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Coherence length of a normal metal in a proximity system
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The Eilenberger equations are solved to find the correlation length in the normal (iV)

part of a proximity system at a temperature T which is well above the critical tempera-
ture T,~ and is not too far below T,s (T,& & T & T,&). The result is valid for any concen-
tration of nonmagnetic impurities.

I. INTRODUCTION

A number of situations of interest exist where a
metal at a temperature T higher than its critical
temperature for the normal-superconductor transi-
tion (let us call it X metal), supports a persistent
currant due to contact with a superconductor S
(T,tc & T & T,s). These are various kinds of SN,
SNS "junctions" or "sandwiches" and "in situ"
prepared compounds where S filaments are embed-
ded in an X matrix.

The coherence length g(T) is one of the basic
characteristics of a superconductor in general and
of a material upon which the superconductivity is
imposed by proximity with a neighbor supercon-
ductor. Strictly speaking, this length should be
found from the microscopic theory by solving the
proper equations in the S and X parts of the sys-
tem separately under the proper boundary condi-
tions. This has been done for dirty materials by de
Gennes. '

We shall show that in the temperature domain

TcN&T&Tcs ~ (la)

the length g(T) can be calculated by considering
only the N part of the system for an arbitrary im-

purity concentration. Here T,z & T means "well
above" or "out of the immediate vicinity of Tcz,"
whereas T & T,z implies "in the vicinity of T,q."
We shall use the Eilenberger formalism or its sim-
plified version for the dirty limit due to Usadel,
which see~s to be the most convenient for our
purpose.

Eilenberger integrated the Gor'kov Green's
functions [e.g., F( r, r ',co ) where ~=~T(2n + 1),
or, after a Fourier transform, F(r, k,co)] over the
energy variable g(k) separating k into k = k/k
and k. For the functions f(r, k,co), ft(r, k, co), and

(2co+ v II )f=26g /fi+ r '(g (f ) f& g ) )—, (lb)

(lc)

ft(r, v, co)=f'(r, —v, co), g =1 ff—(ld)

Here we restrict ourselves to the case of a spherical
Fermi surface and use the Fermi velocity v instead
of k. The gauge-invariant gradient is
II = (t i(2e/Sic)A—and A is the vector potential.
The gap function b,(r) depends only on r. The re-
laxation time for the impurity scattering is r=l/v,
where 1 is the mean free path. The angle bracket
sign ( ~ ) means an average over the Fermi sur-
face (or over all v directions). The temperature T
is measured in energy units. In the term r '( )

of Eq. (lb), only the s scattering from nonmagnetic
impurities is actually taken into account. The set
(lb) —(ld) should be completed by adding a current
equation and the Maxwell equations; we shall not
use them in this paper.

The paper is organized as follows: First we re-
cover the known result of the temperature depen-
dence of the upper critical field H, 2(T) (Refs.
4—6) using the Eilenberger formalism (Sec. II). A
similar procedure will then be used in Sec. III and
IV to calculate g(T) in the temperature domain
(la). The treatment of the dirty limit is especially
simple and is given separately in Sec. V. The im-
portant case T,~-O is considered in Sec. VI. In
Sec. VII we compare the theory with other existing
theories and with available experimental data.

g(r, k,co) so obtained from the Gor'kov's F, F, and

6, respectively, he derived the set of equations:
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II. UPPER CRITICAL FIELD

(2'+ v II )f=26, /fi .

The solution of this equation is

f=(2'+ v. II ) '2b /A

(2)

f d~e
—p(2'+ v II )g

o

Substituting this in Eq. (lc) we obtain

b, int ~ 6 2 2 (
-„n

o fgcg $ o

It is instructive for our purposes to see how

H, 2(T) can be obtained using Eqs. (lb) —(ld); we
shall see that this is considerably simpler than the
original approach.

Let us begin with the clean limit where ~ '=0.
Near the second-order phase transition at H, 2, both
b, /T and f are small, whereas g=l in the linear
approximation [see Eq. (ld)]. In this region the set

( lb) —(1d) reduces to the self-consistency condition
(lc) and the now linear equation

tions are easily verified with the help of Eqs. (5)
and (6);

where [ ] stands for a commutator. We also
U+ =-U„+iv„ to obtain v II =(U II++U+II )/2.
Then using the operator identity

P+ Q P Q [QP]/2

which holds if [Q,P] commutes with P and Q, one
can evaluate exp( —pv. II ) in Eq. (4). Let

P= —pu II+/2, Q = —pv+II /2, (9)

(e p"'"h)=(e repb)
k

—+II+ A(e r(u ) )
2

then (e xp[ QP /2])b, =b, exp( —y), where

y=(pv) /2g), U) =v„+Ur =v U+, and Eq. (7) has

been used. Further, e~b, =b since QE=O. There-

fore,

(t =T/T, ). This is quite complicated linear homo-

geneous integral equation for A(r ); in other words,
b,(r) is an eigenfunction of an operator defined by
Eq. (4).

The solution of this equation is made possible by
observation (see, e.g., Refs. 4—6, that the lowest

eigenfunction of the equation

—g II b, =b,

in a uniform magnetic field is a solution of our
Eq. (4), if g(T) is chosen properly. Physically, this
means that at any temperature T & T, the structure
of the mixed phase near H, 2 is the same as that in

the Ginzburg-Landau (GL) domain

(
~

& T,
~
/T, && 1) w—ith a different g, however.

Recall that near T„H,2 corresponds to the lowest
eigenvalue of Eq. (5) and is given by

H, 2
——Pic/2

~

e
~

g' .

(exp( —pv tI)b ) =b, (exp( —y))

and

(f ) =—5 f dpe p(e —r)
o

(10)

Turning now to Eq. (4) we see that the solution
of Eq. (5) at H, 2 also satisfies Eq. (4), b(r) is just
canceled. What remains gives an equation for
g(~):

lnt g 1 2 f ~d 2~p( r)
0

We now choose the spherical coordinates (g, P) on
the Fermi sphere with the U, axis parallel to the
field: Uj ——U sinO, U

—+ =vie-+'~. Then the operation

( . ) = sin8d & dP/4m. . . excludes all
0 0

terms in the sum over k with k+0, i.e.,

Another way of looking at the same problem is
to consider Eq. (5) as an ansatz and then to try to
satisfy Eilenberger's equations, or Eq. (4) in our
case.

To proceed with the actual calculation we intro-
duce the operators II +—=II +iII~, where z is
chosen as the field direction; without any loss in
generality we can put II, =O. The following rela-

or after some simple algebra:

where we introduced z by

g =g)v /z, g)v RU /2~T—— (12)
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a=z/(2n +1)=U/2tog . (13a)

and the impurity parameter is

2mT, ~ 2mT, l
(18)

The function J(a) is given by

J(x)=2' f di) e
0

m/2
1

&& f d8sin8exp( —2rt sin 8)

(13b)

For A, =O Eqs. (16) and (17) recover the formulas
(11) and (13) of the clean limit.

III. CORRELATION LEN(jr TH, t & 1

where rt=pulg2'~ and x =2'~ la. Another form
of this function is given in Ref. 4:

J(a)=2 dw exp( —w )tan 'wa
0

(a detailed discussion of its properties can be found
in Ref. 6). Solving numerically Eqs. (11)—(13b)
(Ref. 4} one finds z(t) and then H, z(T) from Eqs.
(6) and (12).

For an arbitrary impurity concentration the
linearized Eq. (lb) reads

(14)

where co'=to+(2r) '. This differs from the equa-
tion (2) of the clean case by replacing co and b,

with t0' and (b, +Pi(f )/2r), respectively. This sub-

stitution should also be done in Eq. (3) to obtain
the solution of Eq. (14). We now notice that as is
seen from the self-consistency relation (lc}, the
coordinate dependence of (f} is the same as that
of b, ( r), i.e., (f} satisfies Eq. (5) along with b,

[apply II to Eq. (lc) and take Eq. (5) into ac-
count]. This means that the derivation for the
clean case can be repeated to obtain

(15)

For the reduced temperature t g 1, the only uni-
form solution of the Eilenberger equations is trivi-
al: f=b, =O, g =1 as it must be in the normal
phase. However, if the N metal is a part of a
proximity system, nontrivial solutions of the E
equations are of a considerable interest (see, e.g.,
Ref. 7).

One can expect the E equations to simplify if
the temperature is well above the critical tempera-
ture of the N metal (T & T,~). The approximation

f«1, b, /T «1, g=l still holds here (as near H, 2

for 0 & t & 1) almost everywhere in N, except prob-
ably a layer of thickness g near the S-N boundary.
In this layer f and 6 are lifted by the proximity
with S. If, however, T is close to T,s, f« 1 every
where in lV since this is true even deep in the S
metal.

Thus, we consider the temperature domain (la)
where Eq. (lb) can be linearized. For simplicity
we begin with the clean limit where Eq. (2) holds.
The problem of finding g(T) under this condition
is similar to that of H, 2(T) [or g(T) for 0 & t & 1].
We also assume that the magnetic field is absent or
it is negligibly small; we shall discuss what this
means later on. The solution (3) is valid here too.

The difference arises when we turn to Eq. (5).
We had a good physical reason in the preceding
section to try Eq. (5) as an ansatz. Here we have
no such guiding idea. Nevertheless, we shall try
the ansatx

(19)

1—lnt =
2

J(a') 1

z —AJ(a')/t 2n + 1
(16)

instead of Eq. (10). This gives (f) which is then
substituted into Eq. (lc) with the result:

with the hope that its solutions will also satisfy the
integral equation (4). The sign in (19) has been

chosen to give the correct equation in the GL
domain (t ) 1).

In the absence of a magnetic field II = V, i.e.,
all its components commute with each other. We
now have from Eq. (19)

where J is given in Eq. (13b),

I Z

2n+1+A/t ', (17)

(20)

instead of Eq. (7).
Applying Eq. (8) to exp( —pv II)=exp(P+Q)

with P and Q given by Eq. (9), we have:
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2
d e 2rop(ePe Q~ } d e 2—cop y p ( 1+met (m —l)p) (11+)l(ll —)mg

o R o
l I!I!

=—b, I dpe

'2m
( 2m}

(m!)
(21)

where each step is obvious. We see that (f}~ b„
i.e., the ansatz (19) indeed solves the self-

consistency equation (4). What remains from this
equation after the h(r) is canceled out, gives an
equation for g(T).

Obviously, Eq. (19) describes an exponential at-
tenuation of b, in the N region with the decay
length k~ ' ——g; for this reason g is usually called
the pair penetration depth.

The integrations in Eq. (21) can be performed to
give

2m

(f &
= g = tanh-'a . (22)

fKO p 27tl + 1 77TZ

(23)

Note that the series (22) converges under the
condition a & 1, which implies

z&1, (24)

i.e., in the clean limit g(T) & gtt RU/2' T a——t any
temperature.

Equation (23) can be solved numerically; the re-
sult z(T) is given in Fig. 1 for A, =O. However,
one can further transform Eq. (23) to

1 11 cos(mz/2)
2 z'"

Substituting this in Eq. (lc) one obtains an implicit
equation for z(t) [or for g(T)]:

—,lnt= g —tanh a—1

n=p Z 2n +1

where g(3) =1.202 and 0.28=2 exp/( —, ). Equation
(26) shows that with increasing t, the correlation
length g=gN/z slowly decreases to giv of Eq. (12);
g giv within 1% at t & 30. Formula (27) gives the
GL result in the clean limit:

iriu 7g(3)
2~T, 12(t —1)

1/2

(28)

In the presence of a magnetic field the com-
ponents of II no longer commute: for any pair
II;IIk (t, k =x,y,z)

H « i))o/2m/~ . (29)

With this restriction, the g(T) found above, also
holds in the presence of the magnetic field. It is
worth noting, however, that in the dirty case (see
Sec. V) the condition (29) can be relaxed.

1.5 s~ L

. 2e
[Il;,11k]~=—t e;klHI~

cA' '

2nf2 6=le.kII) (2

where po is the flux quantum and H; =curl;A. Be-
cause II;b, is of order 6/g, the commutator

[II;,IIk] is small, if

2
lnI

1+z
zn 2

(25)
I.O

z= 1 —0.28/t, t~ ao (26)

z =12(t—1)/7((3), t~ 1 (27)

as is shown in Appendix A. Here I' and g are the
gamma and digamma functions.

It is easy to obtain the asymptotic behavior of
z(t):

0.5

0
I 2 4 6 8 IO 20 40

FIG. 1. Dependence z(t) =Au/2mT( obtained by.
solving Eq. (32) for the impurity parameter A, =O, 0.28,
1, 3, 5, and 10 (t is the reduced temperature).
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IV. ARBITRARY IMPURITY CONCENTRATION

As in the corresponding case of H, z(T, A, ), we

begin here with Eq. (14). The same reasoning as in
the preceding sections yields

(f)= 6+ (f) tanh 'a'.
7TTZ 27

(30)

The series leading to the tanh 'a', converges if

a'=zl(2n+1+A, /t) & 1

for any n, or if

z &1+k/t . . (31)

This condition enters here instead of inequality (24)
of the clean limit.

Extracting (f) from Eq. (30) and substituting it
in Eq. (lc) we obtain

valid for temperatures well above T,~. It is in-

teresting to note, however, that Eq. (32) gives the
exact GL result for g in the limit t~ 1 (Appendix
B):

7((3)A u

482T, (T T, )—
(36)

R u Mvl
48T,A2,4(T T, )— (37)

The asymptotic behavior of z(t} as taboo for an
arbitrary but fixed A, is obtained in Appendix C
and is given by

A, —0.28
z 1+ (38)

Here X(A, ) is the Gor'kov function given in Appen-
dix B. In the clean limit g(0}=1and we recover
Eq. (28); in the dirty case X=@ /7((3)Rand,

1-lnt =
2

J~(a')
z AJ~(a—')/t , 2n + 1

(32)
J~ (a') =tanh

2n +1+A,/t

1—lnt =
2

00 1 1

2n + 1 z2t /3A, 2n +—1
(33)

This is solved numerically with respect to z (t, A, );
the results are given in Fig. 1 for A, =O, 0.28, 1, 3,
5, and 10.

The clean-limit result (23) follows immediately
from Eq. (32) with A, =O. In the dirty case
A, /t~ oo and a'~t/A, can be considered as small.
Expanding the tan 'u' to the third order in a', we
obtain

At A, =O this reduces to the asymptotic expression
(26) of the clean limit. We see that for A, &0.28,
the curve z(t) approaches 1 from below, whereas
for lL, & 0.28 the curve descends to 1 from above.
Since z(1)=0, all curves z(t) for A, &0.28 have a
maximum (see Fig. 1).

Dividing Eq. (38) by g~ we obtain the asymptot-
ic formula for g(T):

1 1 028+-
(N l govt

(39)

Here the last term cannot be removed; its presence
assures convergence of tanh 'zl(1+A, /t) that ar-
ises in Eq. (32). Note also that the asymptotic for-
mulas (38) and (39) obtained for A, /t~O are not
applicable to the dirty limit where A,/t~ ao.

or
T

lnt =g 1 1 2 t
2 2 6A,

(34)

One should be careful when applying the dirty-
limit formula: The actual parameter that should
be large to obtain Eqs. (33) and (34) is

(35)

(not a bare A, =A'v/2m T, l as it was in the domain
0&t &1). Note that for a metal with T, ~O,
A, —+ ao for any finite mean free path, whereas A, /t
remains finite for T+0.

The derivation which led to Eq. (32) for g(T) is

V. DIRTY LIMIT

D II(GIIF FP'G—) =2Gb, /A —2coF, —(40)

Tc
b, ln =2mT g F—

co) 0
(41)

G =1—iFi (42)

The result (34) for a dirty metal can be obtained
in the most direct way if one begins with the E
equations where the "dirtiness" is taken into ac-
count from the very start. A necessary modifica-
tion of the E equations was done by Usadel, who
obtained for F(r,co)=(f ) and G(r, co)= (g) the
set of equations:
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Here D =U r/3 is the diffusion coefficient. Equa-
tions (40)—(42) are valid if 0.8

G »2cor, F»2rh/A . (43) 0.6
Y

F(r,co) =b,(r)/(fico ct), —

where the temperature dependent a (T) is to be
found from the self-consistency relation (41):

(44)

In the temperature domain (la), F« 1 and G= 1

everywhere within the X metal as was argued
above. Then the leading term in the left-hand side
of Eq. (40) is DII—F; the neglected terms are of
order F .

We now test the ansatz

0.4—

0.2

Io f
Qb io'

FIG. 2. Dependencey{t}=irto/2mT(» obtained by
solving Eq. (48) for the dirty limit (t is the reduced tem-

perature).

1—ln=
2

OO 1 l

2n + 1 a /ir T —2n + 1

VI. N METAL WITH ZERO OR NEGATIVE
COUPLING

(45}

We see that a (T) is related to the z (t) of the dirty
limit given by Eq. (33): a =irTtz /3A, . We now

substitute our ansatz (44) in the right-hand side of
Eq. (40) to obtain 2ctF/A in—the linear approxi-
mation. Thus, we have

g»'ll'F =F,
where the dirty-limit correlatiori length is
g»=(AD/2a)' or in the notations of Ref. 1,

AD

2m. Ty(t)

The function y (t) =ct/AT =z t/3A, is given by Eq.
(45) or by

(47)

r

lnt =P y
2 2 2.

(48)

(see Fig. 2), which has been considered by de

Gennes. ' It is easy to show that Eqs. (47) and (48)
give the GL result (37) at t~ 1. For t &&1 we ob-

tain

49 2
2m T ln4t

(49)

In the derivation of the g»(T) given here we did
not use any assumption about the commutation

properties of the II components. This, along with

the simplicity of the Usadel-based approach to the
dirty case, makes it especially attractive. In partic-
ular, this implies that Eq. (46) with g» of Eqs. (47)
and (48), is applicable in any magnetic field within
the temperature domain (la).

The general result (32) is of no use for a zero
coupling constant where T,z ——0. One might have
considered Eq. (32) for a small finite T,N and then
take the limit T,N ~ 0. Instead we go back to our
starting point, namely, to the linear Eq. (14) and
take the limit h~ 0. Proceeding exactly as was
done in Secs. III and IV, we obtain in this limit

(f)= (f)tanh 'a'
2' T/z

instead of Eq. (30), or

1 ——tanh
Z =0

tz 2n +1+k,/t (50)

I i kN—=tanh
ko ko(~+4 }

(51)

instead of Eq. (50) (the 0 subscript relates go to the
case T,N 0). ——

In the dirty metal (N/I »1, and we easily ob-
tain

1

ko= —,KNI (52)

Here z=gN/g A/t=(N II d, epend only on the actu-
al temperature T, g, and /. Therefore, Eq. (50)
gives g as a function of T, 1, and n The n dep. en-
dence of g is a specific feature of the case T,N 0. ——
This means that (f(n, r ) ) attenuates in the N met-
al at a distance which is different for different n's

(recall (f) satisfies g II (f) =(f)). Because of
the exponential character of this decay, all

(f(n) )'s can be neglected with respect to the one
with the largest g(n) (or the smallest z). It is easy
to see from Eq. (50) that the smallest root z (n,A/t),
corresponds to n =0. We have, therefore, the
equation for go.
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this is the dirty-limit result (49) where t~ 00. In
the case of large I's

g~l/[gp(l +(~ )]= tanh(l/gp) 1

In the absence of interaction gp is given by Eq.
(53) in the clean case. The correction to this
asymptotic formula is exponentially small:

of

1 1 1+
kp 4 (53)

This coincides with the asymptotic expression (39)
for the clean case at t= Oo.

Let us now turn to the case of a negative cou-

pling constant (the net electron repulsion) of the N
metal in a proximity system. The Eilenberger
equations and our result (32) for g(T, I) are quite
general and can also be applied to this situation.
This was pointed out by Kupriyanov, Likharev,
and Lukichev who introduced a term "supernor-
mal" for a metal with a repulsive electron interac-

tion. The effective coupling constant N(0) V enters
the E equations in T, only: T, cc exp( —1/N(0)V).
Therefore, an N metal with N(0) V& 0 can be
described formally as having a large positive "criti-
cal" temperature T,*.

In order to see how a large T,'~ arises in the for-
mal structure of Eq. (32) for a supernormal metal,
we first rewrite it as

T, =Texp[ 2S(z,—k/t)] . , (54)

Here S stands for the g„p of Eq. (32); the vari-

ables z and A, /t can be replaced by g, I, and T.
When T,~O, S diverges: According to Eq. (51),
the denominator

1 ——tanh-' Z

tz 1+A,/t ' (55)

min
max

4 4I
1+A,/t I+(„ (56)

in the term n =0 of g„" p, is zero. Then, if g
changes from gp+g' to gp —g' and 5(~ 0, the
denominator (55) changes from +0 to —0, i.e., the
S jumps from + ao to —co and T, suffers a
discontinuity from +0 to + oo. This nonanalytic
behavior of T, certainly might have been expected
from the very beginning: T, oc exp( —1/NV) is
discontinuous when EV passes through zero.

There is a difference in the correlation lengths of
a supernormal metal in the clean and dirty situa-
tions. To see this we first recall that the self-
consistency relation cannot be satisfied if
z & 1+1,/t [see Eq. (31)]. In other words, the
length g is always larger than

This actually coincides with the g~;„of Eq. (56)
because I »g~. Thus in a clean supernormal met-
al the correlation length is actually the same as if
the electron-electron interaction were absent.

In the dirty limit g;„=I(1—I/g~), whereas

gp
——(g~l/3)' . The ratio gp/gmm=(g~/31)' is

not small. In other words, there is substantially
more room here for an effect of the repulsive in-
teraction on the g value than in the clean case. We
give some figures to illustrate this statement in the
next section (see also Ref. 9).

VII. DISCUSSION

1 1 1+—
I

(57)

This is rather close to our asymptotic expression
(39) for t »1. Though the authors did not specify
a temperature range where their result is valid, it is
clear that 5=0 is a bad ansatz near T,&. There-
fore, the similarity between Eq. (57) and our result
(39) at t »1 is of no surprise. The curve
z = 1+1,/t which corresponds to Eq. (57) is shown
in Fig. 3 for A, =3 along with z(t) found for the
same A, from our Eq. (32).

Krahenbuhl and Watts-Tobin (KWT) proposed'
an equation to describe superconductivity in an X
metal, which can be obtained from the Usadel
equation (40) by replacing the diffusivity D =u r/3
with D =v r/3(2cor+ 1) (i.e., 1/t~ 2n +1+1 /t)
When applied to Eq (33) [whic. h is equivalent to
Eqs. (34) and (48) of the dirty limit] this replace-
ment yields

We now compare our result for g(T) with other
existing theories. The quantity of interest is usual-

ly the critical current j, through the SXS system
rather than g(T). For thick N layers

j, ~ exp( —d/g), where the thickness d is consider-
ably larger than g (see, e.g., Ref. 11). Kulik and
Mitsay (KM) solved this problem for a clean sys-
tern using a model where 6=0 in the X part of the
SXSjunction. Their result for the correlation
length is
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1.5

1.4
KWTg

z 1.2

I.I

~KM

l
1.0,, I

4 6 810
t

20 40 60

FIG. 3. Dependence z(t) =A'v/2m. T( obtained by
solving Eq. (32). The KM curve corresponds to Eq. (57)
obtained in Ref. 9. The KWT curve is obtained by solv-

ing Eq. (58) which corresponds to the theory of Ref. 10
(t is the reduced temperature). The impurity parameter
A, =3 for all the curves.

1—lnt =
2

CO
1 1

2n + 1 —za'l3 2n + 1

(58)

The solution zKwr(t) of this equation for A=3 is
plotted in Fig. 3 along with z(t) obtained from our
Eq. (32). One can see that zKwz(t) and z(t) coin-
cide in the GL domain; however, for t large, ztcwr
exceeds our z by more than 40%. The coincidence
of both z's in the GL region is not accidental: here
t + l,z~—0, and tanh '[z/(2n+1+ A, /t)] of Eq.
(32}can be'expanded in a power series. Keeping
only the first two terms in the expansion we obtain
the KWT formula (58).

We believe that a mismatch out of the GL re-

gion can be understood as follows: To derive their
equation the authors of Ref. 10 had to relax the
first of two Usadel conditions (43), namely,
6 &&2coz. This, however, cannot be done at t pal
without violating the second condition (43) or the
self-consistency relation. Indeed, in this region
b, /T « 1 and as is seen from the self-consistency

equation (41), F is of order b, /fico. Substituting the
latter estimate in the second Usadel condition
F»2'/ft we recover the first one: 1 »2cor
(6=1); thus, 6 »2cor cannot be relaxed.

In the dirty limit our theory gives the same g(T)
as that of de Gennes' as well as KWT' [here the
KWT equation (58) reduces to Eq. (33) because
a'~t/A, J.

Most of the experiments on the thickness depen-
dence of the critical current through SXSjunctions
with a thick X layer have been done with Cu, Ag,
and their alloys as a material for the E film (see
Refs. 11 and 12). The best collection of data
relevant for our theory can be found in the paper

by Niemeyer and Minnigerode" who measured g
for a wide variety of mean free paths l. Unfor-
tunately, direct comparison with the theory cannot
be done because T, for Cu and Ag are unknown.
One can reverse the problem and try to calculate

T, for these metals from Eq. (32) using the mea-

sured values of g, I, and T (or z and A, /t}. Howev-

er, the actual numerical estimate of T, turns out to
be practically impossible: A spread in the experi-
mentally determined g and I results in a huge un-

certainty in T, . Figure 4 demonstrates this quite
clearly. Experimental points and the estimate of
their accuracy are taken from Ref. 11. The dots
represent g of CuGe alloys with different I's at
T=4.2 K; the open circles show g(l) for Ag and

its alloys at the same T. The solid lines are calcu-
lated using Eq. (51), the upper line for Cu and the
lower one for Ag, as if their T, were zero (accord-
ing to the estimate of Ref. 11, Fermi velocities for
Cu and Ag are 1.56)& 10 and 1.38)& 10 m/sec,
respectively). The dashed lines are calculated from

Eq. (32) for Cu as if its T, were 4.2&(10 K (the

upper dashed line) and T,
' =4.2)& 10+ K ( the

lower dashed line}, i.e., for t= 10 and 10
respectively. One can see that the data for g and f

are far from being conclusive if we are interested
in the determining T, .

The nonanalyticity of T, (g) near T, =0 which
was discussed in the preceding section, makes the
task of finding T, for Cu and Ag even more diffi-
cult. To illustrate this we take as an example the
data of Ref. 11 for CuGe (2.6at. %): g~ ——450 nm

at T=4.2 K, I =6.7 nm so that the parameter
A, /t =(~/1=67. We first solve Eq. (51) for go cor-

500

100

50

~~+
Ag

10
2 5 IO 50 100

$nm

500 10~ 5xl0~

FIG. 4. Mean-free-path dependence of the correlation
length g(l). The experimental points are taken from
Ref. 11. The black dots show gil) for Cu and its alloys;
the open circles show (il) for Ag and its alloys. The
solid curves are calculated from Eq. (51) for Cu and Ag
as if their T, were zero. The dashed lines are calculated
from Eq. (32) for Cu as if its T, were 4.2&10 K (the
upper line) and 4.2&(10+ K (the lower line). The
squares on the right are "the thin-film correction" to the
I of the clean Cu and Ag as explained in the text.
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responding to T, =0; the result is gp=31.7 nm.
Note that the smallest possible g according to Eq.
(56) is g;„=6.6 nm. We now go back to Eq. (32)
or better yet to its form (54) to estimate T, (g) for
a series of points g from an interval which includes

Qo

34, 33, 32, 31, 30, 29;
T (g) ]0—S ]0—10

~O
—44 }O+20 ~O9 ~O6

respectively (where g is expressed in nm and T, in

K). The divergence shows up between (=31 and

32 nm as it should. This example clearly indicates
how futile the attempts were to determine T, of
Cu using the measured g (see Ref. 12 and refer-
ences therein). Indeed, for this alloy the measured

g is roughly between 29 and 39 nm according to
Ref. 11.

The extremely low sensitivity of g to huge

changes in T, in the vicinity of T, =0 (or to the

value and sign of the coupling constant) has been

pointed out in Ref. 8 in an analysis based on the
Usadel equations, i.e., for the dirty case. The g is
even less sensitive to T, in clean Cu. For example,
taking all of the same data for Cu (gN

——450 nm at
4.2 K) but l =450 nm so that the impurity param-
eter gN/l =1, one obtains gp ——235 nm for T, =0
[solve Eq. (51)]. Then Eq. (54) gives T, (g) in the
vicinity of gp.

nm whereas Izs ——2200+ 500nm. ) Under these con-

ditions an effective mean free path which takes
into account the scattering at the S-N boundaries

should be used rather than the bulk l. It is unclear

whether or not one correctly includes the boundary

effects in calculating l from the bulk formula'

1 =2k ~/ eyu~p, even if the resistivity p is mea-

sured with a film sample. "Whatever the correct
estimation procedure should be, l,f~ should not sub-

stantially exceed the film thickness d. We estimat-

ed roughly l,f~ using l,ff' ——I '+d '. Then the
two points in question for the clean samples move

to lower l's as is shown in Fig. 4 by closed and

open squares for Cu and Ag, respectively.
It would be interesting to compare our theory

with the data for g obtained from experiments

with SNS junctions, where the N material has a
known critical temperature. As we know, only one

such an attempt has been reported by Hsiang and

Finnemore. ' They worked with Pb-Cd-Pb
sandwiches (for Cd T, =0.52 K) and were con-

cerned mainly with magnetic field effects. Unfor-

tunately, their data on g(l, T) are not sufficient for
a comprehensive comparison with the theory

presented here.
l)lote added in proof. The result (51) has been

given by M. Yu. Kupriyanov, Sov. J. I.ow Temp.
Phys. 7, 342 (1941).

ACKNOWLEDGMENTS

g(„)= 242, 239, 236, 234, 231, 229;
~o

—6 )o—10 ]0—.40 )0+4& $01 go
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in the preceding "dirty" example. However, re-
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APPENDIX A

Instead of summing up over rn in Eq. (22) we

substitute

oo 2m

U

flu p 2' g

2m
1

2m +1

in the self-consistency relation (lc) and sum first
over co:
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or

1

2m +1

2~ A,(2m +1)
—,lnt = z

m=1 2m+1

1 1 1 "
u

2rr T „o fico fico o 2cog
' 2'

Av 1 1

2g 2m +1 (fico)2~+'
L

we have

12(t —1)
7$(3)X(&)

'

which gives Eq. (36). In the clean limit A,~ 0 and

(
3 7$(3)

n=0 8

i.e., g(0)=1. If A, &&1,

where

A,(2m + 1)—:(1—2 ')g(2m + 1)
7g(3)A, „~o 7g(3)&

= g (2n+1)
n=0

(Al)
APPENDIX C

In the GL domain t~ 1 and g—+ ac (or z~0),
i.e.,

and

cc'=z/(2n+ 1+A/t ) « 1,

tanh 'ct'=a'+a' /3+

Then Eq. (32) reads

2 00

—,(r —1)=—g (2n+1) '(2n+1+A, ) '.
n=0

In terms of the Gor'kov function

g(A, )= g (2n+1) (2n+1+A, )
7«3) s=o

With the help of the identity'

cN X2m+1
1 7TXg(2m+1)= —,ln . —Cx

1
2m+1 sin&x

—lnI (1+x) (A2)

(C=0.5772), that holds for
~

x
~

& 1, we obtain the
result (25).

APPENDIX B

We look for a solution z(t) of Eq. (32) as t~ Oc

in the form z =1+e(t), where e—+ 0. Then
tanh 'a' behaves differently for n =0 and n@0.
It diverges if n =0,

tanh ' =tanh '(1+E A/t)— ,1+A, /t

1 2=—1n
2 A/t —e

We keep here only the divergent and the constant
terms. The remaining g„" i is convergent when

both e and A/t go to ze, ro. Therefore, it contri-
butes only to the constant term of the divergent

When evaluating this contribution we can
put e=k, /t =0:

tanh
1 1 C= 1 —ln2 ——

2n+1 2n+1 2

[use

tanh '(2n yl) '= g(2n+1) " '(2k+1)
k=0

sum up first over n and apply Eqs. (Al) and (A2)].
Finally, Eq. (32) gives e=(A, ——,e c)/t where

—,e =0.2807.
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