ——(m &;m2;)' the density-of-states mass of the1/2

ith subband, and the chemical potential p is fixed

by the constraint that

gN; N, , = (5)

where X, is the total inversion-layer density per
unit area. Since the depletion-layer width is usual-

ly much larger than the inversion-layer thickness,
we can take the depletion-layer potential to be a
linear potential Vd(z) =e Ndz/eye„where the de-

pletion charge Nd =(Nq ND)zd, an—d a, is the
semiconductor dielectric constant. We also neglect
the small temperature dependence' of Nd.

We solve the Schrodinger equation (2) and
Poisson's equation self-consistently to get E;, g;(z),
N;, and p for a given inversion-layer density and
temperature. These quantities are used as input for
the calculation of self-energies as described in Sec.
II 8. We have included only the five subbands 0,
1, 2, 0', 1', where the unprimed subbands have
m 3 ——mI and the primed have m 3 ——m, ~ For tem-

peratures up to 200 K this gives at most an error
of 2 meV compared with the values of Stern' who
included many more subbands. In the worst case
of T=300 K the subbands 2 and 1' are too low,
whereas the lowest three subbands agree well with
those of Stern. For the energy differences Ezo and

E& o the error of 6 meV is not quite negligible.
Further details of the Hartree calculation can be
found in Ref. 1.

B. Many-body perturbational calculation

On the basis of the Hartree wave functions [Eq.
(1)], the matrix element for the interaction of two
electrons initially in subbands i and I and finally in

j and m, respectively, is given by

2ev( (q)= f I (q),
2EplCg g
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fJi~(q) =I dz J dz'Pi(z)gi(z)

Ks Ki
X

—q ~
z —z'

~

' —q(z+z')+ e
Ks +Ki

Xgi(z')g (z'),

where q is the momentum transfer parallel to the
interface and a.; is the dielectric constant of the in-

sulator. The first term in the large parentheses in

Eq. (7) comes from the direct Coulomb interaction,
whereas the second term arises from the interac-
tion through the image effect at the semicon-
ductor-insulator interface. It has been shown also

by explicit calculation ' ' that the form factor
fJi (q) is small unless i =j and I =m. This leads
to the diagonal approximation in which we assume
U,,I 6,JSI .

Within RPA the dynamically screened interac-
tion' U~~ (q, iv ) defined at discrete frequencies
i v~ =2miri/piri, m =0,+1,+2, etc., is then also di-
agonal and involves only diagonal elements of the
noninteracting polarizability II;J(q,iv ). Equa-
tions for U and II can be found in Ref. 5. The
Green's function for the interacting system
G;J.(k,iso„) defined at discrete frequencies
iso„=(2n+1)vari/Pfi, n =0,+1,+2, etc. is deter-
mined by Dyson's equation with a self-energy

M;i(k, iso„) which we approximate by

Mg(k, ice„)=5@ ge G;;(p,iso )U;;;;(k p, i—m„icoi),—1 /CdiYJ d p
(2ir)

(8)

where g =0+, which is basically the random-phase approximation, but extended by having the interacting
rather than the noninteracting Green's function in the integral. Dyson s equation can then be solved:

G,q(k, iso„)= iso„R'[E—;(k) p] M—;;(k—,ico„)
(9)

The quasiparticle energies inluding exchange-
correlation effects are given by the poles of the re-

tarded Green's function obtained from Eq. (9) by
analytic continuation ico„~co+ig. Thus quasipar-
ticles are given by the solution of the equation
(also called Dyson's equation)

E,*(k)—=fico';(k)+}u=E;(k)+M;;(k,co';(k)) . (10)

In general, M;; (k,iso„~co+ig) will have real and

imaginary parts and Eq. (10) gives both the quasi-
particle energy (real part) and the lifetime (inverse
of the imaginary part). Here we are interested in

the electronic energy levels including many-body
effects. Therefore we have neglected the imaginary
part of the self-energy in Eq. (10).

Once ReM;;(k, iso„~co+iri) has been calculated
from Eq. (8), one can solve Eq. (10) by iteration to
obtain the subband energies, including many-body
effects. Instead of solving it exactly, we take only
the first iteration in which M;;(k,co+i')) is evaluat-

ed at co=E;(k)—p. Arguments have been suggest-
ed for ' and against ' this procedure, and in the
context of Si inversion layers both these procedures
[solving Eq. (10) (Ref. 2) and taking the first itera-
tion only ' ' ] have been employed. Quantitatively
the difference between the two procedures is about
5 meV for the self-energy at T=0 K [see Fig. 3 of

Ref. 2(b)], but we have not tried to estimate the
difference at higher temperatures. We shall return
to this point in Sec. IV. Finally putting k =0 in

Eq. (10) we get the subband bottom energy includ-

ing exchange and correlation:

E;*=E;+ReM;;(k =O,E;—}M),

where the energy argument of M;; is understood to
have their in it.

In the actual computation of Eq. (8) we make
one further approximation: we use the plasrnon-
pole (PP) approximation for the screened interac-
tion. The spirit of this approximation is rather
simple. ' ' Instead of considering the full dynami-
cally screened interaction U&0(q, co), one takes its
spectral function [or Im U ( k,co+i ri)] to be a 5
function in frequency with suitable strength. The
strength and frequency are fixed by the f-sum rule
and a Kramers-Kronig dispersion relation. This
method can be generalized to a multicomponent

plasma, ' and for details we refer the reader to
those papers. With this approximation the fre-
quency sum in Eq. (8) is easily done, and one is
left with a two-dimensional wave-vector integration
which becomes a one-dimensional integral over

q =
~ q ~

if one is interested in the bottoms of the
subbands (k =0). We have found M;;(k,co+ii)) to
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C. Local density functional calculation

As explained in the Introduction, we use a
finite-temperature generalization of the LDF
method which has earlier been employed success-
fully to the subband structure at zero tempera-
ture. '

We consider the one-electron equations derived

by Kohn and Sham' for the inversion-layer prob-
lem which formally are the same as the
Schrodinger equation (2) but with an effective po-
tential V,rr(z) replacing the Hartree potential:

d
~-+ V,rr(z) P;(z) =e;P;(z) .

Pl 3i 8z
(12)

have negligible k dependence up to about 2 kz
(where kF is the Fermi wave vector at T=0) for
the subbands (0, 1, 2, 0', 1') we have investigated.
Thus the self-energy correction produces essentially
only a rigid shift of the subbands, preserving the
parabolic energy dispersion of Eq. (3), but with
modified subband bottom energies E;* defined by
Eq. (11).

In calculating the self-energy according to Eq.
(8) a problem arises in that the self-energy M;; de-

pends on the Green's function G;; which again de-

pends on M;;. We therefore calculate M;; iterative-

ly in an approximately self-consistent way and at
the same time adjust p so that the inversion-layer
density in the interacting system is the one given
as input. We find, however, that the final results
for the self-energy are not quantitatively much dif-
ferent (less than 10%) from those of conventional
RPA in which one has G instead of G in Eq. (8).

The effective potential contains in addition to the
Hartree potential a local exchange-correlation po-
tential V„,. By analogy with the spin-density func-
tional formalism this potential is different for
primed and unprimed valleys, ' and it depends
only on the volume density of electrons in the
unprimed subbands and in the primed subbands,
and furthermore has an explicit dependence on z
which describes approximately the image effect in
the electron-electron interaction. Once the func-
tional form of V„, is known, we solve self-con-
sistently Eq. (12), where the electron density deter-
mines the effective potential and is itself deter-
mined by the wave functions P;(z) through Eqs.
(2)—(5) in which P;(z) e; replace g;(z) and E;,
respectively; temperature enters only through Eq.
(4). Further details can be found in Refs. 3 and
18. The energies e; and the wave functions P; are
identified as subband bottom energies and envelope
wave functions including exchange-correlation ef-
fects. The exchange-correlation potential used here
is the same as the one used in Ref. 18, but in con-
trast to that calculation we take a valley degenera-

cy of four in the primed subbands in the present
calculation.

III. RESULTS AND DISCUSSION

We have calculated self-energies, quasiparticle
energies, and subband occupancies at a variety of
temperatures and inversion-layer concentrations.
The set of parameters used in our calculation is
listed in Table I. Unless otherwise stated all our
calculations are for depletion density N~ ——6&(10'
cm to correspond to the experimental values in
Refs. 13 and 14.

TABLE I. Parameters used in the calculations.

Valleys
Degeneracy
Perpendicular mass
Parallel masses

Optical mass'
Density of states mass
Dielectric constants

Depletion-layer
density'

gu

m3

m2

mop

my

Unprimed
2

0.916m,
0.1905m,
0.1905m,
0.1905m,
0.1905m,

11.7
3.9

6)& 10' cm

Primed

0.1905m,
0.1905m,
0.916m,
0.315m,
0.417m,

mop m 1m2/(m 1 +m2).
b
mg =(m )m2)'1/2

'Corresponding to Ref. 13. For Fig. 10, X~——10" cm
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A. Self-energy

(13)

I

In Figs. 1 and 2 we present results for the self-
energies at subband bottoms. As we have indicated
before, the calculated self-energies have little
dependence on wave vector. The self-energy is
usually discussed in terms of an exchange part and
a correlation part:

Mr(k, ice„)=M(";(k)+My'(k, iso„),

where the exchange part is defined in the usual

manner as

M;";(k)= —I n;(p)U;;;;(k —p),
(2a)

(14)

and the rest is the correlation part which can be
written

dio' f (p, co')[n;(k —p)+a(ro')]
M;(k, iro„)=—

(2~) " 2~ iso„—fi '[E;(k —p) —p, ]
(15)

In these equations we have introduced

n;( q) =(1+expt P[E;(q) —p] ) ) (16)

a(co) = (e ~—1) (17)

40

f (q, ro)= —21mU;;;;(q, iv ~ro+ig) .

In Fig. 1. we show the magnitudes of the total
self-energies Mo and M] for the subbands 0 and 1,
respectively, together with the exchange parts E„o

and E
&

as a function of temperature for the
inversion-layer concentration N, = 1 && 10' cm
At low T all electrons are in the ground subband 0,
which therefore has a large exchange energy,
whereas the subband 1 being unoccupied at low T
has no exchange contribution. As temperature
rises, the exchange energy in subband 0 decreases
in magnitude for two reasons: Electrons are ther-
mally excited out of subband 0, so its occupancy is
reduced; this is the implicit effect. In addition
there is the explicit effect that the thermal
broadening of the Fermi distribution function
tends to reduce the exchange term, even if the oc-
cupancy was the same. The explicit effect alone
would be a function of T/TF only, where Tz is

30

O
(D

E
20

Ql

C
Ul

10

15

(D

E
10

Ql
(D
C

LLj

I

0 100 200

Temperature (K)

FIG. 1. Temperature dependence of the magnitudes
of total self-energies Mo and M~ and of exchange ener-

gies E„o and E„~ at the bottoms of subbands 0 and 1,
respectively. The inversion-layer density N, is 10'
cm and the depletion-layer density Nd is 6X 10'
cm

Exo

0
0 100 200 300

Temperature (K)
FIG. 2. Same quantities as in Fig. 1 for subbands 0'

and 1' at same values of the densities.
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the Fermi temprature k&T+ ——Ez in the quantum
limit, where EF is proportional to N, . At
N, =10' cm we have TF ——73 K. Qn the other
hand, the implicit (occupancy) effect cannot be
described by a single parameter, since at finite T
several subbands can be populated, so that many
parameters corresponding to the subband separa-
tions enter in a complicated way. The exchange
energy E„j in subband 1 increases with tempera-
ture from zero to a small saturation value because
of the thermal population of that subband.

The total self-energies Mo and M& do not show

quite such pronounced dependence on temperature,
but the trend is roughly similar. Two features
should be noted, however: Even at large T-300
K, the individual self-energy corrections are quite
large, -10 meV. The difference Mo —M~ ~,
however, goes down appreciably with increasing
temperature primarily because E„obecomes small
at high temperatures, and the correlation-energy
corrections to the two subbands become similar.
Thus the many-body corrections to the subband en-

ergy difference become rather small for the
unprimed ladder at high temperatures. This
answers the initially puzzling question, ' ' why the
Hartree calculation gives results close to the experi-
mental values of infrared absorption at high tem-
peratures.

In Fig. 2 we show the magnitudes of the total
self-energy corrections Mo and M~ and the ex-
change corrections E„o and E„~ to the lowest-

lying subbands 0' and 1' of the primed ladder with
a valley degeneracy of four. These subbands have
an anisotropic mass for motion parallel to the sur-
face. In our calculation we incorporate this aniso-

tropy exactly in the exchange calculation. For the
correlation en|:rgy we find only small differences
(less than 1 meV) between using the isotropic opti-
cal and density-of-states masses for parallel
motion. Thus we expect the mass anisotropy to
have little effect on the self-energies.

The self-energies Mo and M~ both increase with
temperature initially with Mo increasing appreci-
ably. This is primarily due to the increase in the
exchange contributions because the primed sub-
bands become thermally populated rather fast with
increasing temperature because of their high densi-

ty of states. Above 200 K subband 0' has a higher
population than the ground subband 0. Unlike in
the unprimed ladder, the self-energy corrections are
quite different quantitatively also at room tempera-
ture, which explains the large observed discrepancy
between the Hartree calculation and the infrared

absorption measurements' ' for the 0' —1' transi-
tion observed at high temperatures when 0' is ap-
preciably populated.

B. Subband energies

We now show subband energy differences in
various approximations, since these are more in-
teresting from an experimental point of view than
the energy levels themselves. In Figs. 3—6 we
present results for E~o, Eoo, Et o, and E2o, respec-
tively, where EJ,. ——EJ —E;, as a function of tem-
perature from 0—300 K at a fixed inversion-layer
density N, =1)&10' cm . The curves are calcu-
lated results labeled a for Hartree, b for many-
body perturbational with self-consistent Hartree
basis, c for local density functional, and d for a
many-body perturbational calculation with a varia-
tional solution to the Hartree approximation as
basis. Curves d are included for comparison with
previous work .

In Fig. 3 we find that the many-body perturba-
tional (curve b) and the LDF calculation (curve c)

40

30

)
(D

20

(b
C

UJ

10

100 20Q

Temperature {K)
300

FIG. 3. Subband energy difference Elo as a function
of temperature for the inversion-layer density N, = 10'
cm and depletion-layer density N~ ——6)& 10' cm in
four different approximations: a, Hartree self-consistent
calculation; b, many-body perturbational calculation
with Hartree basis; c, finite temperature local density
functional calculation; d, many-body perturbational cal-
culation with variational solution to Hartree approxima-
tion as basis.
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in Fig. 3. The difference between Hartree and
many-body results is rather large at low tempera-
tures, going down appreciably with increasing tern-

perature. The LDF method gives results reason-

ably close to the perturbational calculation, making
it a meaningful procedure to use at finite tempera-
ture for the unprimed subband ladder. Because of
numerical difficulties with the variational method
for subband two, we have not shown results in that
approximation in Fig. 6.

We now turn to the density dependence of the
subband energy differences. In Figs. 7 and 8 we
shown E&0 and E& 0, respectively, as functions of
density at T=100 and 300 K. We have also put
the experimental points from Refs. 13 and 14 in
the figures. The measurements are standard in-
frared absorption measurements in which the
inversion-layer density is tuned by changing the
gate voltage, and one looks for resonant absorption
of incident radiation of a fixed frequency. It is
well known that the resonance energy is not simply
the subband energy separation, so strictly the com-
parison made in the figures is not correct. Howev-

er, we argue in Sec. IV that, given our lack of safe
quantitative estimates of the corrections and the
problems in connection with Dyson's equation

mentioned in Sec. II8, the comparison made is as
good as any within the expected accuracy of our
theory.

As can be seen from Fig. 7, all the approxima-
tion give reasonable agreement with experiment for
T & 100 K, with the many-body results being
somewhat better. This is in sharp contrast with
the zero-temperature case ' where Hartree re-
sults give much poorer agreement and inclusion of
exchange-correlation effects is essential in compar-
ing with experiment. As we have shown earlier,
the reason for the apparently good agreement be-
tween the Hartree calculation and the measure-
ments at elevated temperatures is not the disap-
pearance of many-body effects but a cancellation
of similar self-energy corrections to both subbands
0 and 1.

For the primed subbands we have a different sit-
uation shown in Fig. 8. Exchange-correlation ef-
fects do not cancel out in E~ 0. Thus the Hartree
results (curve a) remain well below the many-body
results (curve b) also at high temperatures. We
also note that the LDF calculation of curve c gives
results quite different from the perturbational ones.
Finally, even though there are fewer experimental
points, it is clear that the perturbational calculation
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FIG. 7. Subband energy separation E&0 as a function of inversion layer density at temperatures T =100 K (left) and
T =300 K (right) in (a) Hartree, (b) perturbational, and (c) density functional approximations. Depletion-layer density

Nq ——6)& 10' cm . Experimental resonance energies from Ref. 13 are also shown.
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FIG. 8. Subband energy separation E& o as a function of inversion-layer density at T =100 K (left) and T=300 K
(right). Parameters and labeling are the same as in Fig. 7. Experimental points from Ref. 13.

is the closest to the measured subband separations,
although the agreement is decidedly poorer than
for the unprimed subbands.

Two possible sources of this discrepancy can be
mentioned. First, E~ p depends on the occupancy
of subband 0' which in turn depends strongly on
the energy separation Epp which cannot be deter-
mined experimentally with the same accuracy as
subband separations within the same ladder. Thus
we have no good experimental check on the posi-
tion of Ep. Furthermore, it has been shown by
Stern that Epp is rather sensitive to the boundary
condition one uses at the seminconductor-insulator
interface. Usually one assumes g(z) to vanish at
the interface z =0, as we have done here, but if
one takes into account that the potential barrier is
finite and possibly not infinitely steep so that the
wave functions have a short tail into the insulator,
the energy separation Ep p is significantly reduced,
whereas separations within the same ladder are not
affected much. Also, the calculations beyond the
simplest effective-mass approximation by Nakaya-
ma show that Epp depends strongly on the boun-

dary condition at the interface although the effect
is to increase Epp. Since the actual magnitude of
these effects depends on the interface quality, it is
not well known in the actual samples, which con-

Pl ~~e
r, =

A 4mEO~+vrN, &.ager&,
(l9)

where m~~ 1s the mass for planar motion
17=(a;+I~;)l2, and ao is the effective Bohr radius.
Many-body effects are more important' ' at
larger values of r, whereas the kinetic energy dom-
inates at small values of r, . From (19) we con-
clude that generally the electron-electron interac-
tion should have larger effects on the primed sub-
bands than on the unprimed ones because of their
larger m ~~. Also, the higher valley degeneracy in-
creases the importance of the many-body effects.
Since RPA is a perturbational expansion in the
parameter r„ it is quite conceivable that it is not
sufficient for the primed subbands.

For a better understanding of the electronic
structure of the primed subbands we suggest that
one should experimentally eliminate the first un-

tributes to the uncertainty in comparison between
experiments and our calculation. Second, the
random-phase approximation may not be very
good for the primed subbands. The relative impor-
tance of electron-electron interactions is usually
described by the dimensionless parameter r„de-
fined by
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certainty by doing the infrared absorption measure-
ment at low temperatures under uniaxial stress
such that two or all four valleys from which the
primed subbands originate are lowered energetical-
ly with respect to the other valleys. Under suitable
and experimentally accessible stress the subband 0'
can go well below subband 0 and become the only
occupied ground subband of the system. That this
can be achieved has already been demonstrated in
cyclotron resonance experiments. ' A comparison
of calculations and experimental measurements of
intersubband spectroscopy of E& 0 under such con-
ditions would give a much clearer picture of the
role of many-body effects in those subbands. We
believe that the present calculations indicate that
such experiments would be highly desirable.

C. Subband occupancies

In Fig. 9 we show the relative occupancies no
and no for subbands 0 and 0', respectively, as
functions of temperature at a fixed inversion-layer
density E, = 10' cm . Results of many-body
perturbational (curves b) and LDF (curves c) calcu-
lations are shown. The quantity n; is defined as
n; =Q;/X„where Ã~ is the actual occupancy of

0.6

C0

O 0.&

D

0.2

0
0 100 200 300

Temperature (K )

FIG. 9. Temperature dependence of relative subband
occupancies no and no for the inversion-layer density
N, = 10' cm and the depletion-layer density

Nq ——6g 10' cm in (b) perturbational and (c) density
functional approximations.

the ith level. We conclude that both approxima-
tions give similar results, and around 200 K sub-
band 0' starts having a higher population because
of its higher density of states. Hartree theory gives
a somewhat different trend for the subband occu-
pancies, even though the crossover takes place in
the same temperature range slightly below 200 K.

D. Valley condensation

Within the effective-mass approximation the
ground-state subband 0 of the Si(100) inversion
layer has a twofold valley degeneracy. Normally
the kinetic energy dominates, so both valleys are
equally occupied. However, the exchange term
tends to prefer a "valley condensation" in which
only one of the two valleys is occupied by elec-
trons, and at low densities (large r, ) the exchange
term is expected to dominate, so that a. transition
from a two-valley to one-valley phase may become
possible. This possibility was investigated at T=0
by Bloss et al. who predicted a valley condensa-
tion at about X,=2X10" cm for a depletion
density of Xd ——1)& 10" cm . Because of the im-
portant, experimental repercussions shown to result
from this phenomenon it is of interest to study
the temperature dependence since temperature acts
as an additional kinetic energy which above a criti-
cal temperature must "melt" the valley condensate,
i.e., reestablish the double valley degeneracy.

Encouraged by the favorable agreement between
the LDF method and the many-body perturbation-
al method and experiments for the unprimed
ladder, we have applied the simple extension to fin-
ite temperature of the local valley density function-
al technique used earlier at zero temperature to
this problem. In Fig. 10 we depict the critical
curve for the phase transition; electrons are in the
condensed (C) phase occupying only one valley
below the curve, whereas they occupy both valleys
and are in a molten (M) phase above the curve. As
expected, at zero temperature the phase transition
occurs at about X,=2&(10"cm . However, at
that critical density an infinitesimal temperature
would melt the condensed state. The melting
curve rises rather fast and we have a melting tern-
perature of about 4.5 K for 1)& 10" cm &N,
& 2g 10" cm . Below 1)& 10" cm correlation
starts dominating exchange, making the condensed
phase less preferred so the melting temperature
goes down, at least in our approximation.

Our calculation shows that the valley-condensa-
tion phenomenon would show interesting tempera-
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NS (10"Cm-'j

FIG. 10. Calculated temperature (T)-density (N, )

critical curve for two-valley to one-valley condensation
in the ground state of the Si(100) n-channel inversion

layer. Phase C is the one-valley phase and M is the
two-valley phase. The depletion charge is Nd ——10"
cm

ture effects, and this should be kept in mind in any
experimental search for this transition. It must
also be mentioned that the critical densities and
temperatures occur at a very delicate balance of en-

ergies, so that the actual numbers calculated can-
not be expected to be very accurate. Still, the
trend in Fig. 10 should be quite correct.

IV. SUMMARY AND CONCLUSION

We have presented detailed results of theoretical
calculations of the electronic structure of n-channel

inversion layers in the Si(100)-SiOz MIS system.
Corrections owing to exchange and correlation ef-

fects are calculated in self-consistent RPA using

the exact finite-temperature Hartree solution as the
basis function. For EIO, the energy difference be-

tween the first excited and the ground subbands of
the unprimed ladder, our results are in reasonable
agreement with finite-temperature infrared absorp-
tion measurements' ' over the whole temperature
range. At low temperatures the many-body effects
are of immense importance, whereas at higher tem-

peratures they are still large but cancel out to a
great extent for Eip so that the Hartree approxi-
mation results apparently agree with the experi-
ments also. This difference between low and high
temperatures lies mainly in the exchange correction
to subband 0 which diminishes considerably in
magnitude from a large value at 0 K, as electrons
are thermally excited out of the ground subband.
Eventually, the self-energy corrections to both sub-

bands 0 and 1 (which are then mainly due to corre-
lation) become similar in magnitude, so that the ef-
fects drop out in the difference EIO. Most of the
electrons thermally excited out of subband 0 occu-

py subband 0' at higher temperatures, giving rise
to a rather large exchange correction to Ep. This
is reflected in the fact that for the subband differ-
ence EI p the many-body corrections remain im-
portant also at high temperatures, as is observed in
the experiment. ' ' Quantitatively, however, the
agreement between our theoretical results and the
measured subband separations is decidedly worse
for Elo than that for EIO. We have suggested two
possible reasons for this: The position and occu-
pancy of subband 0' is uncertain because the inter-
face potential barrier is not ideal, and many-body
effects may not be described adequately within
RPA because of the larger effective r, of the elec-
tron gas in the primed subbands. To clarify this
point we would like to see results of experimental
measurements of EI o under such uniaxial stress
that subband 0' becomes the ground subband.

Another important element of this work has
been the investigation of the extension to finite
temperature of the LDF technique employed '
earlier to calculate the electronic subband structure
of the inversion layer at zero temperature. In this
extension we neglect any explicit temperature
dependence of the exchange-correlation potential,
but retain its implicit temperature dependence
through the electron density n (z) which is calculat-
ed at finite temperature. We find that for the
unprimed subbands this method works well in the
whole temperature range 0—300 K, which allows
us to conclude that for this subband ladder the im-
plicit temperature effect is dominant. For the
primed subbands, however, there is significant
disagreement at elevated temperatures between the
LDF and many-body perturbational results. This
seems to indicate that for the primed subbands the
explicit temperature becomes significant and again
underscores that the primed subbands could be
more interesting to study experimentally and
theoretically without the complications coming
from the unprimed subbands.

Our calculation of the single-particle energy
spectrum in the space-charge layer involves a num-
ber of approximations, the influence of some of
which is not easily estimated. We have used essen-
tially RPA to calculate the self-energies. This ap-
proximation is exact in the high density (r, ~O)
limit, but its actual validity in our case where
8) r, & 1.5 for the unprimed subbands when
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10"(N, (3 g 10' cm is questionable.
Nevertheless, for lack of manageable, demonstrably
better approximations it is often used in metal
physics in the same density regime. ' The effect
of dimensionality on the validity of RPA has also
not been investigated systematically, although
exchange-correlation effects are thought to be more
important in two dimensions " compared with
three for equivalent values of r, . We do not expect
serious errors relative to RPA from our use of the
generalized plasmon-pole approximation for the
screened interaction, since comparisons show only
insignificant differences at T=0 in three' and
two dimensions and in the T~ ao limit. Also,
the diagonal approximation for the Coulomb in-

teraction is well justified since off-diagonal ele-

ments are very small.
Finally, a possibly serious approximation is the

neglect of the imaginary part of the self-energy
both at zero and finite temperature. No satisfacto-
ry microscopic calculation of quasiparticle life-
times in inversion layers exists. In the plasmon-
pole approximation at T =0 the imaginary part of
the self-energy is zero in the lowest subband below
the Fermi level for most densities because it is dif-
ficult to fulfill momentum and energy conservation
in the emission or absorption of a plasmon. For
states in higher-lying subbands a scattering into the
lowest subband by emission of a plasmon is quite
possible and leads to a broadening of the state of
several meV, much broader than the width of the
experimentally measured resonance lines (-1
meV). Clearly this theory is insufficient to
describe line shapes. The only reported theory by
Nakamura et al. also gives large values of the im-

aginary parts of the self-energy. Such large values
would possibly give broad absorption lines whose
maximum could conceivably be shifted appreci-
ably.

The LDF technique in principle only works for
the ground state of an inhomogeneous system and
only if the density variations are slow compared
with Fermi wavelengths. ' It is, however, heavily
used in systems where the density distribution by
far violates the condition of slow variation, and
empirically the method has had astounding success
when its results are compared with experiments.
Its successful application to the subband problem
at T =0 (Refs. 3 and 8) is yet another empirical
proof of its usefulness. Our extension to finite
temperature must also be considered empirical, and
we have shown in this paper that the method
seems to work satisfactorily for the unprimed sub-

bands, whereas the primed subbands might well

provide a difficult test case for the method, also at
low temperatures.

Finally, we must make some important remarks
on the comparison of our theoretical calculation
with experimental results. We have calculated
single-particle energy levels of the system including
electron-electron interaction effects. However, an
intersubband spectroscopic experiment ' ' mea-
sures the response of the multilevel system to the
electric field of the infrared radiation. Thus
resonant absorption takes place at the poles of the
conductivity function, which in the long-wave-

length limit is the same as the polarizability func-
tion of the interacting system.

For a noninteracting system the poles of the po-
larizability are at the energy differences EJ; of the
single-particle levels, but as is known from optical
properties of bulk semiconductors the poles of
the interacting system can be shifted due to the ex-
citonic effect, i.e., vertex corrections. This shift is
due to the interaction of the electron excited to a
higher level and the hole left behind in the ground
subband. This manifestly two-particle effect tends
to lower the resonance pole corresponding to the
i ~j intersubband transition below the subband en-

ergy difference EJ, . In addition to the vertex
corrections there is the so-called "depolarization
shift" or "resonance screening" effect which
originates in the inhomogeneity of the system in
the direction perpendicular to the interface. Be-
cause of this, the electron gas can screen the exter-
nal radiation field even at long wavelengths, so
that the total field inside the inversion layer is

changed, and essentially the response to an external
field has resonances where the response to an inter-
nal field has zeros, and not where it has poles. In
many-body language this means that the reducible
response function is quite different from the ir-
reducible one. This effect shifts the resonance up
above the poles of the vertex corrected, irreducible
response. Thus the two effects of vertex correction
and depolarization shift tend to oppose each other.

The depolarization shift is a well defined quanti-

ty which can be calculated in a straightforward
way. At T =0 it shifts the lowest resonance pole
above EIO by as much as 15%. For the vertex
corrections, approximations must necessarily be in-

troduced, and there have been three different calcu-
lations of the excitonic effect. Ando using a
time-dependent LDF perturbational approach
found that the vertex correction and the depolari-'

zation shift almost cancel each other, bringing the
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resonance poles very close to the subband energy
differences. On the other hand, Vinter ' used the
statically screened electron-hole interaction in the
Bethe-Salpeter equation and found a rather small
effect. The most recent calculation was carried out
by Das Sarma et al. ,

' who summed all the ladder
bubble diagrams using a dynamically screened ver-
tex and found results close to Ando's. The latter
authors were forced to make a number of other
simplifying approximations owing to the compli-
cated nature of the vertex corrections, and they
concluded that it is hard to say anything definitive
about the quantitative importance of those effects
in the silicon inversion layer. For T & 0 no calcu-
lation of the depolarization shift and vertex correc-
tions exists, but a preliminary estimate indicates
that the relative importance of the two effects
remains the same at finite temperature.

In addition to these problems of estimating with
reasonable accuracy the interaction effects, we still
have the problem mentioned in Sec. II for the
quasiparticle energies: The subband energy differ-
ences are about 15% smaller when one solves
Dyson's equation (10) than when one takes only
the first iteration Eq. (11) at T=0. Therefore,
when one compares only with infrared absorption
experiments both Vinter and Ando can claim ex-
cellent agreement even though they have different
excitonic shifts, because their calculated subband
separations differ by about 15%.

From the foregoing discussion we conclude that
as long as experiments have not been made which

measure directly subband energy differences, it is
not possible to judge the merits of the various ap-
proximations. Theoretical efforts will hardly be
able to decide these points, so at the moment we
believe that 10%%uo is a limit on the accuracy we can
achieve in this complicated many-body system.
Within this accuracy, we believe that our calcula-
tion, which for the first time has eliminated all the
nonessential approximations of earlier finite-
temperature work, is in quite satisfactory agree-
ment with experiments in the whole temperature
range 0—300 K. The present work brings our
knowledge of the electronic structure of the silicon
inversion layer at finite temperature to the same
level of sophistication as that at zero temperature.

The system studied here is by far the most ex-

tensively studied space-charge layer, but the
method outlined in this paper is applicable to
space-charge layers in other systems with negligible
nonparabolicity. We intend to apply it to other ex-

perimentally interesting systems like Si(110)- and

Si(111)-Si02 (Ref. 43) and the InP inversion

layer.
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