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Phonon spectra and crystal structure of Zn and Cd using the resonant model-potential approach
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In the present study, the resonant model potential (RMP) method derived for d-band

metals is applied to the microscopic calculation of the phonon spectra and to the deter-

mination of the crystal structure of lowest energy of zinc and cadmium. The self-
consistent RMP is of the form u(E) =w(E) + Ad'kl(E —8'), where w(E) is a Heine-

Abarenkov-type nonlocal model potential (including the self-consistent screening poten-

tial); the second term with k= g 4my(r)y(r')Y2 (r)Yq (r ') is a Heine-type resonant

model potential which acts only on d states. The model parameters are determined so
that the self-consistent Wigner-Seitz neutral pseudoatom potential is equivalent in the

physical energy range to the Wigner-Seitz self-consistent potential calculated in the

framework of the Hartree-Slater scheme. The model parameters are then used to calcu-

late the phonon dispersion, bulk modulus, and the structural energy of Zn and Cd. The
disperion results and the bulk modulus are found in reasonably good agreement with the
experimental data for both metals. Of course the calculation gives the stable hcp struc-

ture for the two metals, but the axial ratios are not predicted to be as high as the ob-

served ones. In order to know the effect of the resonant part of the RMP, we performed

calculations by neglecting the resonant part. This neglect results (a) in decreasing the
value of the bulk modulus by about 20% for Zn and 15% for Cd, (b) in deducing the

stable hcp structure at about the ideal axial ratio, and (c) in lowering the phonon frequen-

cies in general by 25 —30%. The strong near-resonance hybridization effect in the RMP
has also been studied. Our calculations show this effect to be small on the bulk modulus

and phonon frequencies of Zn.

I. INTRODUCTION

The two elements of the Periodic Table, Zn and

Cd, are grouped together when the electronic struc-
ture and solid-state properties are studied, because
(i) zinc and cadmium possess the highest axial ra-
tio (c/a), 1.856 and 1.886, respectively, in the fam-
ily of hexagonal close-packed (hcp) metals; (ii) both
are divalent metals and are seen to be in the same
column of the Period Table; (iii) both occupy the
position of bridge elements between the simple and
transition metals; (iv) the two metals possess a
similar s dinteraction, and-(v) in both of the met-
als, the filled d bands lie below the Fermi energy.
Therefore, we have chosen these elements to study
the microscopic interactions in the crystal state in
order to derive some important electronic proper-
ties. In accordance with the idea of scattering res-
onances in d band metals, ' a resonant model po-

tential (RMP) was previously developed by one of
us. ' Dagens and Upadhyaya and Dagens '
successfully applied this model potential method in
the explanation of many electronic properties of
noble metals. Since characteristics (iii) —(v) of Zn

and Cd, discussed above, are similar to those of
noble metals, the extension of the RMP method
for the study of the electronic structure and prop-
erties of Zn and Cd seemed appealing to us.

In order to study the lattice dynamics of Zn and

Cd, earlier workers" ' applied the Heine-
Abarenkov-Animalu (HAA) and Shaw's optimized
model potential (OMP) methods for simple metals.
%hen the work of Brovman et al. "with the HAA
method and that of Gilat et al. ' with the OMP
method are reviewed, it is found that both pro-
cedures give imaginary phonon frequencies at some
points of the Brillouin zone. Recent works of
Kulshrestha and Upadhyaya' and Kumar and
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Upadhyaya' are successful attempts in explaining
the phonon spectra of zinc by improving the HAA
and transition-metal model potential (TMMP)
methods in the full scheme of Eschrig and Worm. '

The scheme of Kulshrestha and Upadhyaya' is
not satisfactory because it uses two adjustable
parameters. Of course, in the work of Kumar and

Upadhyaya, ' the nonlocal parameters are derived
from the model potential and basic data but with
the approximation that the nonlocal parameter aq

(and hence bq) is determined by averaging its value
for the scattering vectors lying on the Fermi sur-
face.

In the case of Zn and Cd, one would like to ask:
What is the role of d electrons in the lattice
dynamics and crystal structure of these metals?
Moriarty' was the first to apply the generalized
pseudopotential theory of Harrison' to calculate
the form factor of Zn with and without hybridiza-
tion. The computed results show that the effect of
the hybridization on the form factor is not serious.
Later, he refined the theory by introducing a zero-
order pseudoatom approach' in which the core
and d states and their eigenvalues are precisely de-

fined and also in which an accurate evaluation of
the matrix elements of both the pseudopotential wo

and the hybridization potential 6 is possible. In
the case of Zn and Cd the effect of hybridization
on the form factor is again found not to be sub-
stantial but is seen to be contributory in the calcu-
lation of other electronic properties, leading
Moriarty to conclude that these metals are to be
treated as d-band metals. In further work, Moriar-
ty' reformulated the generalized pseudopotential
theory from the self-consistent field equations of
Kohn and Sham in conjunction with the zero-
order pseudoatom approach. In this work the at-
tention is given to the structure dependence of 6,
neglected in previous work. The structure-depen-
dent parts of 5 lead to a modified energy wave-

number characteristic and a d-state overlap poten-
tial. One interesting result of b, (structure) in-

clusion is that the predicted stable structure of Zn
and Cd is found to be hcp with the axial ratios
very near to the observed values. Panitz et al. '

applied the generalized Harrison's pseudopotential
formalism with a Lindgren-type approximation for
the conduction-band —core-electron exchange to
compute the dispersion relations for Zn along the
I M direction. They found that the results of this
calculation differ slightly with those obtained by
treating Zn as simple metal. In a later work
Cutler et al. gave an exact treatment for the

orthogonalization hole in Harrison's pseudopoten-
tial theory and computed the phonon dispersion
curves along I KM direction for Zn by using the
Harrison's simple-metal and generalized pseudopo-
tential theories with the same approximation for
conduction-band —core-electron exchange, as used

by Panitz et al. ' The difference seen in the re-
sults of the two calculations is not great, but it is
notable. It is noted that in the calculations of Pan-
itz et al. ' and Cutler et al. real phonon frequen-
cies for all the dispersion branches for Zn are ob-
tained when the Lindgren-type approximation for
the conduction-band —core-electron exchange, suit-
able for d-band metals, is used in the simple as
well as in the generalized pseudopotential theories
of Harrison. The Kohn-Sham approximation,
suitable for nearly-free-electron metals, gives ima-
ginary phonon frequencies for many branches for
Zn. Thus one may conclude from these works that
the effect of d electrons must be taken into account
in the study of the electronic properties of Zn. In
the present work, effort has been made to analyze
the effect of the s-d interaction on the lattice
dynamics and crystal structure of Zn and Cd in
the resonant model potential theory.

In order to make the work self-contained, the
essentials of the resonant model potential theory
are first discussed briefly in Sec. II. The hybridi-
zation effect is considered in detail, especially
pointing out that no overlap contribution occurs in
the present approach. Next, the procedure for the
determination of model parameters is discussed
briefly. The model parameters are then applied in
the calculation of form factor, energy wave-
number characteristic, phonon frequencies, bulk
modulus, and structural energies of Zn and Cd.
Numerical results, a discussion, and some con-
clusions are presented in Sec. III.

II. THEORY

A. Metal energy

First, the theory of the resonant model poten-
tial (RMP) is briefly presented. The metal po-
tential is replaced by an equivalent self-consistent
nonlocal and energy-dependent RMP V(E). Using
a linear screening approximation, V(E) is obtained
(up to an unimportant constant) by a sum of neu-
tral pseudoatom potentials g,,„v(E). Its plane-
wave matrix element between

~

k ) and
~
k+ q )

has the standard form' ' NS(q)v(q, k,E) with
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u(q, k,E)=w(q, k,E)+ 4 (q, k), (1)E—8'

and NS(q) =g, expiq R, . The matrix elements

are normalized in the unit cell. The RMP (1) in-

cludes a regular Heine-Abarenkov-type part which
can be written in r space as

The denominator is of the form
E —g' B—(E) + i I'(E) I. (E) is the virtual
bound-state half-width and is small for the 3d
transitional-metal series. The physical resonance
occurs at

Ed =5'+B(Ed) .

=bloc+ ~nonloc

Ze
(R )

Ze Ze2

+w„(r)+ g w, (r)e, ,
1

(2)

The quantity B(E) turns out to be large. A resum-
mation of the A~ expansion [such as (6)] is neces-

sary to get meaningful results. This can be done in
a consistent way as discussed in the work of
Dagens. In the procedure, the RMP is replaced
by

where Z is the charge of the model ion, being
equal to the sp valence charge (Z=2 for Zn and
Cd) and w„(r) is the screening potential. The
operator H1 projects on the l angular momentum
states, and

Ze
w~( )=

R
A((E) y—(R r), —

+( q, k) =4~y(k+ q )y(k)

x g F2 (k') l'2 (k), (4)

where y(k) is the jz Bessel transform of a function
which behaves as r when r~O and which van-
ishes for r gR . The form

so that w~(r) vanishes outside the model radius R
Only Ao and Al are nonzero in the present work.
The d potential is modelized through the resonant
part and the I )3 terms are neglected.

The singular contribution in Eq. (1) is the
resonant part of the RMP. It acts only on d states
and is separable in each m channel. The expres-
sion for 4 is

Au„„(A,)=
E 8'(E)+—A,B(E)

8'(E)=5'+B (E) hEF . —

The Fermi-level first-order change EF—EI;o——AE~
has been subtracted so that 5'(Ed ) E~u appr—oxi-
mates Ed —Ez. A physical quantity is then sys-
tematically expanded up to a given order of k.
The result is thus given by a series involving the
renormalized potential Ad 4 /(E —8') (with 8' of
the order of Ed). The whole series calculated for
A, =1 gives the exact result since
u„„(A.= 1)=Ad +/(E —5'). In the present work we
are interested in the lowest order O(A, ) structure-
dependent energy, which can be obtained by using
the renormalized potential in (1) in place of the
true one.

The total energy E„, can then be expanded in
terms of )(, provided that ~E —Ed

~

is much larger
than I (Dagens ). This corresponds to a full d
band when Ed « Ez (Zn, Cd) and empty d band
when Ed »EF (Ca, for instance). The total energy

1s

y(k) =jp(kR~ )/(1 —k R~/xo) Etot =Eb —E..+E-, (10)

is used here. xu is the first zero of j2(x).
The parameter Ad in (1) controls the strength of

the resonance and 8' its position. But 8' is quite
different from the physical resonance energy Ed
and must be renormalized before doing the pertur-
bation expansion described below. ' The isolated
RMP scattering matrix is easily calculated as

Q,Ad
r„„(E)=Ad E 8'——

(2'�)'

b +ZdEd ++ZEEG

1
. J dzTrln 1—

2VTl Ho —z
1 I'(z)

where Eb denotes the band energy g„,Ek, E„ is

the electron-interaction energy and is subtracted in
order to correct for double counting. The last
term is the ion-ion interaction energy. The band
energy is given by Eq. (21) of Ref. 7:

x
E+ig —fi k /2m (6)

where Zd is the number of d electrons (=10 when

Ed «E~) and N the number of ions. EEo is the
homogeneous electron gas energy per electron and
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is irrelevant in the present problem. Only the last
term includes structure-dependent terms and is
considered here. The Tr is a trace over all of the
electronic states. The contour c encloses the
semiaxis E &E~ counterclockwise. It can be

chosen so that ~Ed —z
~

is never smaller than

~Ed E—F ~

. V(z) is then small and the logarithm
can be expanded in terms of A, and wo(z). The
lowest-order structure-dependent term is given by

V kE„„= '
—,
' zTr ' Vz ' V. = S-„

2ai ' co z —Hp z —Hp
q

27ri '0 (z —Ego)(z Eo- )kyar k+ q

The contour integration is easily done and the re-

sult is

Eb t 2
g'

I
~(q)

I
'l0-(e)+0.d(e)

+6~(e)]

with

P (q)= Jdk ~w(k k ATE@)l
k k'

80 fp fa-
g&(q)=

' I dk w(k, k', EI, )
k k'

x V„,(k, k ';El, ),
40, f g fd-

chdd(q) = d k
(2~)' E7—EP

x
~
V„,(k, k';El, ) ~z, (12c)

where fd ls the d-state occupation number (f~ ——1

when Ed «EF). The first term P„ is as in the
simple-metal theory. "

P,d represents the contribu-
tion associated to electronic transition between a
resonant or hybridized state d at site i and a non-
resonant state s at another ionic site j. Pzz is asso-
ciated to the scattering between two resonant states
di and dj. Both terms involve the hybridization
coefficient y(k) and are thus hybridization contri-
butions. Other hybridization contributions [i.e.,
terms involving y(k)] are implicit in P„since w in-
cludes a screening part induced by the resonant
part of the potential (see below).

One notes that no overlap contribution appears
in the present theory. The lack of overlap contri-
bution can be ascribed to the nonoverlap require-
ment for the model spheres ' which allows a sim-
ple and accurate description of the strong d poten-
tial in terms of a resonant l=2 phase shift (or
equivalently in terms of an energy-dependent loga-

I

rithmic derivative at a radius not greater than the
muffin-tin radius RMr). Similarly, nonoveriap
contributions are to be added when the energy is
calculated from the Korringa-Kohn-Rostoker
(KRR) method, where plane waves only are users
to describe the wave function outside the muffin-
tin spheres.

The overlap energy EpI arises in the generalized
pseudopotential theory' (GPT) when a set of over-

lapping d atomiclike or localized wave functions

y& are used to describe the resonant state. Qn the
other hand, Moriarty' has shown that the choice
of yd is quite flexible and that EN depends on this
choice. Moreover, the choice of nonoverlapping

yd is consistent with the general theory; this choice
(which may prove to be inconvenient in practice)
leads to an exactly equivalent pseudo-Hamiltonian
with no overlap contribution, as in the RMP
theory.

When a GPT gives a nonvanishing overlap ener-

gy, where is its numerical counterpart in the RMP
theory? The overlap contribution involves transi-
tion matrix elements between two zero-order
resonant states' and is thus a first contribution as-
sociated to the scattering between two resonant
states (a second contribution arises from the hy-
bridization potential); its numerical counterpart
should thus be included in Pqd.

As stated above, w (q, k) includes the self-
consistent screening potential due to the screening
density n„(q) which is made of two parts: the
model density n»(q) to be calculated from the
model wave functions and the depletion charge
density nd&~(q) which corrects for the difference be-
tween the true and model wave function. The
metal model density S(q )n»(q) can be calculated
from (11) using the perturbation formula

5Eb,« ES(q)n»(q)5——V(q) .

This together with (2) leads to a linear self-
consistency equation for n» and the resulting
linear screening charge turns out to be
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n„(q) =n„,(q)+nd, l(q)

Q, wo(q, k,E k )

nd, l(q)+ —X
q)

' Q - Ek E-—„+-,

(fk —fd)Q. +(q k)
+

(Ek Ek —+ )(Ek —& )

with

e(q) =1+I(q) z
—+ ln

mkF 1 1 —x 1+x
2 4x 1 —x

(13)

(14)

where Fg(q) is the normalized energy wave num-

ber characteristic.
Only F(q) and Z,rr are required for the phonon

problem. The numerical calculation of F(q) is as
described in Ref. 7. np, (q) is first calculated from
(13); p„and p,d [which both require
w =w;,„+.I(q)n„] and pdd are then calculated.
The k integrations in (12) and (13) are done exact-
ly as described by Moriarty. '

Zq~] is found from
the perfect screening relation Zdpl

——Z —np, (0) and
Z, ff from (16).

B. The potential parameters

g' IS(q)
I

I(q) [np, (q) —ndpl(q) ],
a q

(15)

where UE„(Z,rr) is the Ewald electrostatic energy
calculated for the effective charge Z,rr defined by

Z ff =np (0) —ndpl(0)

=(Z —
Zdpl)

—Zdpl . (16)

Adding (15) to Es„„the final expression for the
structural energy is found to be

E„„=N, g'
I
S(q)

I
'F(q—)+NUE„(Z,ff),

with

4~~ Zeff
F(q) = —

z F~(q)
Q, q

=4„(q)+0,d(q)+Ad(q)

+ „[nd,l(q) —n,.(q) ],
a

(17)

where x =q/2kF. I(q)=4me /q +x(q), where
x (q) is the effective exhange and correlation in-

teraction. The two first terms in (13) are present
in the simple-metal model potential theory. The
last term is the resonant part contribution. The
depletion density is of the form Zdplv(q) [v(0)=1]
where v(q) is the Fourier transform of
y(R~ —r)/Q~ (Q~ is the model volume). The de-

pletion Zdpl is determined so that n„(0)=Z [this
means that the ion is perfectly screened by n„(q)].

We now give the expression of the total energy
or rather of its struture-dependent contribution.
The last two terms in (10) can be written as
(Dagens )

NUE„(Z,rr) where

+lures(P) —C y(R —r) (18)

p(r) =[ I
q'~. (r)

I

' + 10
I

p3d(r)
I

'r'

+p„„(r)]y(R, r) . —

R, is the mean atomic radius, p„„the ionic core
density, 44, and %3~ the radial Wigner-Seitz wave
function (both satisfying the even I Wigner-Seitz
boundary condition B%'l/Br=0 at r =R, ), and lMKs

is Kohn-Sham effective exchange potential

Jtl/s(p) =—e'(3p/1T)'r' .

The constant C in (18) is chosen so that the Friedel
sum g& (2/m)rll(Ego) vanis'hes. This choice is con-
venient because the same property holds for the
equivalent model potential so that Ez ——EFO to
second order.

The next step is the calculation of the local po-
tential of the WS neutral pseudoatom. The screen-

ing density is written as

Z Zdpl
p„(r)= y(R, r)+ y(R, —r)—

a m

+ 10—zcpd(r) (21)

The RMP parameters are determined for Zn and
Cd as for the noble metals. They are calculated
from first principles by requiring that the screened
metal RMP is equivalent to the true Hartree-
Fock-Slater (HFS) self-consistant potential. This is
done using a Wigner-Seitz spherical approximation
consistently for the HFS potential and for the
model potential.

The first step is the calculation of the self-
consistent HFS potential according to

Z&e e22

~ws«) = — +—p(r)
r r
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The first two terms are, respectively, the zero-order
sp density and the depletion charge density (0 is

the model sphere volume 4aR~/3). yd is the
model radial wave function normalized so
that yd(R )='P~(R ). Zd~& is determined so that
Jp„(r)dr=Z. The function P~(r)=(1/r)pd Y20

must satisfy the Schrodinger equation

$2
~pd +~+pd + ( wt„—C')pd Ed p—d,

(22)

with the boundary condition Byd/Br=—0 at r =R, .
Ed is the 3d state energy determined above using
the potential P ws(r). w&„ is Ze—/r+P, (p„)
and the constant C is chosen so that &ws —C and

w~ —C' are equal at r =R, (the potentials are
then nearly equal outside the model region, an
essential requirement in model potential theory ).
W+ is the resonant potential for E =Ed. The cal-
culation is iterative (M —+gd~Zd~~~w~„~&)
and its result is the self-consistent WS local poten-
tial w&„(r).

The last step is to determine Ao, A ~, and W [the
RMP is written as W(E) k] so that model and true
wave functions' logarithmic derivatives agree at
r =R, . This is done successively for l=O, 1, and 2
for nine values of E (E=O 2nEFo, n=0., 1, . . . , 8).
The model radius R has been chosen so that the
1=0 part is optimized for E=EFO. The results
obtained for Zn and Cd are similar to those ob-
tained for the nobel metals: Ao(E), A ~(E), and
M(E) ' turn out to be nearly linear functions of
E. M(E) ' is then fitted as (E —g)/Aq in the vi-

cinity of EFo (8' is of course the nonrenormalized

resonant energy parameter; one notes that M is

regular for E=Ed since 8' & Ed)
The RMP parameters calculated for Zn and Cd

as described above are displayed in Table I. The
two A~ are determined by AI(E~) and dAI/dE~.
The renormalized 8'(EF) are also given. g'(E~) is
found to be in good agreement with E~ (the WS 3d
state energy).

C. Calculation of phonon frequencies

In case of an hcp metal, the phonon frequencies
v corresponding to a wave vector q (I q I

=2m. /A, )

are determined by solving the secular equation

ID(q) —co I
I
=0, (23)

where a,P=x,y,z and a,a'=1,2.
The electrostatic contribution to the dynamical

matrix can be calculated with the help of Ewald's
8-function transformation and the relevant expres-
sion for the computation can be had from the
work of Reissland and Ese but with the effective
charge Z,rf. The band-structure part of the
dynamical matrix is calculated in the resonant
model potential theory and the relevant expressions
for its evaluation are the following:

where D(q ) is the dynamical matrix of order
(6X 6) because hcp structure consists of two atoms
per unit cell; co(=2~v) are the circular photon fre-
quencies and I the unit matrix.

The dynamical matrix elements D~p(q, aw') are
assumed to be composed of ion-ion electrostatic
and band-structure parts, i.e.,

D~p(q, az')=D~p(q, KK )+D~p(q KK ), (24)

(q+ h).(q+ h)z
D~'p(q, Ira')=coop F~(

I
q+h

I
)exp( —ih. r„„),

I
q+h I'

D~p( q, a.Ir) =coo g
h

(q+h), (q+h p

Iq+h I

F~(
I

h
I

)G(I~)
h I'

(25)

where coo 4'(Ze) /MQ——, M being the ionic mass
and 0 the unit-cell volume (i.e., 0=20~ and
coo

——co&/2, co& being the plasma frequency). The
function

G(a)= icos(h r„„)
K

and h are the reciprocal-lattice vectors. The func-
tion F~(q) is the normalized energy wave number
characteristic, as defined earlier.

Finally, if the band-structure part is added to
the Coulombic part, one can calculate the phonon
frequencies corresponding to any wave vector q.
In the present work, we have calculated the pho-
non frequencies along three high-symmetry direc-
tions, namely I 3, 1'M, and I EM, in which the
secular equation assumes a simple form. The
relevant expressions are given in the paper of
Upadhyaya and Animalu.
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III. NUMERICAL RESULTS AND DISCUSSION

The model parameters, given in Table I, are used
to compute the form factor and energy wave num-
ber characteristic of Zn and Cd. We have given
the plot of form factor for Zn in Fig. 1 by solid
lines. The normalized energy wave number
characteristic F~(q) has been calculated by using

Eq. (17) and the results of calculation are presented
in Table II. Next, the expressions (25) are used to
compute the band-structure part of the dynamical
matrix and the expressions of Reissland and Ese
are used to calculate the Coulombic contributions.
The Coulomb part is then properly added to the
band-structure part and the phonon frequencies are
calculated for various reduced q values along I'A,

I M, and I KM directions. Next, the phonon
dispersion curves are plotted for Zn and Cd which
have been shown in Figs. 2 and 3 with the experi-
mental points of Almqvist and Stedman and
Toussaint and Champier, respectively. We find
that in both cases our numerical results for phonon
dispersion are in good agreement with the experi-
mental data. In the case of Zn, if we compare our
results to those of Kumar and Upadhyaya' and
also to those of Panitz et al. ' and Cutler et al.
by using the Harrison's generalized pseudopotential

approach, we see that our dispersion curves are in

better agreement with the neutron data than those
of Kumar and Upadhyaya' and have the same or-
der of agreement as those of Panitz et al. ' and
Cutler et al. Further, in case of Cd, our first-

principle calculations are in close agreement with
the experimental data when compared to those of
Kulshrestha and Upadhyaya' based on two adjust-
able parameters of the Eschrig and Worm theory. '

In order to know the effect of the resonant part
of the RMP, we have calculated the bulk modulus

0.1—

e

L
cf 0

0
O

Ll 0q

I

rkF

0
La

0.2

0,3—

FIG. 1. Form factor of Zn: solid curves correspond
to the resonant model potential {RMP) and the dotted
ones to the potential with Ad ——0.

and the structural energies corresponding to the
bcc, fcc, and hcp phases with and without the
resonant part of the potential for Zn and Cd. Pho-
non frequencies for Zn have also been computed
without including the resonant part of the model
potential. The calculation of bulk modulus is done
as described earlier. The method of long wave is
used. The bulk modulus is given by the sum of an

electrostatic contribution and a band-structure con-
tribution which involves the band-structure charac-
teristic F(q) given above. The formulas are sta-
dard and given, for instance, by Wallace. The
hcp energy has been calculated for various c/a ra-
tios ranging from 1.6 to 2.0 and a minimum has
been found in every case. The calculation for the
potential without the resonant part is done using
the same computer code and the same input data

TABLE I. Model parameters for zinc and cadmium. kF is the zero-order Fermi momen-
tum (3m 0, ) '. a and c are the lattice parameters. kz, a, and c are in atomic units and all
energies in hartrees.

Zn Cd Zn Cd

C

kF

Ad

8'(EF )

5.0341
9.345
0.8342
2.14
0.0118
0.092
0.006

5.613
10.60
0.7423
2.23
0.0147
0.260

—0.10

AP(EF )

BA p/REF
A l (EF)

aA, raE,
Zeff

0.467
—0.23

0.617
—0.01

2.314

0.448
—0.27

0.545
—0.04

2.523
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TABLE II. The renormalized energy wave number characteristic I"N(q).

q/kF Zn Cd q/kF Zn

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5

1.00000
0.988 05
0.952 93
0.896 88
0.823 58
0.737 37
0.643 16
0.545 83
0.449 92
0.359 30
0.276 98
0.205 03
0.144 62
0.09607
0.059 02
0.032 58
0.015 48
0.006 18
0.002 88
0.003 39
0.003 78
0.002 61
0.002 63
0.002 83
0.003 02
0.003 08

1.00000
0.988 89
0.956 19
0.903 79
0.834 84
0.753 10
0.662 89
0.568 66
0.474 62
0.384 51
0.301 36
0.227 39
0.163 98
0.11172
0.07048
0.039 60
0.01798
0.00426

—0.003 14
—0.006 10
—0.000 749
—0.008 74
—0.008 56
—0.007 71
—0.00649
—0.005 18

2.6
2.7
2.8
2.9
3.0
3.1

3.2
3.3
3.4
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

0.002 93
0.002 58
0.001 97
0.001 24
0.00027

—0.000 67
—0.001 73
—0.002 73
—0.003 69
—0.004 54
—0.00641
—0.004 86
—0.002 84
—0.001 89
—0.001 53
—0.001 04
—0.000 57
—0.00028
—0.000 15
—0.00004
—0.00002
—0.00000

—0.003 97
—0.002 99
—0.002 39
—0.002 14
—0.002 37
—0.002 88
—0.003 79
—0.00491
—0.00623
—0.007 63
—0.013 14
—0.012 82
—0.00900
—0.005 90
—0.004 57
—0.003 48
—0.00225
—0.001 19
—0.00068
—0.00024
—0.00020
—0.00008
—0.00004

as the RMP case except for the hybridization
strength parameters Ad, which would be set equal
to zero. The use of the Ad ——0 potential amounts
to neglect of the hybridization potential, and the
change with respect to the full RMP case is two-
fold: first, the P,d and P~d terms are absent and

second, the screening induced by the hybridization
is consistently omitted. We have plotted the corre-
sponding form factor in Fig. 1 by dotted lines.

The numerical results for the structural energies
and bulk modulus are given in Table III. The ex-
perimentally observed hcp structure is favored over

M ~T K ~T A
5

M~T K ~ T C
I

I

+2
C)

'j

1.0 1.0 0.0
+—qzq

0.0
max

FIG. 2. Phonon dispersion in Zn: solid curves
represent the results of present calculation and k, , 6, o
are the experimental points of Almqvist and Stedman
(Ref. 28).

1.0 0.0 1.0 0.0
q'q ma. x

x

FIG. 3. Phonon dispersion in Cd: solid curves
represent the results of present calculation and 4,6,0
are the experimental points of Toussaint and Champier
(Ref. 29).
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TABLE III. Bulk modulus B (in units of 10"dy/cm ) and structural energies calculated
from the full RMP and from the potential without the resonant part (Aq ——0). The energy
difference (in units of 10 hartrees) Ub„—Uh, p, . . . , are given with respect to the hcp
structure for (c/a);„giving the lowest hcp energy.

Zn

(c/a);„
Ut c —Uhcp

Uf —Uh p

B

RMP
1.705

19.5
9.2
0.5910

Ad ——0
1.641

14.1
7.0
0.472

observed
1.86

0.6101'

RMP
1.720

17.8
7.5
0.3905

Ad ——0
1.642

13.2
5.3
0.3180

observed
1.89

0.477'

'Room-temperature isothermal bulk modulus (Ref. 31).

the bcc and fcc structures when both potentials are
used. The RMP values of (c/a)m;„are greater
than the ideal values but are lower than the ob-
served ones. It is also observed that the neglect of
the resonance term (A~ =0) leads to nearly the
ideal c/a ratio and to smaller differences in ener-

gy. The ionic nonlocal d potential, which is used
in the present work [Eq. (1)] as a resonant poten-
tial, has thus a significant effect on the Zn and Cd
structural energies.

For the two metals under consideration, the bulk
modulus has been also calculated (Table III).
Good agreement with the experiment for Zn and a
moderate agreement for Cd is obtained when the
full RMP is used. The neglect of the resonant part
leads to significantly lower bulk modulus; the
resonant hybridization part explains about 20%%uo of
the observed 8 for Zn and 15% for Cd. In order
to know the effect of neglecting the hybridization
potential in the lattice dynamics, we have calculat-
ed the phonon frequencies of Zn with Ad ——0. This
neglect results in lowering the phonon spectrum of
Zn in general in the range 25 —30%. For compar-
ison we present the results of this calculation at

some zone boundary points with those of the full
RMP in Table IV. This shows that an accurate
description of the nonlocal d-wave scattering is re-

quired to get a correct phonon spectrum. This re-

quirement is met by the RMP which, describing
the nonlocal ionic d potential in terms of the hy-
bridization coefficient y(k), provides an accurate
description of the l=2 phase shift over the whole
valence band.

On the other hand, the generalized pseudopoten-
tial theory (GPT) leads to a different conclusion:
The hybridization part has very little effect on the
zinc phonon spectrum. ' We are not able to give a
definite explanation of this discrepancy but we be-

lieve it to be related to the following points: (i)

The zinc and cadmium structural energies and

phonon spectrum are determined mainly by the
near-Fermi-level part of the structure-dependent

equivalent pseudo- or model-Hamiltonian, as
shown below. (ii) Although the near resonant
(E=Ed «Ez) hybridization is a well-defined

quantity (directly related to the physical hybridiza-
tion gap ), its continuation far away from the reso-
nance is expected to be strongly model dependent.

TABLE IV. Phonon frequencies for Zn at some zone boundary points (in 10' Hz).

Phonon frequency
RMP with

Ad

RMP with

Ad ——0 AMP
Experiment

(Ref. 28)

52(A)
a,(A)
X, (M)
Xi(M)
X3 (M)
X (M)
X (M)
r4'(M)

3.30
1.89
6.96
6.82
3.19
1.63
4.31
3.80

2.44
1.21
5.59
5.48
2.25
1.37
3.28
2.97

3.10
1.80
6.84
6.76
3.07
1.65
4.31
3.77

2.92
1.86
6.44
6.11
2.70
2.02
3.72
3.52
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We discuss first very briefly the GPT. Its object
is to go beyond the small core approximation of
the simple-metal pseudopotential theory (PT). The
neglect of the hybridization and overlap contribu-
tions amounts precisely to use a small core approx-
imation even for the d states. The phonon results '

show that this approximation is quite good for
zinc. Agreement with the following discussion for
the RMP is obtained if one assumes that the PT
Hamiltonian is a good one near the Fermi level, far
away from the resonance.

The strong near resonance hybridization effect in
the RMP can be studied as follows. We consider a
simple-metal-like model potential derived from the
RMP by replacing U„„(E)by the "associated"
model potential (AMP):

Uq(E)=v«, (EF)+(E Ez) —v«, (E~),a
REF

which is nonresonant but approximates the
resonant part near the Fertni level [there is little
point in going beyond the linear approximation
since we do not want to go beyond the second ap-
proximation in (EF Ed) ']. T—he AMP to+U„ is

nearly equivalent to w+U„, for E=EF and is
quite different in the strong hybridization region

E=Ed. The comparison between an AMP result
and the corresponding RMP result gives then the
effect of the strong near-resonance hybridization.

In order to do this comparison, we have recalcu-
lated the structural energies, bulk modulus, and

phonon frequencies for the AMP. Very small
differences with the RPM (Table III) results are
obtained. The bulk modulus is a few percent
smaller. For example, the AMP result for Zn is
0.579 to be compared to 0.591 for the RMP (in

units of 10 ' cgs). Phonon frequencies of Zn in

general are lowered by 5% approximately (Table
IV). The conclusion thus is that the strong near-
resonance hybridization has a small effect. On the
other hand, the concept of hybridization is not well

defined far away from the resonance; even in the
framework of the RMP theory u«, (E) is only a
part of the total ionic d potential and its value,
when E=E~))Ed, is model dependent: The
choice of the d nonresonance part in (2) is quite
fiexible and different choices would lead to dif-
ferent v,~ since the equivalence requirement deter-
mines only the total ionic d potential. u„, is found
to have a very significant effect when the present
work choice (1) is done, but we cannot assert that
this is intrinsically a hybridization effect.
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