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A general theory of band-to-band Auger recombination in semiconductors is developed
on the basis of the Green s-function formalism. Starting with the density operator we ob-

tain the excess-carrier lifetime in terms of the four-particle Green s function. This allows
us to incorporate electron correlation effect as well as phonon, impurity, and some other
scattering effects into the theory in a coherent way. It is shown that the correlation ef-

fect, which has never been considered in the earlier theories, can be important under some
conditions for the electron-hole-hole collision process. In contrast the effect is negligible
for the electron-electron-hole collision process without any restrictions.

I. INTRODUCTION

Since the publication of a work by Beatie and
Landsberg' the Auger recombination (AR) has
been considered as an efficient nonradiative process
in semiconductours, especially at heavy-doping lev-

els. A number of investigations have been made
on the basis of the pure collision Auger recombina-
tion (PCAR) and have led to fruitful results on
narrow direct band-gap materials. However, with
PCAR it was insufficient to explain the recom-
bination rate in wide band-gap materials. To
give a better explanation, the phonon-assisted
Auger recombination"' ' (PHAR) and the
impurity-assisted Auger recombination" (IAR)
have been proposed. Recently, successful results
have been obtained for Si and GaAs on the basis of
PHAR (Ref. 12) and of IAR (Ref. 13). The uni-

fied treatment of PHAR and IAR has been given'

in the theory of impurity- and phonon-assisted
Auger recombination (IPHAR).

In the earlier theory of PHAR a divergence dif-
ficulty was inevitable, owing to the use of the
second-order perturbation theory. Recently, the
present author has given a theory based on the
Green's-function formalism, ' where no divergence
difficulty appears. It is quite likely that phonon
and impurity scattering plays an important role in
real materials as in the case of transport phenome-
na and free-carrier absorption. Consequently, it is
general and convenient to give the AR lifetime in
terms of the Green's function, into which any
scattering effects can in principle be incorporated.
Although the Green's-function formalism has been

given by the present author in the theories of IAR

II. FORMULATION

In this section the excess-carrier lifetime of AR
is expressed in terms of the Green's function, into
which any scattering effects can be incorporated.
First we define our model by writing down the
Hamiltonian as

H =H, +Hph+H, ph+H, ;+H, , (2.1)

Here He Hph He-ph He-i, and He-e are the Hamil-
tonians for the band electrons, phonons, electron-
phonon interaction, electron-impurity interaction,
and electron-electron Coulomb interaction, respec-
tively. The explicit forms of the Hamiltonians are

and

= g Ei ( k )~I g s~ j k
l k 0.

(2.2)

and PHAR, there are some defects, given as fol-
lows. The former theory starts from the statistical
average of the scattering amplitude, although actu-
ally the statistical average of the absolute square of
the amplitude is necessary, so that the result is of
limited use. On the other hand, the latter theory
relates the AR lifetime to the imaginary part of
the self-energy so that the damping indifferent to
the excess-carrier lifetime is involved.

In this paper rigorous treatment of the AR life-
time is given starting from the density-operator
formalism. The lifetime is given in terms of the
four-particle Green's function. This is finally ap-
proximated as a product of four one-particle
Green's functions, neglecting the electron-
correlation effect. The validity of the neglect is
discussed.
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H, ,= g W(q)(I&k+q
~
14k)(12k' —q ~13k')al&k+qa I2k ' —7qu 'I3& cr''&4k&r '

l
& l2 l3 l4

k k '
q cr cr'

(2.3}

We have not referred to H„h, H, „h, and H, ;, whose explicit forms are of no interest in this paper. In Eqs.
(2.2) and (2.3) at k, ai k, and Et (k) are the creation operator, annihilation operator, and electron energy,

respectively, for the band index I, wave vector k, and spin o. With Vas the crystal volume P"(q)/Vis the
Fourier component of the unscreened Coulomb potential, i.e.,

(2.4)

(2.&)

where i (=1,2, 3,4) stands for the abbreviation I =I;k;cr; and

24m.e

(I;k;
~ II kj ) is the overlap integral between the modulating parts of the Bloch functions

~
I; k; ) and

~
lj kj ),

which are normalized over the whole crystal. It is more convenient to rewrite H, , as

H =4 g„I'o(1234)a~aza3a4,
1

1234

I 0(1234) =—[&(k,—k )(I,k)
~ leak )(12k2

~

I k )I}(o,—o )

—F (k& —k3)(1&k)
~
I3k3)(I)kq

~
lyke)&(o) —o3}]

&&A(k)+k2 —k3 —k4)h(ot+crq —o3 (T4) . (2.6)

Here h(x) =1 for x =0 and b,(x)=0 otherwise
with x as a scalar or a vector.

Now we consider systems of the conduction-
band (CB) electrons and the valence-band (VB)
electrons. The number operator X, for the CB
system is defined as

Nc ga;a; . ——
l; ECB

With the use of the density operator p(t) the num-
ber Nc(t) of the CB electrons is given by

Nc(t) =Tr[p(t)Nc] ~

(2.7)

(2.8)

Using the well-known relation' of Bp(t)/Bt to the
Hamiltonian and the nature of the trace we obtain

1
Nc(t) = . T—r jp(t)[Nc, H] I,dt i' (2.9)

[Nc H] = [Nc H]-
I o( 1 2 3 4)A~ 2 34a ~a 2a3a4

1234

(2.10)

where [, ] is the commutator. Let us neglect the
interband scattering for H, ~h and H, ; and consid-
er the intraband effect only. The Nc is commut-
able with all the terms in Eq. (2.1) except H, ,
We obtain

I

where

b, , 234
——b, (l )

—lc)+ 6(lp —lc)

—b, (13—lc ) —b, ( Iq
—lc ) (2.11)

with l~ denoting the CB. The last equality in Eq.
(2.10) is a definition. It is to be noted that Ht'

differs from H, , by the factor h&234 Equation
(2.9) is rewritten as

d 1
Nc(t) = .—Tr[p(t)Ht] .

dt i' (2.12)

Let (12 3 4) designate the bands to which a ~, a2,
Q 3 and a 4 refer, by replacing 1, 2, 3, and 4 with C
for the CB or V for the VB. From Eq. (2.10) we
see that Nc is commutable with those terms of
H, , that have creation and annihilation operators
in pairs belonging to the same bands. A sum of
these terms and that of the residual terms are
denoted as H~, and HI+HI, respectively: The
relevant terms are shown in Table I. Since
HI+HI is not commutable with X&, it is HI+HI
that causes time evolution of the number of the
CB electrons. We see that HI and HI represent
one-electron and two-electron interband transitions,
respectively. The former transition is the Auger
process in question, while the latter is inconsistent
with the energy conservation requirement. In view
of this we write H =Hp+HI where
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TABLE I. Possible terms of H, ,( =H~, +HI+HI).

(a)
(b)

(c)
(d)

(e)

(CVCV) (CVVQ (VCCV) (VCVQ
(CCCC) (VVVV)

(CVVV) (VCVV) (VVCV) (VVVQ
(VCCC) (CVCQ (CCVQ (CCCV)

(CCVV) (VVCQ

Hp ——H, +Hph+H, ph+H, ;+H~, +HI .

Now we consider Hp and HI to be the unperturbed
Hamiltonian and the perturbation, respectively, for
the time-dependent operator. For an arbitrary
operator A in the Schrodinger representation we
define an operator A(t),

sumptions we give the boundary condition
p(tp) =pp with

pp
——exp

where

(2.16)

A(t)=exp Hpt A ex—p — Hpt—

Then Eq. (2.12) is rewritten as

d 1Ec(t)=—. Tr[p(t)HI'(t)] .
dt iA

where especially p(t) is defined as

(2.13)

(2.14)

(2.17)Hp =Hp —VcNc —VvNV

where Nq is the number operator for the VB sys-

tem, T the thermal energy for the electron systems
as well as the phonon system, and 0 is a constant
defined through Tr(pp) = 1. Assuming HI to be a
small perturbation, we expand p(t) in power series
of H, (r) as

p(t) =exp Hpt p(t)ex—p — Hpt . (2—.15)
P(&)=Pp+ gP„(&)

n=l
(2.18}

Now we consider that HI is adiabatically switched
on at the time t =rp (rp~ —cc ). The following as-
sumptions are made for an excited semiconductor
at t =tp. The CB electrons and the VB electrons
belong to different systems, each of which is in a
thermal equilibrium within itself and with the pho-
non system. Then the CB and VB systems can be
described by quasi-Fermi-levels pc and pz, respec-
tively, and by one temperature. Under these as-

Ec(t)= —I dt]([HI(&),HI(&])]) .
dt (i%)

(2.19)

The equation is rewritten using Eqs. (2.5), (2.10),
and the definition of HI as

where p„(t) is the term of the nth order in HI(t}.
Hereafter we write Tr(pp . . ) as ( ). Evidently
we find (Hl'(t)) =0. Retaining only the term of
the lowest order in Hl(t) that does not vanish, we

obtain

d 1X(t)= —g'I' (1234)I (5678)b, , I dt, E (1234,5678;t t, )e p( —x5~ t,
~

} . —
dt 16iR &234 0

5678

Here 5—+0+ and

(2.20)

E4(1234,5678;t)=—g(t)([C)(t),C2(0)]),
l

(2.21)

where C& ——a &aza3aq, Cz ——a5a6a7as, and g(t) is the step function defined as g(t) =0 for t &0 and g(t) =1
for t &0. In Eq. (2.20} the factor exp( —5

~
t&

~
) is introduced to take into account the adiabatic switching

and g' means restricting the summation over (5 67 8) to cases (c) and (d) of Table I. Noting that the sum-

mation over (1234} is also restricted to these cases, we find

C~(t}=exp pat exp Hpt C~exp ——Hpt— — (2.22)
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where )Ma=(pc —)Mv)b, f 234 Then Eq. (2.21) is rewritten as

K4(1234,5678;t)=exp p—at G&(1234,5678;t), (2.23)

where

Gx() 2343623;t)= —.4(t) exp Het (—:,exp — He)—Cx , )
.

l
(2.24)

Thus our subject is reduced to calculating G4 (t): G4 (t) is the abbreviation of G4, (1 2 3 4, 5 67 8;t).
Let us consider Hp in Eq. (2.24) to be the total Hamiltonian, where H, +H~z pcI—&c iJ, ~N—~ and

H ph +H ' +H +HI which constitute Ho, are the unperturbed Hamiltonian and the perturbation, respec-
tively. Then G4 (t) can be treated, noting Eq. (2.16), as the usual four-particle retarded Green's function,
whose analytical properties are well known. ' Defining the Fourier component Gq (rp) as

Gq (to) =— dt Gq (t}exp cot-
fz

(2.25)

and using the Lehmann representation, we obtain

Gg (t) = d—cp Im 6g (ro )exp — rpt-
7p 00

(2.26)

Using Eqs. (2.20), (2.23), and (2.26), we obtain after performing the integration over t~ under t~ (x),

d =1Nc( t}= g I p( 1 2 3 4)I p(5 6 7 8)b] 234ImG4 ()Ma)
R

dt 8%, 234
5678

(2.27)

[Notice ImG4 ()Mz) =ImG4 (cp) with cp=pz. ] It is to be noted that in Eq. (2.20) the factor exp( —5
~

t~
~

) in
the range t] &0 is taken only for convenience. In fact, we can also give the factor to be unity for t &0. The
dNc(t) Idt becomes a constant given by Eq. (2.27) for t positive and sufficiently large. Thus the Auger life-
time r is defined through dNc(t) Idt = —Vnclr for such t, where nc is the excess concentration of the CB
electrons.

For the calculation of Gq (t) it is convenient to use the four-particle Green's function

p4(r)= —(T,[a ~(r)a z(r)a3(r)a4(r)a 5(0)a 6(0)a7(0)a&(0)]), (2.28)

where T, is the %ick chronological operator,

a;(r) =exp(rHp)a; exp( rHp), —

a;(r) =exp(rHp)a;exp( rHp} . —

Considering the Fourier component
1/

p4(imp„) = r dr exp(i ro„T)p4(r) .
0

with ro„=2vrnZ; G4 (co) is obtained from

G4, (co)=p4(tp+i 5),

(2.29)

(2.30)

with 5—+0+. In the following ~4(imp„) is discussed
on the basis of the conventional diagram method. '

First we discuss the screening of interactions. It
is pointed out that the terms of H, ,+HI of Ho
shown in (a), (b), and (e) of Table I give the free-
carrier (both electron and hole) screening and the
host-lattice screening, respectively. However, the

I

interference between both screenings, which is
represented by HI, is not contained in Ho. In oth-
er words, Ho does not contain H, , in a complete
form so that the screening involved in Eq. (2.19) is
different from that given in Ref. 14. The latter
form is correct, considering that the screening and
the transition have been treated on an equal foot-
ing. In this paper the correct form should be ob-
tained from Eq. (2.14) using the all-order terms of
p(t) This is not. an easy task. As an alternative
approximation we incorporate the contributions of
all the terms of p(t) into the unperturbed Hamil-
tonian by defining the new Hamiltonian. This
Hamiltonian is

H =Hp +HIexp( —5
~

t
~
),

where Ho ——Ho+HI, which is the same as that
given by Eq. (2.1). Thus H p contains H, , in a
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2

U( )
4~e 1" q'+~' (2.31)

The screening on Hz and Hl' is an assumption,
which will be justified by taking the higher-order
terms of p(t) into account. Here Ep and I, are the
static dielectric constant of the host lattice and the
inverse screening length due to both free electrons
and free holes, respectively. Practically, A, is given

complete form. Considering Ho and

Hiexp( —5
~

t
~

) to be the unperturbed Hamiltonian
and the perturbation, respectively, the discussion
below Eq. (2.13) is repeated. The restriction here is
that dNC(t) Idt should be given up to the first-
order term of p(t) as in Eq. (2.19). If higher-order
terms were taken into account, we would evaluate
the screening effect to excess. Using the new
Hamiltonian we obtain the screened interactions of
electron-electron, electron-impurity, and electron-
phonon, as has been discussed in Ref. 14. The dis-
cussion on this subject is not repeated here. We
neglect the electron-electron interaction caused by
phonon emission followed by reabsorption and con-
sider only the screened Coulomb interaction be-
tween electrons. Thus we replace the unscreened
interaction I 0 appearing in Eqs. (2.5), (2.10), (2.20),
and (2.27) with the screened interaction I, which is
obtained by replacing P (q) in I 0 [Eq. (2.6)] with

in the Thomas-Fermi approximation. From the
discussion given just below Eq. (2.27) we obtain

g"I (1234)I (5678)
ngv 8A ] 234

5678

Xh(p341mG4(pa) .

(2.32)

Here g" means not only the restricted summation

over (5 67 8) but also the restriction that G4 (pa) is
obtained from p4(i co„), for which all the diagrams
containing any electron-hole bubbles' constructed
of internal lines are excluded.

In practical calculation of p4(iso„) we start from

p4(r), which is given as a sum of the free part and
the bound part. The free part is expressed as four
equivalent diagrams shown in Fig. 1. As for the
bound part we consider two-particle interactions as
an approximation. One example is shown in Fig.
2: In addition to this there are five similar dia-

grams. In all these diagrams we have replaced all
free-one-particle Green's functions with complete
ones (seen below). It is to be noted that we have
omitted those diagrams which do not represent the
Auger process as shown by examples of Fig. 3.
Taking into account equivalence of some diagrams,
we obt-in effectively

~4(r) = —4~(7, 1r)p(8, 2r)p(3r, 5)p(4r, 6) —4p(7, 1r)p(3r, 5)pz(4r, 8;2r+5, 65)

+4p(7, 2r)p(3r, 5 )p2(4r, 8; Ir+ 5,65) +4p(7, lr)p(4r, 5)p2(3r, 8;2r+ 5,65)

—4p(7, 2r )p(4&, 5 )pp(3&, 8; 1r+ 5,65) +4p(7, 1&)p(8, 2&)p2(3r+ 5,4w; 55,6}

+4p(3r, 5)p(4r, 6)p2(75, 8; lr+5, 2r} . (2.33)

Here p(i,j r) is the one-particle temperature Green's

function defined as

p(i j r) = —( T,(a;(0)a~ (r) ) )=p(i j;—r) .

We also define

p(i rj ) =—( T,(a; (r)a& (0) ) ) =p(i,j;r),

I

p2(&r J ik&+5, 15)= (T,[~;(r)~,(0)~ k(r+5)a~ (5)]),
with 5—+0+, is the two-particle temperature
Green's function and pz represents the bound part
of it. The first term and the residual terms of Eq.
(2.33) are the free part and the bound part, respec-
tively, of pg(r).

To calculate Eq. (2.33) it is convenient to give

= q(L, j;z)

FIG. 1. Free part of the four-particle Green's func-
tion, which represents AR.

FIG. 2. An example of the bound part of the four-
particle Green's function, which represents AR.
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6 (ij;t)

1 l — lg(—t) exp H—ot a;exp — Ho—t, a;
l

(2.35)

Use of the Lehmann representation under ~)0
leads to

&(trj )=—f dco[1 —8(co)]lmG (i,j;co}exp( cor—)

FIG. 3. Examples of the free part and the bound

part of the four-particle Green's function, which do not
represent AR.

and

(2.36)

p(i j r) = ——f dco 8(co)lmG (ij;co)exp(cor),

the one-particle temperature Green's function in

terms of the retarded one-particle Green's function
G "(ij;co), which is defined as

where

(2.37)

with

G"(ij;co)= —dt 6 (i,j;t)exp cot—

(2.34)

&(co)= (2.38)

exp —+ 1
T

is the Fermi-Dirac distribution. As for p2 we have
a general expression, '

p2( 1ri,2r2,'3ri, 4r4)b

1/T 1/T 1/T 1/T=—f dr, f dr, f dr, f dr4 y„p( lri, 1'ri )p(2', 2'r2 )
1 12I3I4I

XI ( I'ri, 2'r2, 3'r&, 4'r4 )p(3'r&, 3ri) p(4'r4, 4'), (2.39)

~ bwhere I represents the vertex parts. For the calculation of p2 we neglect vertex corrections giving

I ( I'ri, 2'r2, 3'ri, 4'r4 )=I (1'2'3'4')5(ri —r4 )5(ri —r2 )5(ri —r4 ) . (2.40)

Neglecting the interband scattering, the summation over (1'2'3'4') is on the wave vectors and the spins. To
further facilitate the calculation we consider the intraband and spin-conserving processes for the phonon
scattering and for the impurity scattering. Then we have

6"(i,j;co) =G"(1;k;, 1; kJ,'co )b, ( 1; —lJ )b,(o; —o1 ) .

6"(ij;co)=G"(1;k;,co)b(l; —lj )b(k; —kj)b(o; cri) . —

From the definitions (2.17) and (2.35) it is found that the energy in 6 (1;k;,co) should be measured from the
quasi-Fermi-level relevant to the band 1;. With the use of Eqs. (2.29), (2.30), (2.32), (2.33), and
(2.36)—(2.41), we obtain the formula for the AR lifetime. We see that for (1234) of HI' (CVVV), (VCVV},
(VVCV), and (VVVC} are one equivalent quartet in contribution and (VCCC), (CVCC), (CCVC), and (CCCV)
are the other. The former and the latter are designated as (VVVC} process and (VCCC} process, respectively.
For each process we obtain

(2.41)

The wave vector is not conserved in the presence of randomly distributed impurities. However, it has been
shown" that in the limit of V~ 00 the Green's function is equal to its ensemble average over all the impuri-
ty sites. Then the wave vector conservation is restored giving G"(lk; lkj,'co)=G"(lk;, co)b,(k; —kj), where
6"(Ik;,co} is the retarded Green's function obtained for the average impurity field in the above sense.
Therefore we obtain
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1 2
exp

nc VAm

Pc —Pv
T

where

X y fd~, fd'~, fd~3fd~4~(~i+~g ~3 ~4 pc+pp}
kik2k3k4

4 6

X8,83(1—83}(1—8 )glmG"(i) S + gS„
i=1 8=1

(2.42)

S =+I (1234)I'(3412),
spin

S, = g [I (1234)I'(4526)l (3615)+c.c.]
1

k 57k6
spin

X fdcos fdco6 (Hs —86)ImG"(5)lmG (6),
C02+ C06 —C04 —C05

(2.43)

(2.44)

1 g [I (1234)I'(4516)l (3625)+c.c.]
ksk
spin

1
dC05 dC06

+N6 —N4 —Ns
(Hs —86)lmG (5)lmG (6), (2.45)

S3 ——
1 g [I (1234)l'(35 16)I (4625)+c.c.]

ksk
spin

X fdcosf dc@6 (Hs —86)ImG (5)lmG (6),
N2+N6 —N3 —N5

(2.46)

S = g [I'(1234)I'(3526)1 (1234)+c.c.]
1

ksk6
spin

X fduos fdco6 (8,—86)lmG (5)lmG "(6),
N i +C06—N3 —C05

(2.47)

Ss ——— g [I (1234)l (3456)1 (5612)+c.c.]
1

"s"6
spin

X fdcos fdco6 (1—Hs —86)lmG "(5)lmG"(6),
N3+N4 —C05 —N6

(2 48)

S6———1 g [I'(1234}l(3456)I'(5612)+c.c.]
5"6

spin

X fdcos fdco6 (1—Hs —86)ImG (5)ImG"(6) .
N i +C02 —CO5 —C06

(2.49)
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In the above equations we have used the abbreviations 0; =0(co;) and G (i) =G (I;k;,co;) and c.c. means the
complex conjugate. In Eqs. (2.44) —(2.49), 5 and 6 represent the intermediate states to which the intraband
carrier-carrier scattering occurs from pairs (2,4), (1,4), (2,3), (1,3), (3,4), and (1,2) for S], S2, S3, S4, S~, and

S6, respectively. The factor

Pc —Pv
exp T

—1 0]02(1—03}(1—04)

can be rewritten as

(1—0])(1—Op)0304 0]02(1 03)(1—Og) . (2.50)

This is the statistical factor correctly characterizing occupancy and vacancy of states for the transition
(3,4)~(1,2) and the reverse processes.

All the formulas for PCAR, PHAR, and IAR, which have been used, can be derived from So in Eq.
(2.42). The residual terms represent correction for the electron correlation effect. Considering So alone, we
give here a formula for the AR lifetime ro in a more tractable form. We define a way of writing
I (1 2 3 4)=(f,g) which means

I (1234)=V '[fb(, — ) —g4( ] —3)]b,(k]+k2 —k3 k4)b(o. ]+o2—o3 o4) .

From Eq. (2.6) we have

f=U(k, —k4)(l]k] I l4k4)(I2k2I I3k3~ (2.51)

g=U(k] —k3)(l]k]
~
l3k3)(l2kg

~
lgk4),

noting that t should be replaced with U defined by Eq. (2.31). Summation over all possible spin states
gives

(2.52}

So=, ( lf I'+ lg I'+ If g I'}~(k]+—k2 k3 k4) .

Converting g k. . . to [V/(2vr) ]fdk, we obtain'

(2.53)

1 4
exp

~o n crim'

Pc —Py
T

&& fd~] fd~, fd~3fdN45(CO]+N2 C03 C04 pc+I v)0]02(1 03)(1——Og)

dkI dk2 dk3
g + —g Imo ~, .54

i=1

with k4 ——kl+k2 —k3. This expression should be
the same as that in Ref. 14 but there is a differ-
ence concerning the statistical factors contained. .
The factor in Ref. 14 reads

04[03(1—0])( 1 —02) + ( 1 —03)0,02]

for (VVVC) process. This factor is by a difference
of (1—03)0]02 larger than the correct one given by
Eq. (2.50). However, the difference is unimportant
since we usually have 03——1 for (VV' process in
a good approximation. The difference arises from
the fact that in Ref. 14 the lifetime is calculated

from the imaginary part of the self-energy, which
contains the damping indifferent to the excess-
carrier lifetime.

Let us now take into account the correction due
to the electron correlation effect by rewriting Eq.
(2.42) as

1+ gP„ (2.55}

where ]))„comes from S„. Since accurate calcula-
tion of ]I]„ is too difficult to be practical, it is desir-
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and

(/„k;
~

IH kj ) =w,H (k; —kj ) (2.56)

iw„H ki=w, k (2.57)

with v=c or S. Here lz, lz, and lH designate CB,
SB, and HB, respectively. w,H and w, are con-

able that we can use an approximation ~=so. In
this hope we estimate P„ in the next section on the
specified processes as follows. We consider the
heavy-hole band (HB), the light-hold band (LB),
and the spin split-off band (SB) as the VB. For
(VVVC) process we restrict the discussion to
(HHSC) process, which is known to be dom-

inant ' under EG & 50, where EG and 60 are the
band-gap energy and the spin split-off energy,
respectively. For (VCCC) process we consider
(HCCC) process only. Both processes are shown in

Fig. 4. Using the free-particle retarded Green's
function Go the estimation of S„ is made under an
approximation

ImG "(i)=ImGo (i)

n6(a)—; —g;) for i =5 and 6

where g; =(& k is defined as the band energy mea-

sured from the relevant quasi-Fermi level. Anoth-
er approximation is to replace co; (i=1,2,3,4) in S„
with g;. The above approximations are adopted in
view of our main interest, which is in electron
correlation effect on the lifetime: The effect of the
level broadening on the correction S„may be subsi-

diary. As for the bands we assume spherical ener-

gy surfaces, which are characterized by the effec-
tive masses m~, mH, and m~ for CB, HB, and SB,
respectively. The overlap integrals are estimated
using the relations' '

~CB~
4

LB

~SB
(b)

FIG. 4. AR in (VVVC) process (a) and (VCCC) pro-
cess (b).

stants. We take (l k;
~

l ki ) =1 for the intraband

overlap integral. The overlap integrals, which

make the calculation quite tedious, are given in

more simplified forms using the above relations.

III. CORRECTION TERMS

A. ( VVVC) process

We discuss (HHSC) process in direct-gap materi-
als as shown in Fig. 4(a). It is found that S& and

S2 come from the interaction between the CB elec-
trons (4) and the HB holes (1 and 2) with P&

——$2
while S3 and S4 from the interaction between the
SB electrons (3) and the HB holes (1 and 2) with

$3—$4Thus inte, ractions are between carriers in
different bands. For S~ we define
I (4526)=(f~,g~) and I (3615)=(fq,gq). We
consider only the intraband scattering. This corre-
sponds to taking (lsks

~
lsk6) =0 so that we have

g1 ——0. Using the approximations given at the end

of the last section we obtain

dk5
1 g 1 81 2 g2 g 1 2+c c.

V (2~)s

(3.1)X [8(ks)—8(g6)]A(k &+ k2 k3 k4)4+4—k4 —ks

under ks ——ks+k~ —ks. As for Ss we make new definitions I'(3516)=(f&,g&) and 1(4625)=(f2,g2) and
obtain g~ ——0. Then the expression for Ss is formally given from Eq. (3.1) under replacement (4~ps and

k6 ——k5+ k2 —k3.
For Ss, which comes from the HB hole-hole (1 and 2) interaction, we define I (345 6) =(fs,gs) and

I (5 6 1 2) =(f4,g4). We obtain

dk5
S6———

V (2n)
[(f—g)(f i

—gi )(f2 —g2) f(fsg4+gsf4)+c. c.]—
1

X [1—8(gs) —8($6)jb, (k )+k2 —ks —k4),
4+k —ks —4 (3.2)
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under k6= k, + k2 —k5. As for S„which comes
from the interaction between the CB electrons (4)
and the SB electrons (3), we obtain the expression
from S6 under replacment g&+$2~$3+(4 and
k6-—- k3+ k4 —k5. Definitions of (f3,g3) and

(f4,g4) are the same as above.

B. (VCCQ process

We discuss (HCCC) process in direct-gap materi-
als as shown in Fig. 4(b). It is found that Sl and

S3 come from the interaction between the energetic
(2) and the nonenergetic (3 and 4) electrons with

pl —Ijk3 while S2 and Sq from the interaction be-

tween the nonenergetic CB electrons (3 and 4) and
the HB holes (1) with P2

——P4. S5 comes from the
nonenergetic electron-electron (3 and 4) interaction.

S6 comes from the interaction between the HB
holes (1) and the energetic CB electrons (2). The
definitions of (f&,g& ), (f2,gz), (f3,g3 ), and (f~,g~ )

are the same as those given in A . We consider
only small-energy scattering and neglect large-

energy scattering. This corresponds to taking
(15k5

I
16k6) =0 so that we have gl ——0. Thus the

expression for S„ is the same as that given in

C. The correction effect on PCAR in

(VVV' process for EG ~)h, o

The PCAR lifetime is obtained by a special
choice of G (i)=Gp (i) for i = 1, 2, 3, and 4. The

threshold energy for the (VVVC) process is given as
rl(EG —b,p), where EG, hp, and ll are the band-gap
energy, the spin split-off energy, and a constant of
the order of 0.1, respectively. We consider the case
of ri(EG —bp) &)T. Then some approximations
can be made to evaluate the overlap integrals con-
sidering the threshold condition. This condition is
given as kl ——k2 ——(b/2)k3 and k& (b———1)k3,
where b =(1+pH/2) ' with pH m——c/mH F.or
direct gap materials we have pH && jL so that we
have approximately b = 1 or

k1 ——k2 ———,k3, k4 ——0

k 3 ——[2 ms ( EG —~p ) /'ll 1
'

(3.3)

(k2 —k5),2

2mH

we obtain

as the threshold condition. Since the overlap in-

tegrals in S„are found to be slowly varying func-
tions of k;(i= 1,2,3,4) as compared with the statis-
tical factor in Eq. (2.42), they are taken out of the
integral in S„and evaluated for the threshold con-
dition (3.3).

For Sl we have ks- k~ (l5 ——I& ) and k6- k4
(l6 ——lz) so that we give k5 ——k2 and k6 ——k&. Tak-
ing into account the condition (3.3), we find f=g.
Noting fl ——U( k5 —k2) and

2
2

4+4—4—ks=
2mc

8 mHmC 2 dk5
S1=— If I

', U(k5 —k» - -, - - - 8&~(kl+k2 k3 k4) y

V'lrl' mH+mc (2~)'
I

k5 —k, I
'+(k, —k, ) k,4

(3.4)

(3.5)

where Sl ——8(g5) —8((6) and k&4=(mck2+mHkq)/(m~+mc). Considering extreme cases of nondegenera-

cy or degeneracy for CB and VB, 01 is a constant. Then we obtain

mH 8
Sl = —8l If I

' b(kl+ k2 —k3 —k4),
mH +mc V ~ack24 k24

where ac fi epl(mce ) correspo—n—ds to the Bohr radius and F(y) is defined as

F(y)= I dx
z 2

ln
+y x —1

In a similar way we obtain

(3.6)

mH 8
S3 — 83 If I 2

I' b(k, +k2 —k3 —k4) ~

mH —ms V ~a&k 23

(3.7)

Here 83 ——8($5)—8($6), where lz ——lH and 16——l&, is taken to be a constant as above. We define
2

Qs ='ll ep/(mse ) and k23 ——( mk c+2~mk )/3( m+Hm )c
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As for Ss we take k5 ——k~ and ks ——k2 as an approximation. Thus the overlap integrals are evaluated for
the condition (3.3), giving f=g and f3 ——g3. Noting f4 U——(k&—k2) and g4 ——U(ks —k2) we obtain

16
S6 ——86~f ~ 2

F b(k&+kz —k3 —k4),
V 7TaHk2] k2]

(3.8)

where es——1 —8($5)—8((6) is taken to be a con-
= 2 2stans, kq& ——kz —k&, and aa ——A eo/(mac ). We

neglect S5, which is small as compared to S6.
Inserting S„'s thus obtained into Eq. (2.42) we

determine P„. To facilitate the calculation we give
a simulation function for F(y) as

F( )
m/2

1+(m./2)y
' (3.9)

xH(y)= f dx (1—x')'i',
x+y

which is simulated by

m./16
y + (3n./16)

(3.10)

(3.1 1)

Using the function we calculate P„on the basis of
the method similar to that used in the analysis of
PCAR, assuming nondegenerate statistics. We ap-
proximately obtain the following under m»&m~
and m~ &&ms.

Pi=02= 2 . 1/2
3 Sab

8 2Ps
(3.12)

03=04=
as ks+ —~

, 03, (3.13)

3 5a
aH A+

PaPs

1/2 86 & (3.14)

where

which agrees with the original function in the lim-

its of y~O and y~ oo and within an error of 10%
in all the range of y. As for P~ we make an ap-
proximation

k24 ——k)+ k2 —bk3,

which is valid under ma »mc. As for S3 an ap-
proximation is

k23=(ma+ms/2) k3/(ma —ms)

which is obtained for the condition (3.3). Let us
define a function

k, = [2ms(&G —~o)/&'1'"

a =JMs —1+b ps =mc/ms

Ps=A /(2msT) .

We have 8~ ——1, 83——0, and 86———1, which is ob-
tained for nondegenerate statistics. We see that the
electron-hole interaction (P~ and $2) and the hole-
hole interaction (P6) reduce the AR rate. The
latter effect is especially predominant due to
mH »m~. Using the data of the band parameters
for GaAs, we find g P„=—2 to —5 for the car-
rier concentrations below 10' cm and for the
temperatures between 77 and 500 K. Therefore the
conventional calculation of AR lifetime neglecting
the correction effect is not valid. Since the effect
is too large, more rigorous treatment of the elec-
tron correlation is required.

In the case when degenerate statistics is assumed
for VB, we cannot give simple formulas for P„'s.
Roughly speaking, the hole-hole interaction effect
is predominant giving Ps-(aalu. )

' (note es ——1).
This shows an enhancement of the AR rate in con-
trast with the case of nondegenerate statistics. We
find that the electron correlation effect is too large
for the present treatment to be justified for the car-
rier concentrations up to about 10 cm

D. The correction effect on IPHAR in

(VVVC) process for EG &)kp

The threshold energy for IPHAR is reduced to
zero in the presence of the impurity and/or pho-
non scattering. The reduction is caused by viola-
tion of the wave vector conservation. As an ap-
proximation we consider the scattering effect only
for HB, for which the effective mass is far larger
than those for CB and SB. Then the threshold

8
+ +

condition is given as k& ——k4 ——0 and k2 ——k3 or al-
ternatively k2 ——k4 ——0 and k ~

——k3, where k3 is just
given in Eq. (3.3). Under the condition the overlap
integrals are evaluated as in C. We use the same
definition of S„as in C, considering extreme cases
of nondegeneracy or degeneracy again.

For S~ we find f=O, g, =O, and gf, g2
= U(k5 —kq)

~ g ~

. Retaining a dominant term
we obtain
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4mc, d k 1
S) ——8. . . Ig I f,U(k), ,+, h(k, +k, —k, k4).

k'+lJH
I
k+ k3

I
(I+@~)k'+2pH k.k3

(3.15)

Usually we have k»&A, so that we approximately obtain

0t ——S~ [pH/( I+pa)]' +-
aHk~

(3.16)

P3 is negligible as compared to P&. As for S6 we obtain
+

S,=—O, ,", f U(k)[U(k) —2U(k —k )]
V fi (2n. ) k'+

I

k —k, I'

+ U(k+k3)[U(k+k3) —2U(k)] — b(k)+k2 —k3 —k4)k'+
I
k+k, I'

X(gwcH kwsH k+c.c. ) . (3.17)

It is to be noted that here the overlap integrals containing k5 and k6 cannot be evaluated for the threshold
condition as in C. If this were done, the integrals would be zero. The last factor in Eq. (3.17) appears ow-

ing to this situation. Using the relation

I gwcH kwsH .k+c c. &2.
I g. I I

wc~'k
I I

wsH'k
I

=2 Ig I
wcwsk',

the upper limit of S6 is found. We obtain

10 1

aHkg
(3.18)

$5 is negligible as compared to P6. For GaAs we find IP& I
=0.15 and

I $6I &0.55. Thus IgP„ I
is at

most 0.85. This may be somewhat an overestimation. In view of this the neglect of the correction terms is
not so bad an approximation. This situation is in remarkable contrast with that for PCAR. The difference
is ascribed to that between the threshold conditions for PCAR and for IPHAR: For the former the correc-
tion is mainly due to the interaction between holes having nearly the same wave vectors, while for the latter
the interaction is predominantly between holes having very different wave vectors.

E. The correction effect for (VCCQ process

For (VCCC) process the threshold condition is nearly the same for PCAR and for IPHAR. For the form-
+ + 1

er the threshold condition is given as k3 ——k4 ——(pH/2)ck2 and k&
——k2, where c =(pH+ —, ) . Noting

pH «1 and k2 ——(2mcEG/A' )' we can approximately give the condition as k3 ——kz ——0 and k&
——k2. This

is also the threshold condition for IPHAR as far as the effect of impurity and phonon scattering is con-
sidered only for HB. Thus the correction S„ is evaluated as equal for both PCAR and IPHAR. We take
(l k;

I
1kj ) =1 only for the intraband overlap integrals where

I k; —kj I
is small.

As for S2 we have f=g and g&
——0 under the threshold condition. We approximately obtain

4mc 1
S2 ———82 f 3 U(k6)U(k6+ k2)

V (2m) k6+pH
I
k6+k2I

)& [g wcH (k6+ k2)+c.c.]b(k ~+ k2 —k3 —k4), (3.19)

where 82——8(g, ) —8(g6) is taken to be a constant with l, =lH and l6 ——lc. Using

I gwcH k + c.cl &2
I g I

wck, we obtain

Id&I &
1

ackc ' (3.20)
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where kc (2——mcEG if& )' . For GaAs we find Pq &0.06. Pi is comparable to P2. As for $5 we obtain in a
similar way

145I &—
m ackc

(3.21)

For GaAs we find P~ &0.08. P6 is negligible as compared to P~ since the interaction is between energetic
carriers. Thus we obtain lg P„ l

&0.2. This may be somewhat an overestimation. In view of this the

neglect of the correction terms is a good approximation for both PCAR and IPHAR.

F. Correction effect in (VVVC) process for EG (h, o

At first we consider the case of EG kp. Then the threshold condition for both PCAR and IPHAR is
given approximately by ki ——kq ——k3 ——k4. Then we may take f=g. Noting equivalence of holes 1 and 2 in

contribution we obtain

Sma dk
S6 ———86 I s U(k)

V (2ir) k2+k ki2

X[fU(k+kz —k3)wcH (k+k2 —k3)ws~ (k+k2 —ki)+c.c.j

Xb(ki+kp —k3 —k4) . (3.22)

We note that in its contribution to the integrations
of Eqs. (3.22) and (2.42) the range near around
k =A, and k;=(2m;T/A' )'~ (i=1,2,3,4) is impor-
tant, giving k; )A, . We approximately evaluate the
quantity in the square brackets of Eq. (3.22) by
giving k=0 and take it out of the integral. That
quantity becomes 2

l g l
. We find that the expres-

sion for S6 is given just by Eq. (3.8). However, it
is to be noted that this expression is useful for both
PCAR and IPHAR in the present case. For
PCAR under nondegenerate statistics P6 is given

by Eq. (3.14). More generally we can give

4

aHA, +rIHaH(2mHT IA )
1/2

(3.23)

and

4
6

aH k +7/d aH kF
(3.24)

assuming nondegenerate statistics and degenerate
statistics, respectively, for VB. Here q„and gd are
constants of the order of unity, and kF is the mag-
nitude of the Fermi wave vector for HB. Other
P„'s are negligible as compared to P6, showing that
the hole-hole interaction effect is predominant.
From Eqs. (3.23) and (3.24) we find the correction
effect to be so large that the present treatment is
not valid. This results from the fact that at the
threshold the interaction can be between holes hav-

ing nearly the same wave vectors.
Next we consider the case of Ap —EG ))T.

Then (HHLC) process is the dominant AR process.
This case is analogous to that of (VVVC) process
under EG —5p)) T so that the same conclusion is
reached.

IV. DISCUSSION AND CONCLUSION

The correction effect on AR is important espe-
cially for (VVVC) process in the following cases:
PCAR under lEG —b,p l

» T and IPHAR as well
as PCAR under EG kp as far as 86 is well ap-
proximated as + 1 or —1. The correction is so
large that the present treatment of the electron
correlation is not valid. More rigorous treatment
of the four-particle Green's function is necessary
taking into account higher-order terms. However,
in a doping range where the Fermi level is around
the relevant band edge, we have 86-0 so that the
correction may be small. In many III-V com-
pounds of p type this corresponds to the acceptor
concentrations ranging roughly from 10" to 10'
cm . In fact we find a considerable agreement
between the theory' and the experiments ' for p-
type GaSb at 77 K for the acceptor concentrations
ranging from 4&(10' to 1)&10' cm as follows.
The Auger coefficient, which is calculated from
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Eq. (2.54} assuming (HHSC) process of IPHAR, is
3)&10 cm s ' while the experimental value is

2.5)&10 cm s '. Outside the above range of
the acceptor concentration the discrepancy between
the theory and the experiments tends to be large
with increasing or decreasing concentration.

We have been considering PCAR and IPHAR as
if they could be treated separately. Actually, how-

ever, Eq. (2.42) is understood to involve both
PCAR and IPHAR effects. I.et us consider
PHAR for EG —Ap)) T under nondegenerate
statistics, for which a calculation' based on Eq.
(2.54) shows a considerably rapid increase of the
AR rate with temperature. At low temperatures
PHAR is dominant but PCAR becomes compar-
able to PHAR with increasing temperature. In
view of this and of the reduction due to the large
correction effect on PCAR, the AR rate may be-

come less dependent on temperature than that
based on Eq. (2.54} if the correction effect is
correctly taken into account.

Though we have been considering IPHAR alone,
it is evident that the discussion can be extended to
some other scatterings which violate the wave vec-
tor conservation. It is concluded that AR can be
analyzed on the basis of Eq. (2.54) neglecting the
correction effect for (VVVC} process only under
some restrictions and for (VCCC) process without
any restrictions.
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