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Elec«onic properties of an ordered-disordered interface
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The coherent potential approximation is extended to an ordered-disordered interface
which is composed of a monatomic crystal and a disordered binary material. A proper
description of disorder is achieved by performing the self-consistent calculation of the
coherent potential after the formation of the interface. These goals are accomplished by
a Green s-function method and perturbation theory. A density-of-states calculation is
performed and the various kinds of interface states are discussed. The virtual-crystal
approximation is utilized to separate interface effects from those of disorder. In
particular, disorder affects all interface states in the same qualitative manner, regardless
of whether they are associated with the ordered or disordered material. In general, the
effect of disorder on interface states is found to be analogous to its effect on the bulk

bands.

I. INTRODUCTION

The quantum-mechanical theory of solid-solid
interfaces is an expanding branch of surface phys-
ics. At present, most models developed correspond
to an ideal interface, ' which is formed by
matching two semi-infinite ordered solids having
the same translational symmetry parallel to the in-

terface. However, many problems of surface phys-
ics resemble more closely an ordered-disordered in-

terface, for example a solid-liquid interface or a
solid-alloy interface. Although desirable, a realistic
model of a liquid or an alloy will not be developed
here. Instead, a simplified model of disorder will

be employed to conceptualize the effect that disor-

der has on the electronic properties of the inter-

face. For such a model, preliminary discussions of
the electronic characteristics of simple molten salts
have already been reported. ' '"

The interface model is constructed by combining
established solid-state models: The ordered crystal
is represented by a monatomic lattice where the
tight-binding approximation is employed, while the
disordered material, having two atomic com-
ponents, is modeled via the coherent potential ap-
proximation (CPA). ' ' A Green's-function for-
malism is adopted, so that the electronic properties
may be characterized by a density-of-states calcula-
tion. The interface Green's function is calculated
by considering the formation of the interface as a
perturbation on the two semi-infinite materials;
this is achieved via the Dyson equation. The
semi-infinite Green s function of either material is

derived, from the corresponding bulk Green's func-
tion, by a perturbation approach known as the
cleavage plane method. '

Although spcx:ific interface effects, such as
charge transfer and vacancies, have been incor-
porated into three-dimensional models in a self-
consistent manner, a simple one-dimensional model
will be considered here in order to simplify the
solution of the interface problem, since, as will be
shown later, disorder on its own introduces self-
consistency into the problem in a unique way.
Such a one-dimensional model is sufficient because
it reflects the amalgamation and persistent behavi-
or of the bulk bands of materials with diagonal
disorder, and provides a description of the elec-
tronic states that are localized perpendicular to the
interface (i.e., localized along the one-dimensional
chain). In fact, for three-dimensional systems with
translational symmetry parallel to the interface, a
mixed Bloch-Wannier representation ' repro-
duces the flavor of a one-dimensional approach,
except that the determination of the Green's func-
tion is complicated by the additional bonds occur-
ring in the three-dimensional situation. The main
advantage of the simpler model is that it provides
a more transparent formalism for the discussion of
disorder, while retaining the salient features. Thus,
as in the past, ' the one-dimensional model is uti-
lized for instructive purposes rather than as an ear-
nest attempt to reproduce reality.

The one-dimensional model is limited to the dis-
cussion of strongly persistent-type materials, where
both the interface and bulk bands are of the per-
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sistent-type. In other words, an accurate treatment
of amalgamation-type interface states is not possi-
ble, since each configuration in the average has a
unique atom associated with the interface site.
However, insight is provided so that the occurrence
of an amalgamation-type interface band may be
understood.

The basic formalism is presented in Sec. II,
where the bulk and surface properties of each com-
ponent of the interface are first outlined, then the
interface is formulated by coupling the two sep-
arate media across their surfaces. In particular, a
detailed discussion of the surface states of the
disordered material is included, since it provides
the insight necessary to unravel the interface prob-
lem. The crucial step in modeling the interface is
the introduction of the interface coherent potential
in a self-consistent manner, so that the effects of
disorder are properly taken into account. In Sec.
III, the local density of states of the disordered in-
terface site is exploited to characterize the various
electronic properties, with special emphasis on the
interface states. The conclusions are presented in
the last section.

II. MODEL SYSTEM

Throughout, all systems will be represented by
the tight-binding Hamiltonian

H=ge ~m)(m
~

—g J ~m)(m'(, (1)
mmmm'

where e~ is the energy level of the orbital
~

m ) on
the mth site and J is the transfer energy be-
tween the sites m and m'. The difference between
order and disorder, which will be considered here,
is characterized by whether e takes a fixed value
(ordered site) or a random value (disordered site).
Thus, Eq. (1) corresponds to an ordered (monatom-
ic) system when every e is a fixed value, to a
disordered system when every e~ is a random vari-
able, and to an ordered-disordered interface when
every e~ on the left of the interface is a fixed
value and each e on the right is a random vari-
able.

The Green's function is defined by-

where

p (E)=m. 'Im(m
~

G(E)
~
m)

'ImG(E, m, m )

is the local density of states.
Rather than solving the interface Hamiltonian

directly, a sequence of perturbation steps will be
employed so that the interface Green's function
may be determined by the Dyson equation. The
preliminary steps involve brief derivations of the
bulk and surface properties of each material, while
the final step culminates with the Green's-function
formulation of the interface. It should be realized
that this approach is more general than the one-
dimensional situation which follows.

A. Ordered crystal

An ordered monatomic crystal or metal may be
represented by an infinite linear chain composed of
equally spaced sites which are consecutively num-
bered. To emphasize the monatomic nature and to
prevent confusion with the disordered material to
be developed subsequently, the subscript 1 will be
used throughout to label quantities associated with
an ordered site. The choice e~ =e'i for all sites
and J ~ =Ji between nearest neighbors in Eq (1).
leads to the bulk energy

E(k) =@i—2Jicoskai,

where a i is the lattice constant. The correspond-
ing infinite Green s function Gi is given by

i(m —m')ka
&

Gi(E,m, m') =I
E—E(k)

The summation over k may be converted into an
integral, so that

I

G, (E,m, m') =t i [2siJi(gi —1)'i ]

where

G(E)=(E H)— (2) and

and may be utilized to characterize the electronic
properties of each material via the density of
states,

S)= . 1, gi( —1

—1 otherwise .

p(E)=n'Im TrG(E)=gp . (E), Since Gi(E, m, m) is independent of m, the local
density-of-states Eq. (4) turns out be site indepen-
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dent, and is nonzero only in the bulk band region
defined by Eq. (5}.

A fundamental step towards the formulation of
an interface is the formation of a semi-infinite or-
dered crystal (rn ) 1) from the infinite linear chain

by the Kalkstein and Soven method. ' An ima-

ginary cleavage plane is passed through the infinite
crystal between the sites m =0 and 1 to form two
disconnected systems. The local perturbation

ui=Ji ~0)(1~+Di ~1)(1~ (10)

where
(12)

p=m+m' —
~

m —m'
~

—2,

Fi(E)=2J&si(g& —1)' —2D& —2Ji(i,

and, in particular, the surface Green's function is

given by

g', (E)=gi(E, 1,1)=2/Fi(E) . (15)

At this point, the electronic properties of an or-

dered crystal with a surface may be described, and

one of the semi-infinite formalisms necessary for
the formation of the interface, via perturbation

theory, is complete.
Since this ordered surface model is the prototype

for everything which follows, it warrants a brief
description. The local density of states at the sur-

face may be calculated from Eq. (15), and is com-

posed of a bulk band modified by the presence of
the surface, and possibly a single 5 function locat-
ed at the surface state energy E i, which is defined

by the possible pole of Eq. (15). Such a pole arises

whenever

(16)

is introduced to describe the cleavage process on
the semi-infinite chain to the right (m ) 1), where

the first term eliminates the bond (cleavage plane),
while the environmental shift Di is also introduced
to account for the potential change felt by the elec-

tron at the end of the chain (i.e., at the surface
atom of the one-dimensional model}.

The Dyson equation

gi(E) =Gi(E)+Gi(E)Dig](E)
leads to the Green's function of the semi-infinite

crystal, viz. ,

gi(E, m, m') =Gi(E,m, m')

X [1+2ti (Di+Jiti )/Fi(E)],

and corresponds to an electronic state that decays
along the chain as one moves away from the sur-

face. As shown in the Appendix, these localized
states give rise to a local density of states of the
form

pi(E) =I'i (E'i )&(E E'i —),
where

Ii(E)=1 Ji/D—i .

Thus, this approach is adequate to describe both
the localized and bulk states of an ordered surface.
The existence condition equation (16}implies that
a localized or surface state only occurs when the
perturbation is sufficiently large.

These surface-states ideas will be used in later
sections to explain the effects that disorder has on

surface and interface states. A binary disordered

material may be connected to a corresponding or-
dered material via the virtual-crystal approxima-

tion, as will be demonstrated subsequently.

B. Disordered crystal

Before proceeding to a discussion of infinite or
semi-infinite disordered materials, a general formu-
lation of the CPA will be presented. Essentially,
the disordered material is represented by an effec-
tive medium by introducing the coherent potential,
which may be calculated in a self-consistent man-
ner. This effective mediuin plays such a dominant
role in the formalism that the subscript eff (and
later simply e) will be used extensively to label

quantities associated with the disordered material.
This theory may be used to treat binary systems

composed of the atoms A and B which are charac-
terized by the atomic energies e~ and ez and by
the concentrations Cz and Cii (=1—C„), respec-
tively. Further, it will be assumed that an electron
is allowed to transfer between nearest-neighbor
sites with the transfer energy J~~ =J,tt, which is
taken independent of site occupation. In a disor-
dered system, the exact configuration is not known,
so that its properties are determined by averaging
over all the allowed configurations. In the present
case, Eq. (1) represents the Hamiltonian of an al-

lowed configuration, where e~ is a random atomic
level eq or ez, depending on whether an atom A or
B occupies the site m. These types of systems are
said to have diagonal disorder or randomness.

The Hamiltonian of an allowed configuration
may be written as
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where

m+m'
(20)

is an ordered (monatomic} Hamiltonian which de-
scribes a virtual crystal with a mean atomic energy
6„;~=Cg6g +Cga, 6=Eg —Gs is the difference in
atomic energies of the disordered material, and N
is a random variable which takes the value C~ at
an 3 atom and —Cz at a 8 atom. In other words,

converts the virtual crystal into the corre-
sponding configuration. The randomness of the
system is characterized by introducing the ensem-
ble-averaged Green's function,

G «(E) (G o (E)) (21)

which is used to describe the properties of the
disordered system. The crucial step in the CPA is
that G,« is used to define an effective medium by
introducing the effective Hamiltonian H,«which
is deflined by

G ff(E)=(E H,ff)— (22}

The effective Hamiltonian describes the averaged
crystal and has the form

H ff=H„;,+g o (E)
~

m )(m (23)

where o is the coherent potential of the mth site
which represents the shift and the broadening of
the states of the virtual crystal. As is well known,
the effective medium described by the coherent po-
tential is determined by setting the averaged scat-
tering potential (t ),„(=C~tz+Csts) of a single
site immersed in the medium equal to zero. This
condition leads to a self-consistent equation which
determines the coherent potential, ' namely,

o~ =(b,C& —o~)G, (E«, , m)(mb, C~+o~) . (24)

Once om is determined as a function of energy, the
electronic properties of the disordered system may
be described by a density-of-states calculation with
the aid of Eqs. (22) and (23).

In principle, Eq. (24) is applicable to any system
with diagonal disorder, whether it is infinite, finite,
one dimensional, or three dimensional; the practi-
cal difficulty is calculating G,f~. Moreover, Eq.
(24) contains implicit as well as explicit self-consis-
tency; the former arises due to the fact that G,ff
depends on o~ as seen from Eqs. (22) and (23). In

the remainder of this section, these ideas will be
demonstrated for the bulk and semi-infinite sys-
tems. Then the results will be extended to the in-

terface situation in the next section.
To emphasize the one-dimensional nature of the

following calculations, all three letter subscripts,
such as eff, will be shortened to their first letter.
For convenience, all energies will be measured in
units of 2J„ez will be taken as the energy zero,
and C will denote the concentration of atom A, so
that

1Jq= 2, 6'g=O,
(25)

C=Cg, Cg ——1 —C,
and the disordered material is specified by C and

Equation (23) shows that the coherent potential
may be interpreted as a a perturbation which
transforms the ordered virtual crystal into the ef-
fective medium. Thus, one may obtain G,«by
modifying the Green's function of the virtual crys-
tal. In fact, for the bulk situation, the Green's
function of the effective medium may be obtained
directly from the Green's function of the ordered
crystal given in Eq. (7), by the conversion

G, (E,m, m') =G, (E+e, Ch o,—m, m—') .

(26}

In this case, G, (E,m, m) is independent of m, and

Eq. (24) reduces to a single equation which deter-
mines the bulk coherent potential ob (=o' for all

m) of the infinite system. As a result, the effective
Hamiltonian possesses the full translational sym-
metry of the virtual crystal and, conceptually, H,
may be thought of as the Hamiltonian of an effec-
tive periodic medium. The conversion of an or-
dered Green's function to the effective Green's
function outlined in Eq. (26) is obvious, from a
perturbation point of view, when o. is indepen-
dent of m, and very useful. However, care must be
taken when generalizing this procedure to the
semi-infinite case, as will be shown later.

The conversion Eq. (26) leads to the bulk
Green's function of the effective medium given by

G, (E,m, m')=t ~ ~ [s,(g, —1)'~ j ', (27)

where

(28}

and
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s, =+1 such that
i
t,

~

&1 . (29)

Unlike the ordered case, from which it is derived,
s, cannot be easily specified, since g, depends on
the yet unknown o.b. Thus, the self-consistent
equation (24} is rewritten as
2[E—(1—C)b, ]o'b

+[6 (SC —6C+.1)+2CbE. E+—1]ob

+26, C(1—C)(1—2C)ob+6 C (1—C) =0.
(30)

This cubic has three real roots, or one real and two
complex, as functions of E, C, and h. The correct
root must satisfy the original equation (24) before
squaring to obtain Eq. (30), and may be described
as a continuous function of E, except possibly for a
pole at E=b,(1—C} in a region where ob ——Imos
=0, with the property that o.

b )0. Since
G, (E,m, m) is independent of m, the local density
of states is the same for all sites, and is nonzero in
the energy regions where O.

b & 0. As far as the
bulk situation is concerned, it is sufficient to solve
Eq. (30) in the energy regions where there are one
real and two complex roots, and the correct root
satisfies orb & 0. However, in the semi-infinite and
interface situations it will be necessary to choose
the correct solutions for the other case when there
are three real roots. Fortunately, the procedure
given above works in both cases.

With the bulk coherent potential determined, the
local density of states may be calculated from

G, (E), and the resulting band structure may be of
two types depending on C and b, . The first (per-
sistence) type retains the individual characteristics

of the two constituent atoms; the second (amal-
gamation) type combines the features of the com-
ponents. In other words, the binary disordered
material may have a two-band or a single-band
structure. Moreover, the one-dimensional model
presented here reflects qualitatively both possibili-
ties for these types of materials.

The site-diagonal Green's function for a semi-
infinite disordered system depends on the site m
which, via Eq. (24), leads to the site-dependent
coherent potential. This can be seen by attempting
to include the implicit dependence of o in Eq.
(12), as was accomplished for the bulk situation in
Eq. (26). However, such a converted semi-infinite
Green's function does not properly take into ac-
count the site dependence of o required by Eq.
(24). In general, the Green's function must include
a diagonal perturbation on each site, so that the
site dependence of o may be treated in the
correct manner. Thus, care must be taken in this
situation.

The complications of the semi-infinite system
have been reported by Ueba and Ichimura, ' ' who
incorporated them into a model by restricting the
site dependence of o to the surface atom, and in-
troduced the surface coherent potential 0;, while
using the bulk coherent potential o.

b on the re-
maining sites.

By replacing the diagonal perturbation D] of the
surface atom by D, +o, ob and —E by E+ei

Cb. ob in Eq.—(12),—the site dependence of the
coherent potential in their model is properly in-
cluded, and the semi-infinite Green s function is
given by

g, (E,m, m') =G, (E,m, m') I I+t~[2(D, +cr, ob)+t, ]/F,'(E—) J,
where

F,'(E}=s,(g, 1)' —2(D,—+o, ob)—
In particular, the surface Green's function is expressed as

g,'(E)=g, (E, 1,1)=2/F,'(E) .

(31)

(32)

(33)

Within this simplified model, the self-consistent equation (24} corresponds to two coupled equations which
determine 0; and ob, namely,

and

o, =[5(1 C} o;]g,'(E)(bC—+o,—), m =1 (34)

os ——[b(1 C) mrs]G, (E,m, m—)(bC—+crb), m & 1 .

With the aid of Eqs. (28), (32), and (33), Eq. (34) is rewritten as

o;(E)=26, C(1—C)[s,(g, —I )'~ —2b, (1—2C) —2D, +crb+E Ch]—
(35)

(36)
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so that the surface coherent potential is isolated.
The local density of states at the surface is then calculated from Eq. (33) and is composed of a band

structure analogous to that of the bulk together with possibly two surface states. ' This band structure is
defined by the energy regions where o, & 0, and it can be shown that

a, (E)~0 whenever orb(E) &0, cr, (E)=0 whenever ob(E)=0 . (37)

Consequently, the band-structure type at the surface is the same as that of the bulk. In addition, a surface
state may appear whose energy E,' lies outside the band structure (determined by poles of g,'), and whose
density of states is given by

where

I,'(E}=2t [1+s,g, (g, —1) '~i](ob —1)—2(og —1) I

is the intensity of the surface state and the prime
indicates differentiation with respect to E.

By comparison of Eqs. (18) and (39), it is obvi-
ous that disorder has modified the properties of
the surface states. Within the virtual-crystal ap-
proximation, the disordered system reduces to an

1

ordered one with e& ——eh, J~ ——J,= —,, and D~ ——B„
which is easily verified by setting orb cr, =——0. The
intensity equation (39) and the virtual-crystal ap-
proximation may be exploited to distinguish be-
tween the effects that disorder and surface forma-
tion have on the properties of the surface states.

The local density of states at the surface is
shown in Fig. 1, where, as will be explained later

(Fig. 3), not one, but two surface states exist below
the amalgamation bulk band. As 5 increases, the

(38)

(39)

I

separation of these states widens, until one enters
the bulk band, while the other remains relatively
insensitive to changes in b,. The surface-state in-
tensities reflect the concentrations of each atom in
the sense that the surface state with the higher en-

ergy has the smaller intensity and the atom with
the higher electronic energy level ez (=b) has the
lower concentration Cq (=C). These ideas are
clarified in Fig. 2, where I,'(E,') is plotted against
concentration for a persistent-type case. Here, the
dramatic effect of concentration on the surface-
state intensities is clearly demonstrated, since
I,'(E,'} varies between zero and I„'(E„')=0.75, the

0.8—

0.7

0.6

0.5

04

06— 0.3

04— 0.2

02- 0.I

0
-2.5 —l.5 -0.5 0.5 l.5

0 0.2 0.4 0.6 0.8
C

FIG. 1. Local density of states at a disordered sur-

face for B,= —1, C=O. 1, and b =0.1, 0.2, 0.3, and 0.4.

FIG. 2. Surface state intensities vs concentration for
5=2, and B,= —1. Solid line is I,' of disordered sys-

tem, broken line is I„' of virtual crystal.
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E„'=Cd,+D,+, ~D,
~
)—,

4g)
(40)

is a linear function of C, which connects the oppo-
site ends of the disordered levels. The effect of
disorder and surface formation on E,' may be

separated by a simple interpretation of the Z pat-
tern formed by the E,"s and E„'. The formation of
the surface creates a surface state with energy E„'
when disorder is neglected. On introducing disor-

der, the single-level E„' is split into two levels, one

being above and the other below E„'. The magni-

tude of the surface-state splitting is governed by b,

and is only slightly affected by C. It should be

noted that Fig. 3 shows that the surface state,
which vanishes in Fig. 1, reappears between the
bands for sufficiently large b, .

The preceding evidence allows each surface state

E

-2
0

I I I I

0.2 0.4 06 0.8
C

FIG. 3. Surface state energies vs concentration for
b, =2 and D, =—1. Solid line is E,' of disordered sys-

tem, broken line is E„' of the virtual crystal. Circles
denote limit points which arise in monatomic cases.
Shaded areas are disordered bulk bands.

virtual-crystal approximation value for 0 & C & 1.
As C increases, I,'(E,') of the lower E,' decreases al-

most linearly between the extremes, while the in-

tensity of the surface state with the upper E,' value

increases.
Concentration effects on E,' are portrayed in Fig.

3, where two surface states exist and the bulk
bands (shaded areas) are of the persistent type.
The surface-state energy levels E,' vary only slight-

ly with concentration and tend to follow the bulk

band edge directly above each of them. In the
virtual-crystal approximation, the surface-state en-

ergy,

to be identified with a particular component atom.
The lower E,' value corresponds to the atom with

the smaller energy level; the upper E,' level is iden-
tified with the other atom whose energy level is the
higher one. Physically, this is a natural association
since the surface site may be occupied by either
atom whose effect on the surface state properties
(Ee ge) will be different. Indeed, the influence of
each atom on I,' is weighted by the occupational
probability, or concentration, at the surface, while
the sensitivity of E, is amplified by the magnitude
of b, . These ideas also apply to the single surface-
state case. However, here identification is more
difficult, but may be achieved by observing how I,'
varies with concentration. For persistent materials,
each bulk band corresponds to an atom, so a sur-
face state may be linked directly to a band. This
description of surface states lays the foundation for
the discussion of the interface states.

C. Interface formation

The crucial step in describing an ordered-dis-
ordered interface is the extension of the CPA to
such a situation. The effective medium in this
case corresponds to an interface composed of an
ordered crystal (averaging unnecessary) and an ef-
fective disordered medium (averaging accounted
for by coherent potential) whose associated Green's
function will be denoted by O'. Intuitively, the
desired extension is achieved when G,~f is replaced
by 6' in the self-consistent equation (24). In so
doing, the coherent potential, and hence the elec-
tronic properties, of each disordered site is calcu-
lated within the interface environment in which it
resides. In other words, the coherent potential will
be calculated after the formation of the interface; it
will be determined by the interface Green's func-
tion G', not the semi-infinite Green's function.
This amounts to a new interface effect, which is
unique to the ordered-disordered interface. In the
next section, this approach will be physically justi-
fied when the coherent potential is discussed in de-

tail.
In general, the diagonal elements of the interface

Green's function are site dependent, which leads to
a site-dependent coherent potential as in the semi-
infinite system. Following the semi-infinite model
of Ueba and Ichimura, the site dependence of the
coherent potential will be restricted to the disor-
dered site adjacent to the interface by introducing
the interface coherent potential 0.; at this site. A
perturbation approach may then be used to calcu-
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G'(E) =g'(E)+g'(E) VG'(E) (41)

I

late G' by coupling the semi-infinite materials to-
gether. The interface coherent potential may be
calculated self-consistently and the electronic prop-
erties characterized by a density-of-states calcula-
tion.

This approach is analogous to the semi-infinite
model. However, to emphasize the difference, the
surface coherent potential o, is replaced by the in-

terface coherent potential 0.;, since, as will be
shown later, these quantities are indeed different.
The interface model is illustrated in Fig. 4, where

y denotes the interface coupling between the ma-
terials. The interface Green's function is calculat-
ed by the Dyson equation

g](E, 1 —m, 1 —m'), m, m'& 1

g'(E, m, m')= g, (E,m, m'), m, m')0
0, otherwise

(42)

and

V=@( ~0)(i ~+ ~1)(0~ ) (43)

is the perturbation potential which unites the two
systems.

In a straightforward manner, the interface
Green's function is given by

where g'(E) is the Green's function of the discon-
nected semi-infinite systems (y=O) given by

6'(E,m, m') =g'(E, m, m')+y[g'(E, m, O)6'(E, l, m')+g'(E, m, 1)G'(E,O, m')],

where

(44)

G'(E, O, m') = [g'(E, O, m')+yg'(E, O, O, )g'(E, l,m')]/d,

G'(E, l, m') =[g'(E, l, m')+yg'(E, 1, 1)g'(E,O, m')]/d,

(45)

(46)

d =1 yg'(E, O, O—)g'(E, 1, 1 ) . (47)

The disordered interface site is characterized by

6,'(E)=G'(E, 1, 1)=2/F,'(E),
where

(48)

F,'(E) =s, (g,
' —1)'"—2[r, (E)+~,—~b] —g, ,

(49)

I', (E)=D, +2y'/[2J]s](g] —1)' '—2D] —2J]g]],
(50)

Since the diagonal element 6'(E, m, m) of the in-
terface Green's function depends on the site, due to
the semi-infinite Green s functions, the inclusion of
the site-dependent coherent potential is dictated by
the extension of the self-consistent equation (24),
while restriction of it to the interface site is reason-
able in the tight-binding approximation. With the
aid of Eqs. (24), (28), and (48), the interface
coherent potential is given by

]r; (E)=2k C(1—C)[s,(g, —1) —2b (1—2C)

2r, +~b+—E Ca]—
(54)

It can be shown that

while the ordered interface site is described by

G', (E)=6'(E,O, O) =2/F'] (E), (51)

]7;(E))0 whenever Ob(E) or I,(E))0

o; =0 whenever ob(E) and I,(E)=0,
(55)

where

F](E)=2J]s](g]—1)' —21 ](E)—2J]g],

and

(52)

so that, when y+0, the local density of states of

I,(E)=D, +2y /[s, (g, —1)]~2

—2(D, +o; ob) g, ] . — —

(53)

FIG. 4. Ordered-disordered interface model, where
e, =CA+a.b, D =D, +o.;(E) —crb(E), and y is the inter-
face coupling.
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subject to the existence condition

i
I +0' —0'b

i & &
(58)

As detailed in the Appendix, the disordered density
of states reduces to

p', (E)=I,'(E')5(E —E'),
in the vicinity of E', where

I,'(E)=2I [1+s~g,(g, —1) ](0'b 1)

—2(I,'+o', —1)I

is the intensity on the disordered interface site.
In a similar manner, the ordered density of

states

(59)

(60)

p'i(E) =m 'ImG'i (E)=n 'ImG'(E, O, O) (61)

is associated with the ordered interface site, the

poles of Eq. (51) being defined by

E'=ei+I i+Ji/I'i,
subject to the existence condition

i
I'i(E')

i &Ji .

(62)

(63)

In the vicinity of E', the ordered density of states
is given by

pi(E) =I i (E')WE —E'), (64)

the disordered interface site is nonzero for energies
which lie in the bulk bands of either material. In
other words, the band structures of the materials
are blended when they are in electrical contact. It
should be noted that 0; reduces to cr, of Eq. (36)
when y=O, as expected. However, for y@0, o; de-
viates from o; due to the interface effects con-
tained within I,(E) Th.ese results will be graphi-
cally illustrated shortly.

With Ob and o; completely specified, the elec-
tronic properties of the disordered interface site
may be characterized by the local density of states
given by

p', (E)=n 'ImG,'(E) =n 'ImG'(E, 1,1), (56)

which will be referred to as simply the disordered
density of states. Analogous to the semi-infinite
situation, this density of states is composed of a
modified bulk structure together with interface
states. The energies E' of these interface states are
determined by the poles of Eq. (48), which are
given by

where

Ii(E')=2[1—sinai(gi —1) ' —21 i] ' (65)

is the intensity at the ordered interface site.

It should be realized that Eqs. (57) and (62) are
equivalent when y+0, since the zeros of Eqs. (49)
and (52), and hence the poles of the Green's func-
tions equations (48) and (51), are identical, in spite
of the fact that this conclusion is obscured by the

squaring procedure used to derive these results.
For completeness, both these results have been in-

cluded to establish the parallelism between the dif-
ferent sites, and because both semi-infinite results

can be obtained directly. Moreover, Eqs. (57) and

(62) are in fact self-consistent equations, since cr;,
O.b, I „and F& are a11 evaluated at E'.

The virtual-crystal approximation corresponds to
an ordered-ordered interface, which may be speci-
fied by setting ob ——0.; =o.

b
——0,' =0 in the previous

results. As in the semi-infinite case, the intensity

equation (60) and the virtual-crystal approximation
will be exploited to differentiate the effects that
disorder and interface formations have on the
properties of the interface states. This discussion
will lead to the conclusion that the effect of disor-
der on interface states is analogous to its effect on
the bulk bands.

III. INTERFACE ELECTRONIC
STRUCTURE

The interface electronic structure bears evidence
of the constituent materials whose characteristics
manifest themselves in a density-of-states calcula-
tion. A detailed analysis of the disordered density
of states reveals the features which may be antici-
pated in the present situation. However, since the
coherent potential plays a fundamental role in the
description of the electronic properties of disor-
dered materials, it is appropriate to begin the dis-
cussion with it.

A. Interface coherent potential

The imaginary parts of the bulk, surface, and in-

terface coherent potentials, calculated from Eqs.
(30), (36), and (54), respectively, are compared in

Fig. 5. The interface effects, incorporated self-

consistently into the interface coherent potential,
are revealed by comparison with the others. In the
energy regions, where ob and o, are nonzero, cr; is
also nonzero. However, o; is nonzero in the region
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0

x lO
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coherent potential to the corresponding bulk value.
Although interfaces between two disordered ma-
terials are beyond this present article, this brief dis-
cussion serves as a physical justification of the in-

clusion of interface effects in the interface coherent
potential. The presence of these interface effects
differentiates the surface and interface coherent po-
tential. Moreover, Eq. (66) verifies, for a general
ordered-disordered interface, that the bulk, surface
(y=O) and interface coherent potentials are expect-
ed to be different from each other, as depicted in
Fig. 5.

FIG. 5. Imaginary parts of the bulk, surface, and in-

terface coherent potentials for C =0.1 and 6=2.0.

s'=~6 ~

whenever

I,(E)=—,[s,(g, —1)' —g, ] (6&)

Equation (68) has been written in a form which is
directly comparable to Eq. (50) and shows, by
comparison, that Eq. (67}holds whenever

Di D, =O, si=——se

1J] Je 2 ~

The conditions (69) are analogous to the conversion
of the ordered Green's functions to the disordered
one, as specified in the bulk situation by Eq. (26).
Physically, the conditions (69) correspond to con-
verting the ordered crystal into an identical disor-
dered system by introducing the bulk coherent po-
tential at each site, thereby reducing the interface
to the bulk situation, and hence the interface

of the ordered material's bulk band as weil. More-
over, the three quantities may be viewed as a se-

quence of events which introduce modification at
each step. This demonstrates the need to incor-
porate site dependence into the coherent potential.

The significance of the interface effects con-
tained in o.; may be demonstrated by determining
the circumstances under which o; reduces to o.~.
With the aid of Eq. (27), Eqs. (35) and (54) lead to

oi &b = , o—i[s.(0e —1)'"+2—I'a+Pe]

)&[s,(g, —1)'~ +o'b —(1—2C)b, ] ', (66)

so that

B. Density of states

In general, an interface involves three types of
electronic states, ' ' the first two of which are as-
sociated with the bulk bands of the constituent ma-
terials. The first type of state has an energy level
that lies in the bulk bands of both materials; the
second type has an energy level that lies in the
bulk band of only one material, and these states
decay inside the other material. The third type or
interface state decays in both directions perpendic-
ular to the interface and has an energy level out-
side the bulk bands of both media. Being divorced
from their bulk counterpart, interface states are of
special interest.

Each type of state is reflected differently in the
local density of states. The decaying portion of a
state is characterized by a local density of states
whose value, for the corresponding energy, van-
ishes as one moves away from the interface, while
a part of a state associated with a bulk band gives
rise to a nonzero value at large distances from the
interface. The three types of states correspond to
the possible combinations of these two characteri-
zations. For convenience, the discussion of states
identified with bulk bands will focus on the second
kind; this may be achieved by ensuring that the
bulk bands of the materials do not overlap each
other. Moreover, although interface states will be
mentioned near the end of this section, the details
will be postponed until the following section.

From a point of view of bulk states and disor-
der, the quantities of greatest interest are y', 6, and
C. The general effect of the interface coupling y
on the disordered density of states is illustrated in
Fig. 6, where the disordered material is of the per-
sistent type. As y increases, the area under the
density of states grows in the region of the ordered
band and shrinks in the disordered bands. This
shift of area agrees with the fact that integration
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with energies outside the bulk bands. When y is
sufficiently large, interface states appear, as shown
in Fig. 9. It should be observed that as many as
four localized or interface states are found, and the
position of the two upper states shift to the higher
side, while the others shift to the lower side, when

y increases.

C. Interface states

Although the description of interface states is
more complicated than that of the other types, it
may be accomplished by analogy with the semi-
infinite situation. In the present case, the localized
or interface states may be further classified into
three distinct classes according to their parentage.
The first type, or true interface state, is induced by
the formation of the interface and cannot be iden-

tified with a surface state of either separated ma-
terial (y=0). The second type, or ordered interface
state, corresponds to a modified surface state of
the ordered surface; the third type, or disordered
interface state, may be identified with a surface
state of the corresponding disordered material.

The virtual-crystal approximation is employed to
divorce interface effects from those of disorder.
The interface state energy level E„' of the virtual
crystal is given by

E,'=CA, +I,(E„')+[4I,(E„')] ',
whenever

(70)

(71)

These results are obtained by eliminating 0.; and o.
b

in Eqs. (57) and (58), i.e., by removing the quanti-
ties which characterize the disorder. The virtual-

crystal approximation leads to an ordered-ordered
interface in which a maximum of two interface
states have been found. '

The effect of the interface coupling y on the true
interface states is illustrated in Fig. 10, where their
energy levels E,' and those of the virtual crystal are
presented. In general, each virtual energy level E„'
is "sandwiched" between two E,' levels, thereby de-

fining distinct groups of levels whose interpreta-
tions enable the effects of disorder and interface
coupling to be understood. The qualitative effect
of y on the energy levels is easily visualized by the
group structures, i.e., the lower group decreases
with increasing y, while the upper one increases.
Within each group, the lower E, level is identified
with the atom of the disordered material whose

05-

O.I—

p-4.5 —l.5
I

l.5

FIG. 9. Disordered density of states for C =0.1,
6=2.0, D, =D& ——0, e& ———2.5, J~ ——0.5, and y=1.7,
1.8, and 1.9.

FIG. 10. True interface state energies vs interface
coupling for C=0. 1 6=2.0 D =D~=O E]=—2.5,
and J~ ——0.5. Solid and broken lines correspond to E,'
and E„' of the disordered and virtual systems, respective-
ly. Ordered band lies below the disordered ones. The
bands are represented by the different shaded areas.
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-6
Y

FIG. 11. Ordered interface state energies vs interface
coupling for C=0.1, 6=2.0, D, =O, e&

———2.5, J& ——0.5,
and D& ———1.0. The solid and equally broken lines cor-
respond to EI and E„', respectively, while the unequally
broken line is E,'.

atomic energy is the smaller, and the upper E,' lev-

el is associated with the other atom. In this case,
the E„' level of the virtual-crystal approximation
represents the effect of interface formation without
the influence of disorder. The introduction of dis-
order splits each E„' into the two E,' levels, thus
giving the group structure a simple physical inter-
pretation, which is reminiscent of the semi-infinite
situation. The lower group originates from the or-
dered band, and is identified with this material,
while the upper group corresponds to the disor-
dered medium. Moreover, the group which is as-
sociated with the ordered band is influenced more
by y than the other group, since the degree of its
splitting increases more noticeably with y. This is
understandable, because the interface coupling
strength is a measure of the amount of disorder
which is introduced into the ordered system. In
fact, this last observation is a manifestation of the
interface effects incorporated into the self-con-
sistent calculation of the interface coherent poten-
tial.

The interface coupling affects E j and E,', the en-
ergies of the ordered and disordered interface
states, in a similar manner, as seen from Figs. 11
and 12. As before, the interface state levels and
those of the virtual crystal form natural groups
whose interpretation explains the effects of disor-

der and interface coupling. Thus, each type of in-
terface state is affected in the same qualitative
manner. However, the advantages of classifying
the interface states are that insight into their origin
is provided and that specific effects associated with
either material may be examined. In particular,
Fig. 11 clearly demonstrates that interface states
associated with the ordered material (ordered inter-
face states in this case) have energy levels which
separate noticeably as y increases. This evidence
reinforces the corresponding remarks made with
regards to Fig. 10. Finally, it should be observed
that a second group of true interface states also ap-
pears in each diagram when y is sufficiently large.

The effect of the concentration C on the energy
spectrum is typified by Fig. 13, where two true in-

terface states and one disordered interface state ex-
ist for all concentrations, the disordered material
being of the persistent type. The energy levels of
the interface states are relatively insensitive to
changes in concentrations. Furthermore, the true
interface states and the virtual-crystal level form
the familiar Z pattern first encountered in the
semi-infinite situation (Fig. 3). However, the Z
pattern of the disordered interface states is ob-
scured by the bulk bands. The true interface states
are identified with the atoms of the disordered ma-
terial according to the usual energy relationship,

E

-6
0

FIG. 12. Disordered interface state energies vs inter-
face coupling for C=0.1, 6=2.0, e~ ———2.5, J~ ——0.5,
D& ——0, and D, = —1.0. The solid and equally broken
lines correspond to E,' and E„', respectively; the unequal-
ly broken line is E,'.
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0.2 0.4 0.6 0.8
C

FIG. 14. Intensity of a disordered interf'ace state vs
concentration for 5=2.0, D, = —1.0, y=2. 5, e& ———2.5,
J~ ——0.5, and D~ ——0. Solid and broken lines correspond
to E,' and E,' of the disordered and virtual systems,
respectively.

0.2 0A 0.6 0.8
C

FIG. 13. Disordered interface state energies vs con-
centration for 6=2.0, e~ ———2.5, J~ ——0.5, D& ——0,
D, = —1, and y=2. 5. The solid and equally broken
lines correspond to E,' and E„', respectively; the unequal-
ly broken line is E,'.

i.e., the state with the lower energy is identified
with the atom whose electronic energy is the smaH-

er, while the state with the higher energy is associ-
ated with the other atom. The disordered interface
state generates the lower portion of the Z pattern
and, accordingly, may be identified with the atom
of the disordered material which has the lower

atomic energy.
The concentration dependence of the intensity of

the disordered interface state (Fig. 14) verifies the
above identification, since this intensity decreases
from that of the virtual crystal to zero as the con-
centration C of the other atom increases from zero
to unity. The intensity of interface states plays an
essential role in establishing the connection be-
tween these states and the component atoms of the
disordered material. In general, the intensities of
all interface states reAect the concentrations of the
associated atoms of the disordered medium, in the
sense that they vary together. In addition, these
intensities depend on the interface coupling, as seen
from Eqs. (50), (53), (60), and (65).

As in the semi-infinite case, the Z pattern may
be interpreted as distinguishing interface effects
from those of disorder, since the interface states of
the virtual crystal, which correspond only to an in-
terfacial phenomena, are split into two by disorder.

By Eqs. (50) and (70), it can be seen that the
amount of splitting is governed by the energy
difference b, of the disordered medium and the in-

terface coupling y, since E„' for C=O and 1 define
the corners of the Z pattern and approximate the
height of this pattern, so that these particular E,'
values govern the degree of splitting.

The preceding evidence demonstrates that disor-
der affects interface states in an analogous manner
to its effect on the persistent-type bands of the
disordered material. Each interface state and each
band is identified with an atomic component of the
disordered material. The corresponding intensities
reflect that the concentrations and the degree of
splitting is essentially governed by the atomic ener-
gy difference of the disordered material. Of
course, this type of analogy applies to the semi-
infinite situation as well.

IV. RESULTS AND DISCUSSIONS

The CPA has been extended to an ordered-
disordered interface. The usual perturbation tech-
nique used to form an interface from two semi-
infinite systems is implemented in a manner which
incorporates a proper description of disorder. This
is accomplished by the self-consistent calculation
of the coherent potential after the formation of the
interface, rather than before. As a result, the inter-
face, surface, and bulk coherent potentials are dis-



26 ELECTRONIC PROPERTIES OF AN ORDERED-DISORDERED. . . 767

tinct quantities. The first two being different from
the bulk one due to their site dependence, while the
interface coherent potential contains interface ef-
fects which differentiate it from the corresponding
surface value. These interface effects are unique to
the ordered-disordered interface.

The separation of interface effects from those of
disorder is achieved with the aid of the virtual-
crystal approximation which contains only inter-
face effects. In particular, the effect of disorder on
interface states is found to be analogous to its ef-
fect on the persistent-type bands of the disordered
material. Each interface state and each band is
identified with a particular atom of the disordered
material. In either situation, this identification
may be verified by observing the manner in which
the intensities vary with concentrations. In other
words, the splitting of the interface states of the
virtual crystal by disorder is similar to the band
splitting induced in a persistent-type material.
However, in addition to the energy difference 6,
the interface coupling y determines the separation
of the interface states. In fact, the interface cou-
pling has more pronounced effect on interface
states which originate in the ordered material.
This is understandable, since the coupling is a mea-
sure of the disorder that is introduced into the or-
dered system. This last observation is a manifesta-
tion of the interface effects incorporated into the
self-consistent calculation of the interface coherent
potential.

A very interesting result of the present model is
that disorder splits the interface states regardless of
their origin, i.e., whether they are associated with

the ordered or disordered material. This is natural,
since the interface states are isolated in a one-

dimensional model without any associated band-

width. However, it does imply, for example, that
the ordered surface states are expected to split
when the ordered system is strenuously coupled to
a strongly persistent-type alloy (i.e., large y and b,).

Although the one-dimensional model cannot give
an accurate treatment of amalgamation-type inter-
face states, it does provide the insight necessary to
understand when this situation may arise. The
model is easily extended to a three-dimensional one
with translational symmetry parallel to the inter-
face. In this case, the coherent potential depends
on crystal planes and is the same for every site
within each plane. A mixed Bloch-Wannier repre-
sentation reproduces the flavor of the one-
dimensional model, so that the essence of the
simpler calculation parallels that of the three-
dimensional one. In such an extension, the inter-

face states broaden into bands, which could form
an amalgamation band when the splitting of the
one-dimensional interface states is sufficiently
small. Thus, in general, the effect of disorder on
interface states is expected to be analogous to its
effect on the bulk bands.

Recently, the surface-state energy levels of a
disordered system have been observed' as a func-
tion of concentration. The material was of the
amalgamation type, and only a single surface state
was detected for all concentrations. However, the
energy of this state could not be determined pre-
cisely, since the surface-state structure of the real
crystal overlapped the bulk band. At this stage of
development, it seems reasonable to assume that
the surface-state bands will reflect the properties of
the bulk bands. Moreover, it should be possible to
observe the surface-state splitting found in the
one-dimensional treatment described here in the
case of strong persistent-type alloys (i.e., large b, ).

As the study of disordered materials develops, it
should be possible to observe that the effect of dis-
order on interface states is analogous to its effects
on the bulk bands, as found in the present one-

dimensional model. In particular, disorder affects
interface states regardless of their origin. i.e.,
whether they originate from the ordered or disor-
dered material.
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APPENDIX: INTENSITY
OF INTERFACE STATES

Since the intensity of interface states plays a
fundamental role in understanding the effects of
disorder on the properties of these states, a deriva-
tion of this intensity at the disordered interface site
wil1 be presented. The corresponding intensities at
ordered and disordered surface sites or at the or-
dered interface site may be derived in a similar
manner.

The disordered interface site is characterized by

6,'(F.) =2/F,'(E) . (A1)
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F,'(E )=F,'(Eo )+2(E Ep—)/I,'(Ep), (A2)

The intensities of interface states may be deter-
mined by a Taylor approximation of F,'(E) about
E =ED, i.e.,

G,'(E)~,'(Ep)[ —,I,'(Ep)Fe(Eo)+(E —Eo)]

(A5)
Moreover, the energy E' of an interface state is
determined by the poles of Eq. (Al), i.e.,

where F,'(E') =0 . (A6)

I,'(E)=2/[F,'(E)]', (A3)

the prime denoting differentiation with respect to
E. By Eq. (49), the quantity which will subse-

quently be shown to be the desired intensity is

given by

G'(E ~5 )=—I,'(E
(E E')'—+5'

L

(A7)

As a result, replacing Eo and E by E' and E—i5
in Eq. (A5) leads to

I~(E)=2I [1+s,g, (ge —1) ](ob —1)

—2(I",+0't —1) ] (A4)

and

p,'(E) =m 'ImG,'(E) =I,'(E')5(E E'), —(AS)

Consequently, it follows that in the vicinity of E'.
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