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Charge densities and wave functions of chalcogenide
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The charge densities of S+, Se+, and Te+ in Si are successfully predicted using an ex-

tension of the Hjalmarson et al. model of deep impurity levels. The wave functions of
these different deep impurity states are all virtually the same.

Analyses of electron nuclear double resonance
(ENDOR) and electron-spin-resonance (ESR) spec-
tra of impurities in semiconductors lead directly to
the determination of the electronic charge densities
of the impurity states. ' Such data for shallow im-
purities have been well described by the effective-
mass theory of Kohn and Luttinger. ' However,
much less is understood about the charge densities
of the deep impurity levels that lie more than =0. 1

eV from the nearest band edge in the forbidden
band gap of a semiconductor. Prototypes of such
deep levels are the positively charged S, Se, and Te
defects in Si, which produce deep traps near the
center of the gap, 590, 520, and 411 meV below
the conduction-band edge, respectively. Sixteen
years ago Ludwig reported ENDOR spectra for
Si:S+ from which one can extract "experimental"
charge densities out to the twelfth neighbor. Re-
cently Grimmeiss et al. made similar analyses on
ESR data to obtain the central-cell charge densities
of Si:Se+ and Si:Te+. The prediction of these
deep defect charge densities has proven to be a for-
midable theoretical task.

The theoretical techniques commonly employed
for describing such defects' wave functions are the
various self-consistent pseudopotential schemes,
cluster methods, ' evanescent wave techniques, "
and the empirical tight-binding scheme of Hjal-
marson et al. ' It is widely, but incorrectly, be-
lieved that only the laborious, self-consistent
methods are capable of producing even qualitative-
ly accurate charge densities. Here we show that
the Hjalmarson et al. theory, which is the simplest
and the most global of the current theories of deep
levels, can be extended and modified to yield wave
functions and charge densities in excellent quanti-
tative agreement with the "experimental" data of
Figs. 1 and 2.'3' We find that, to a good approx-
imation, the wave functions of all substitutional

deep impurity levels of the same symmetry are vir-

tually identical —but quite different from shallow-

impurity wave functions.
For any substitutional defect with energy E and

in a state
~
11j), a slight change of the defect poten-

tial operator V produces a change in energy
dE = (1b

~

d V
~
lb). If, as justified' ' by Hjalmar-

son et al., the defect potential is diagonal in a site
representation basis

~
1,R,n ) and localized in the

central cell at the origin, i.e.,

then we can relate the amplitude of the deep level's
wave function at the impurity site to the infini-
tesimal changes dE and d VI through

det[1 G(E)V] =0, — (2)

where G(E)=(E—Hp) ' is the Green's operator
and Ho is the host-crystal Hamiltonian operator.
The solution of Eq. (2) for a site-diagonal defect
potential reduces to a scalar equation

(1,0, 1
~

G
~

1,0, 1)=1/Vt .

The impurity state
~
g), in a localized basis, is

Here I stands for the irreducible representation of
the defect level, either At (s-like) or T2 (p-like),
and the integer n indexes the states transforming
according to the Ith irreducible representation at
the Rth shell. (For A

~ states, n may be as large as
6 for R within the first 12 shells of neighbors. For
example, for R=0, there is only the n =1 basis
state, corresponding to the valence s orbital of the
impurity. )

The eigenvalue equation for defect levels in the
gap is
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given by
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A noteworthy point is that both Eqs. (1) and (4)
express the defect wave functions (l,R,n

I P) as
functions of the impurity energy E alone, and do
not depend explicitly on the defect potential V.
Hence the difficult problem of accurately deter-
mining the defect potential (including, to an ex-
tent, ' its dependence on lattice relaxation around
the defect, and the charge state of the defect) is
circumvented.

We represent the host Hamiltonian by the
nearest-neighbor sp s* ten-state model of Vogl
et al. ' In order to make contact with the
ENDOR and ESR experiments, we take
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where we have B =
I $1&r„,„, &(0) I

for R= 0; for
R@0,B is a known function of the Si free atom

values of
I
g(0)

I

and (r ) (Ref. 13 discusses

how B is determined).
The basis states

I
I,R,n ) are (formally) sym-

metrically orthogonalized, symmetrized Lowdin or-

bitals. (We do not actually need to evaluate the

basis orbitals ( r
I
I,R,n ) in the present work. ) For

example,
I
At, o, 1 ) means the At symmetric linear

combination of the four sp hybrids at the impuri-

ty site';
I
At, R~, 1) is the At combination of four

inward-directed Lowdin hybrids centered at the
nearest-neighbor sites, ' and

I
A t, Rt, 2) is con-

structed-from the twelve outward-directed hybrids

at the nearest-neighbor sites, ' and so on.
The isotropic part' of the S+ deep-level wave

function (Fig. 1) was calculated for a defect with

an energy 590 meV below the conduction-band

edge, as observed for S+ in Si. The agreement be-

tween theory and data is gratifying. Even the
small discrepancy between theory and data for
R & 6.5 A can be readily understood: The
Coulomb interaction omitted from the model

causes the impurity's wave function to have an
effective-mass tail (which has the observed R
dependence; see Fig. 1) for these large values of R.
For R & 6.5 A, the deep-level wave function is

strikingly different from the effective-mass approx-
imation wave function.

We have also calculated the anisotropic part' of
the S+ deep-level wave function; for example, at
the first neighbor we find an amplitude of —0.67
versus the measured value of +0.69 and an effec-
tive-mass theory value of zero.

The wave functions and charge densities com-
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FIG. 1. Magnitude of the isotropic part (Ref. 14) of
the wave function of a S+ impurity in Si,

I
(A &, R, isotropic1$) I, as a function of the distance R

(in angstroms) from the origin (impurity site). The solid

triangles and solid circles are derived from ENDOR
data of Ref. 3, using atomic parameters of Si and S
determined in Ref. 13. The open triangles and open cir-
cles are our calculated results. Some shells of atoms
have two distinct subshells which transform into them-

selves only under the operations of the tetrahedral

group, giving rise to both triangles and circles. The
crosses are calculated results of Ref. 5. The dashed line

and open squares represent the effective-mass approxi-
mation (Ref. 3). The positions of the neighbors are indi-

cated at the top of the figure. &A &, R, isotropic
I f) is

predicted to be negative at the first, second, fifth,
seventh, and twelfth neighbors. Neither data nor pre-

dictions are given for the eighth through the eleventh

neighbors. The solid (chained) line merely connects the
solid (open) trangles.

puted here lend quantitative support to the idea of ~

the hostlike nature of many deep level wave func-
tions (an idea that is implied by the notion of hy-

perdeep levels' ). Figure 2 shows (A &, 0, 1
I Q),

(A„R„11$),and (A„R&,21'() as functions of
the deep-level energy E for defects in Si. The on-
site wave functions (A ~, 0, 11 /) are not very dif-
ferent for all deep defects, ranging from 0.27 to
0.36, indicating that they depend very little on the
defect. And the first-neighbor amplitudes
(A „R&,1 I P) are negative and approximately
twice as large in magnitude as the central-site am-

plitudes, and likewise insensitive to the impurity
(lying between —0.73 and —0.54), again showing
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that the deep level is antibonding and hostlike-
and not impuritylike. In the sense of Ref. 12,
these levels are "pinned" to the ideal vacancy level.

Previous efforts to calculate these spectra using
a sophisticated linear combination of atomic orbi-
tals theory for a cluster of 275 atoms have been
less successful in describing the data. We do not

E(eV)

FIG. 2. On-site wave function (A &, 0, 111(t) (thin

solid line) and first shell wave functions (A ~, R|,111()
(thick solid line) and (A~, R~, 21$) (dashed line) are
shown as functions of the deep impurity energies E (in

eV). Data for S+ are from Ref. 3 (solid triangles); data
for Se+ and Te+ (solid squares) are from Ref. 4, with

the values of 1$(011' and (r ) determined or correct-
ed according to Ref. 13. We have chosen the sign of
(A ~, 0, 11$) to be positive, which determines the sign of
(A ~, R, n

1
1( ) for all R. VBM and CBM on the abscissa

refer to the valence-band maximum (E =0.0) and the
conduction-band minimum (E =1.17 eV in this model).

know the origin of this discrepancy, but speculate
that it might be reduced by including more orbitals
in the basis set.

One reason why moderate-sized cluster calcula-
tions in general give less reliable charge densities is
that much of the defect wave function lies outside
all but the largest clusters. For example, by our
calculation, more than 30% of the charge density
of every substitutional A ~ deep level in Si lies out-
side a cluster of 87 atoms (seventh-neighbor
shell). '

In summary, we have shown (i) that the
ENDOR and ESR data for S+, Se+, and Te+ in
Si can be accounted for quantitatively with a very
simple theory, (ii) that the wave functions of all

three of these sp -bonded deep levels are virtually
the same, but quite different from shallow-level

wave functions, and (iii) that the wave functions
can be evaluated simply, knowing only the (ob-
served) deep-level energy E, and without any expli-
cit knowledge of the defect potential. Thus, we
predict that two sp -bonded deep levels of the same
symmetry and of approximately the same energy,
but associated with different impurities and dif-
ferent charge states, can be expected to have simi-
lar wave functions.

We gratefully acknowledge the financial support
of the Office of Naval Research (Contract No.
N00014-77-C-0537) and helpful discussions with
H. P. Hjalmarson, P. Vogl, D. J. Wolford, G.
Baraff, M. Stoneharn, and Y. C. Chang. We thank
the authors of Ref. 4 for sending us a copy of their
manuscript prior to publication.

'Permanent address: Department of Physics, University

of Science and Technology of China, Hefei, China.
G. Feher, Phys. Rev. 114, 1219 (1959).
W. Kohn and J. M. Luttinger, Phys. Rev. 97, 1721

(1955); 98, 915 (1955).
G. W. Ludwig, Phys. Rev. A 137, 1520 (1965).

4H. G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J.
Schneider, R. Worner, C. Holm, E. Sirtl, and P.
Wagner, Phys. Rev. B 24, 4571 (1981).

T. Shimizu and K. Minami, Phys. Status Solidi B 48,
K181 (1971).

M. Jaros and S. Brand, Phys. Rev. B 14, 4494 (1976);
M. Jaros, C. O. Rodriguez, and S. Brand, ibid. 19,
3137 (1979).

7G. A. Baraff and M. Schluter, Phys. Rev. Lett. 41,
892 (1978); Phys. Rev. B 19, 4965 (1979).

SJ. Bernholc, N. O. Lipari, and S. T. Pantelides, Phys.
Rev. Lett. 41, 895 (1978); Phys. Rev. B 21, 3545
(1980).

M. Scheffler and S. T. Pantelides (private communica-
tion) have recently studied the magnetic susceptibili-
ties of deep levels. Their work has some elements in
common with the present work.
L. A. Hemstreet, Phys. Rev. B 15, 834 (1977); 22,
4590 (1980).
K. J. Blow and J. C. Inkson, J. Phys. C 13, 359 (1980).
H. P. Hjalmarson, P. Vogl, D. J. Wolford, and J. D.
Dow, Phys. Rev. Lett. 44, 810 (1980). See also W.
Y. Hsu, J. D. Dow, D. J. Wolford, and B. G. Street-
man, Phys. Rev. B 16, 1597 (1977).

~ See Eqs. (9)—(12) and Appendix A of G. D. Watkins
and J. W. Corbett, Phys. Rev. 134, A1359 (1964).

The isotropic part is given by

3

1A ~, R, isotropic) = g 1A ~,R, n )f„,
n=1

where we have the following values for the vector
f, for R being the zeroth through the fifth neighbor:



954 REN, HU, SANKEY, AND DOW 26

(1,0,0), (1/2P 3/2, 01, (1/2, 1/2, V 2/2), (1/2, 1/2, V 2/21,
(V 2/2, V 2/2, 0), and (1/2, 1/2, V 2/2). Results are
not reported for the eighth through the eleventh
neighbors. For the sixth, seventh, and twelfth neigh-
bors, there are two isotropic parts of ~1 ) with co-
efficients (1/2, 1/2P 2/2) and (1/2, 1/2, V 2/21,
(1/2, 1/2, V 2/2) and (1/2, V 3/2, 0), and (1/2, V 3/2, 0)
and (1/2, V 3/2, 01, respectively.

I5The corrections to defect levels due to the non-cen-
tral-cell defect potential have been estimated to be
only a few tenths of an eV in Ref. 12 and by using
the paired-defect theory of O. F. Sankey, H. P. Hjal-
marson, J. D. Dow, D. J. Wolford, and B. G. Street-
man, Phys. Rev. Lett. 45, 1656 (1980).
P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys.
Chem. Solids (in press).

I7These states can be expressed in terms of the (out-
ward) directed-valence hybrids

~

h;o ) centered at the
origin

I
~] 0 1& =(

I h] &+ I
h~' &+ I

h3' &+
I
h,' & 1/2

where i = 1, 2, 3, and 4 labels the hybrid vectors
c =(1,1,1, 1)/2, (1,—1,1,—1)/2, (1,—1,—1,1)/2, or
(1,1,—1,—1)/2. The hybrids are expressed in terms
of the basis orbitals centered at R as

Ih' ) =c] Is&+c& I p~)+c31py)+c4

1sWe have

(A„R„1)=(~h]')~(h, )+ ~h; )+ (h,'))/2,

where a, b, c, and d refer to the nearest-neighbor
sites (aq/4)(1, 1, 1), (az, /4)( —1, 1,—1), (aq /4)( —1,
—1,1), and (a&/4}(1,—1,—1); 1, 2, 3, and 4 denote
hybrids centered at the neighboring sites with
c =(1,—1,—1,—1)/2, (1,1,—1,1)/2, {1,1,1,—1)/2,
and (1,—1,1,1)/2.

I9We have

~A], R],2)=( ~hp')+ (h3')+ ~h4')+ (h] )

+ )
h 3" &+

(

h4" )+ [h]' ) +
(
h; &

+ [h;)+[h,')+[h,')
+ ih3 ))/~12,

where a, b, c, and d and 1, 2, 3, and 4 have the
same meanings as in Ref. 18.
H. G. Grimmeiss, E. Janzen, and B. Skarstam, J.
Appl. Phys. 51, 4212 (1980).

Here we use the conventional definition that a level is
deep if it lies in the gap more than 0.1 eV from the
nearest band edge. Some levels closer to the band
edge are actually "deep" in the localization sense of
Ref. 12.


