
PHYSICAL REVIEW 8 VOLUME 26, NUMBER 2 15 JULY 1982

Semiempirical description of energy bands in nickel
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The combined interpolation scheme is used to study energy bands in nickel. Parame-

ters are determined by results of photoemission experiments. The Fermi surface is com-

puted and compared with experiment. Explicit formulas are given for some bands along

symmetry directions.

I. INTRODUCTION

For about three years it has been apparent that
there is a serious discrepancy between calculated
band structures of ferromagnetic nickel and the re-
sults of angularly resolved photoemission experi-
ments. ' On the other hand, there is reasonable
agreement between calculations and the measured
Fermi surface. %e will not discuss in detail the
possible reasons for the discrepancies which prob-
ably involve aspects of the electron-electron in-

teraction which are not included in band calcula-
tions based on density-functional methods. Qur
objective here is to obtain a semiempirical descrip-
tion of the nickel energy bands which agrees as
reasonably as possible with the results of photo-
emission experiments, and is ai the same time con-
sistent with what is known about the nickel Fermi
surface. Such a band structure would be useful in

studying other properties of nickel; for example,
magnetic excitations which are sensitive to some
features of the band structure such as the exchange
splitting.

In 1954 Slater and Koster' proposed an interpo-
lation scheme for d bands in metals based on the
tight-binding approximation. This has been ex-

tended by several authors to include a description
of the s-p components of the band structure based
on a few plane waves, and a pseudopotential. "
%e adopt here the "combined interpolation
scheme" which is extensively described in Ref. 15.
Spin-orbit coupling is neglected. Our procedures
are discussed in Sec. II. In the course of this cal-
culation we found that it was possible to obtain ex-
plicit formulas for the energy bands in certain
directions in k space. These expressions, which
are listed in tables, may be of use to others who
desire to extend this work to other fcc materials.

Section III discusses the fit to the paramagnetic
band structure. The ferromagnetic bands are con-
sidered in Sec. IV. Some final discussion of an
outstanding problem is contained in Sec, V.

II. FITTING PROCEDURE

The basis set for the combined interpolation
scheme contains nine functions, five tight-binding
d wave functions, and four orthogonalized plane
waves. " The linear combination of atomic orbitals
(I.CAO) wave functions are linear combinations of
the five atomic wave functions designated by their
angular behavior as

ixy), iyz), ixz), ix' —y'),
and

In practice the orthogonalized plane waves
(OPW's) are simply replaced by plane waves

~

4+K;), i=1, . . . , 4

a pseudopotential is introduced, and in calculating
LCAQ-LCAQ matrix elements, only nearest-
neighbor interactions are taken into account. The
Hamiltonian for the paramagnetic state of the met-
al is thus a 9&(9 matrix consisting of an LCAO-
LCAQ, an QP%'-QPW, and an LCAQ-QPW
block. %e use the notation of Ref. 11 in discuss-

ing the Hamiltonian. The LCAO-LCAO matrix
elements of the Hamiltonian depend on eight un-

known parameters Eo, 6, 2 ~, . . .,A6. Eo and

Eo+5 are the diagonal matrix elements of the
Hamiltonian with T2~ and Ez orbitals, respectively.
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Thus
r

Ep 1f p =x/7 ~pz~xz~ „2„z (1)
E,+b, if p, =x' —y;

3 E(W,')= +
2

'2
Ej —E2

+ V2

1/2

Making the ansatz P=aP, +b$2 and evaluating
the matrix elements of the Hamiltonian we obtain
two energy levels,

The quantities A ~, . . .,A6 are known as Fletcher
parameters.

The OPW-OPW block depends on two pseudo-
potential coefficients Viii and V200 as well as in
two parameters P and a relating, respectively, to
the zero and to the dispersion of the free electron
bands:

(4+K; ~A
~
k+K;)

=P+a
~
k+K; ~, i =1,. . .,4 . (2)

The LCAO-OPW matrix elements are determined

by two constants 8& and 82.

(p iA i
k+K;)

-B2J2(Bi
~
k+K;

~
), p, =xy. . .,

i =1,. . .,4 . (3)

W3 3z' r'—
y ~+

P,=—,(
~
k+K, )+

~

4+K, )

—
~
k+K3) —

~
k+Kg)) .

(4)

j2(x) is a spherical Bessel function. In order to be
able to compute the paramagnetic bands of Ni,
fourteen parameters have to be determined from
experiments.

Our empirical band structure will be based on
recent angle-resolved photoemission experiments
which yield very accurate results for the energy
bands of solids. We will determine the parameters
of our Hamiltonain by fitting the experimental en-

ergy levels at certain symmetry points. This deter-
mination is greatly simplified by the use of analyt-
ic expressions for the energy levels. At k points of
high symmetry the original 9&(9 determinant can
be brought into block-diagonal form by using basis
functions, which transform like rows of the irredu-
cible representations of the group of the k vector.
Since the resulting blocks are generally 1& 1 or
2&&2 determinants, the computation of the energy
eigenvalues is immediate. As an illustration we
show how the expression for the Wz level can be
obtained. We use the notations of Burdick' and
Hodges et al."' Using our set of nine wave func-
tions we can form two basis functions of the repre-
sentation 8'z ..

where

E) ——Ep+ 6—424,

Ep =P+80'+ V2oo —2 Vi i i

V= ——,B2ji(v 80B, ) .

A comprehensive list of expressions for occupied
energy levels is given in Table I. Some of the re-
sults have already been given by Ehrenreich and
Hodges. " Some straightforward conclusions can
be drawn from these equations. The first is that
the energies X5 and 8'~ should be identical, i.e.,

E(Xg) =E(R'i ) .

Secondly, it is possible through elementary algebra-
ic manipulations to derive a sum rule which can be
used to determine the position of the E2 energy
level in terms of lower-lying levels,

1+v Z 1 —vZ
K2 ——

4
(IV, +X,)+ —(I »+I » )

1+ —,«si+L s2) —&4

This relation has proved helpful in our numerical
calculations.

Using the same method we can also derive exact
analytic expressions for some energy bands along
high-symmetry directions. These expressions are
listed in Table II. In cases where only parts of a
band can be determined experimentally, e.g., the
lower A 3 band given by Himpsel et aI., these ex-
pressions can be used for extrapolation. Using pre-
cise Fermi-surface data, one could fit the point at
which a given band crosses the Fermi level.

Once a paramagnetic band structure has been
obtained, we can include the splitting to determine
the ferromagnetic band structure. Since we are
only interested in the overall features of the bands,
we shall neglect the spin-orbit interaction. In ac-
cordance with previous band calculations, we as-
sume that exchange effects on the OPW portion of
the basis are negligible. The exchange-matrix ele-
ments are included only in the diagonal elements
of the d-d block. This causes the d bands to split
into majority (spin-up) and minority (spin-down)
bands. Quite generally we allow the tz~ and eg di-
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TABLE I. Energy levels at symmetry points. The value of E(I.&) given by Ehrenreich
and Hodges is incorrect.

E(&])=P
E ( I'25 )=Ep —4A ] + 8A 2

E{I]2)=Ep+6+4A4 —8A5

Point I (000)

Point X 2m/a(1, 0,0)

E]——P+ 64a+ Vzpp

E(X, ) =H (E„E„V)~here E2=E,+S——,A, ——,A,
V=V (2/3)B,jz(8B, ),

E(X3)=Ep —4A ) —8A2

E(X2)=Ep+ 6+4A4+ 8A5

E(X5 ) =Ep+4A ]

E(Xg )=P+64a Vzpp—

Point I. 2m/a( —,—,—)
j ] 1

E, =P+4'8a+ V, ],
E(1.] ) =H (E],'E2, V) where ~ E2 =Ep —8A3

V= V (2/3)Bz jz(V 48B] )

E (Lz] ) =Ep+ —+2A z
——[(6—4A z )'+ 128A', ] '

2 2

E(l.z ) =P+48a —V„,
E(1-3z)=Ep+—+2A]+ —[(5—4A]) +128A6]'

2 2

E(8 2 ) =H (E„-E„-y)

E( W3) =H (Ei,E2,.V)

E(8', )=H {E„E;V)

Point 8' 2m/a(1, —,,0)

E, =Ep+~ —4A4
' Ez =@+80a+ Vzpp —2 V] ]]

V=
5

Bzj'z(')/80B] )

Ei ——Ep —4A2

where Ez p+ 80a —V——zpp

V = Bzjz(V 80B, )
5

16 4E]=Ep+
3 A5+ 3A4

where Ez= j3+80a+ Vzpp+2V]]]

E(8'] )=Ep+4A,

Point E 2g/a{ —,—,0)
3 3

E]=Ep+2]/2A]+2(1 —V 2)Az —2A,
E (I] 3 ) —0 (E] Ez V) where Ez =0+2a —Vzpp

' V= Bzjz(V 72B])—
E(K4)=Ep+6+2A +4V 2A,
E(&z)=Ep+2~2A]+2(1 —]/2)Az+2A]

'2

where H+(E&,'E2, p) = + + p2
2 2

1/2
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agonal elements to have different splittings. Thus (see Table I)

Eparam +Et = o
0 (8)

E(X2)=Ep+b, +424+823,

Z(r») =Z, +S+4W4 —8&, ,
(10)

E,'+S'
O+Et gi =+Ii +~param+~e

where 2crr (2cr, ) is the splitting of the t2s(eg) lev-
g

els. We assume that all the other parameters of
our model are spin independent.

we see that the relative position of the two levels

depends on the sign of A 5. We think that A 5 is
positive and that X2 therefore should lie above I 12.

25 can be expressed by the two center integrals de-

fined by Slater and Koster (see Ehrenreich and
Hodges"),

III. INTERPOI. ATION OF
THE PARAMAGNETIC BANDS

The energy levels at symmetry points have been
determined by Eberhardt and Plummer (see also
Refs. 4, 17, 18) and are given in Table III. Most
of their data refer to averages of spin-up and spin-
down levels and can readily be used to determine
parameters of the paramagnetic band structure. In
the case of L3 and 8'1 we use the expressions
from Table I to determine the "experimental" aver-

age energy value:

(wi ) =8'i, +o..

35= ——„(dd5)—„(ddo—) , (ddt—.
)—.

The symmetry of the orbitals implies that (dd5)
and (ddo) are negative while (ddt. ) is positive.
Moreover, according to the conjecture of Heine'

the ratio p=
~

(ddo )/( ddt)
~

should essentially be
a function of the crystal structure. Zornberg' has

found that P=2 with about 20% difference be-

tween P(Ni) and P(Cu). Thus

2

1

(L32 & =L321
—+ , (~r„—+~,, ) A5 ————

„

i(dd5)
i +—„i(ddo)

i
&0. (12)

First we would like to discuss some of the difficul-
ties which arose when we tried to fit the energy
levels given by Eberhardt and Plummer. Inspec-
tion of the parametrized energy levels given in
Table I indicates that it is particularly easy to ob-
tain the constants Ep, p, b„A1,. . .,A6 by fitting
I 1 I 12 I 2S X2 X3 W 1 II 4 L31, aild L32. If we
use an exchange splitting of 0.31 eV as measured

by Eastman et al. ' for both eg and t2g states
(2o, =2o; =0.31) to obtain the "experimental"

&g g
values of W'1 and L32 [Eq. (9)] it is not possible to
fit the photoemission results (one would get an im-

aginary value for A6. Although this is not neces-
sarily a serious problem —slight readjustments of
some experimental values within the error limits or
a different value for the splitting will probably
solve the problem —it raises some questions about
the interpretation of the data. In view of this dif-
ficulty to fit the parametric energy levels and the
fact that the most serious disagreement between
theory and experiment concerns the value of X2, it
might be useful to examine more closely the rela-
tive position of X2.

Eberhardt and Plummer report X2 to lie below
I 12 in contrast to theoretical predictions. Since

(X, ) = —0.2094, (13)

measured in eV, is in reasonable agreement with
the results of Wang and Callaway, who found

(X2) = —0.1830 eV. When we used the results of
this fit to compute the ferromagnetic bands, we ob-
tained a correct value for EF and for the magnetic
number but in drawing the spin-down Fermi sur-
face we found a small pocket near U. This is due
to the fact that (E2) was lying too far below EF.

Since no such pocket is found experimentally,
we have to increase the value of (K2 ) in order to
obtain qualitative agreement with the Fermi-
surface results. For that purpose it was necessary

This is a strong albeit not a rigorous argument for
the positiveness of A5 and the fact that X2 should

In view of the uncertainty of the value of X2, a
better approach is simply to exclude this level from
our fit and to work with other data. In a second

attempt we have used the values given for I 1, I 25,
I 12~ X1~ X3~ L 1~ L31, L2'~ L32~ ~2'~ ~3~ ~1~ ~1'~
and E3 and assumed that 2o., =20., =0.31 to ob-

&g g
tain "experimental" values for ( Wi ) and (L32)
[Eq. (9)]. We have found that



714 F. WELING AND J. CALLA%AY 26

TABLE II. Analytic expressions for some energy bands.

I X direction 0&k &2m/a

E(a2'; k) =Ep —4A, +8A,coska /2
E(g 'k) —E +4A 4(A A )coska /2
E(52 k) =Ep+6+4A4 —SA5coska /2

E{Z4,'k) =H (E],E2', V)

XW direction 0&k &m/a, p=4ka/m.
r

where V=—

{@+8)(&6—p)
144

E]=Ep —4A 2
—4(A ] +A 2 )coska /2

E,=13+64a+a(p 8) V—~oo[F—3(p, , 8,0)]

B2jg[B([p—8) +64]' ]F3(p, 8,0)
(p —8) +64

F3(p, 8,0)=
p+0.001 coska /2 coska /3

E(Z3 k) =H (E]', E2 V)

E{Z2,'p) =Ep+4A ]

r

E]=Ep —4A2+4(A ] +A2)coska/2
E2 P+64a ——V20O+ ay—2

where
V=, ~B2j2[B~(p'+64)' ]

p +64

I"I. direction 0&k & m/a

E]=Ep +4A 3
—4{A ]—2A 2 +A 3 )cos ka /2

E(A3,k) =H (E],E2,' V) or H+(E],'E2, V), where ~ E2 ——Ep+6+4{A~—2A5)cos ka/2
. V= —8/V 2A6sin ka/2

I E direction 0&k &3~/2a

E{X2,'k) =Ep+4A3 —4(A ] —A2)coska/2+4(A2 —A3)cos ka /2
E{X4,'k) =Eo+~—SA scoska /2+4A4cos2ka /2

where H and H+ denote the lower and upper branch of two hybridized bands
2 ]/2

E]+E2
H (E„E„V)= +

2 2
+ V2

and where j2(x) is the spherical Bessel function

=3 smx
j2(x)=—(s]nx —x cosx )—

X x

to make slight changes in the experimental values
of Eberhardt and Plummer. We will fit the levelsr„r„., r„,x„x„,1.„,I.„I.„,e;., w„W'„
IV(' E3 and K4. Equation (7) shows how the po-
sition of Ez depends on the value of the other en-

ergy levels. Owing to the coefficient (1—V 2)/4
~the dependence of E2 on I ~2 and I 25 is only weak
and so we do not modify these values. Instead we

(K4 ) =—0.4992,

(L.» )=—0.05sl, (14)

(X2) =—0.1579 .
The value of (X2) was chosen to be fairly close to

adjust the values of E4,, 1-32 and X2, measured in
eV:
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TABLE III. The energy levels at symmetry points as determined by Eberhardt and Plum-
mer (units are electron volts).

Symmetry
Experiment'

averageb spin-up
Theory'
average average

Fitd

spin-up spin-down

I i

I2s
Iiz
Xi
X3
X2
Xg
Li

L2

8'2
8'3

Ei
Ei
E3
E4
it 2

—8.8+0.2
—1.1+0.2
—0.4+0. 1
—3.3+0.2
—2.8+0.2
—0.85+0.1

—3.6+0.2
—1.3+0.1
—1.0+0.2

—2.6+0.2
—1.7+0.2
—0.65+0.1

—3.1+0.2
—2.55+0.1
—0.9+0.2
—0.45+0. 1

—0.2+0. 1

—0.15+0.1

—8.93
—2.04
—0.92
—4.31
—3.81
—0.18

0.02
—4.63
—2.07
—0.40
—0.17
—3.59
—2.77
—1.00

0.02
—3.66
—3.45
—1.81
—0.77
—0.25

—3.24

—0.164

0.05
—3.50

—0.064

—2.70
—2.40

—0.50*
—0.09

—8.8
—1.3
—0.45
—3.2789
—3.0000
—0.2079
—0.1500
—3.6638
—1.4035
—1.0000
—0.2016
—2.6422
—1.8937
—0.6998
—0.1500
—2.7549
—2.5787
—1.0916
—0.5492
—0.2881

—8.8
—0.9
—0.35
—3.1942
—2.6000
—0.1079

0.2500
—3.3413
—1.2045
—1.0000

0.0994
—2.5583
—1.5067
—0.6000

0.2500
—2.6549
—2.2119
—0.7088
—0.4492

0.1119

'W. Eberhardt and E. W. Plummer, Phys. Rev. B 21, 3245 (1980). The experimental Fermi
energy was chosen as zero of energy.
Average over the spin directions.

'C. S. Wang and J. Callaway, Phys. Rev. B 9, 4897 (1974).
For the sake of clarity we only indicate the values found for the energy levels which have

not been used for the fit. The values followed by an asterisk are the readjusted input values
[Eq. (14)]. The fit accurately reproduced the experimental data which were used as input.
The values are given relative to the experimental Fermi energy as for the column based on
experiment.

the value found in our second fit [Eq. (13)]. The
results of our interpolations are given in Table III.
We notice that the predictions of the fit for X|,
L i, Kii, and Eiq are in good agreement with the
photoemission results. The parameters used in the
fit are given in Table IV.

IV. THE FERROMAGNETIC BAND STRUCTURE

mine the Fermi surface. Our attempts to obtain a
reasonable Fermi surface assuming that the t2g and

eg levels have the same splitting have been unsuc-
cessful. The principal difficulty is that a spin-
down hole pocket associated with X2 is obtained.

TABLE IV. Fit parameters for the nickel band struc-
ture.

In order to obtain the ferromagnetic band struc-
ture we now include the exhange splitting in our
calculations. Since only the splitting of the d-
bands seems appreciable, we simply replace the
paramagnetic values of Ec and 6 by their fer-
romagnetic values [Eqs. (8) and (9)]. All the other
parameters have the values given in Table IV. We
now can calculate the band structure and deter-

Eo ———0.95
6=0.059 360
A i

——0.25
A2 ——0.106250
A3 ——0.121 385
A4 ——0.152923
A5 ——0.015 131
A6 ——0.103386

P= —8.8
a=0.204 937
Vi&& =2.036977
V200

———0.387 444
8 i

——0.480 651
82 ——12.870 937
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gO~
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(822)

x (8oo) W (840)

FIG. 2. (a) Fermi surface in a (100) plane. The solid lines are the calculated results for minority ( J, ) spin electrons,
the dashed lines represent the majority (t) spin surface. The points correspond to the Fermi surface obtained by a Ku-
bic harmonic fit to the experimental observations by Stark (see Ref. 21). (b) Same as (a) but for a (110) plane.

EG ———0.75,

EG ———1.15,
(16)

EG+6,= —0.84,

EG+b t
———0.94,

(17)

measured in eV. The band structure which we ob-
tained is shown in Fig. 1. The Fermi energy (in

eV) and the magnetic moment computed from

A satisfactory fit has been obtained with the
values

2', =0.4,
2g

2o., =0.1,
g

measured in eV. The values of Eo and b, are thus,

these bands are given by

Ep ——0.0548,

p =0.5600JM~ .

Since EF is assumed to be zero in the fitting pro-
cedure, a small value in the final stage indicates
that our procedure is reasonably consistent. The
values of p is in excellent agreement with experi-
ment. The positions of the ferromagnetic energy
levels are given in Table III. Figure 2 compares
the Fermi surface determined from our bands with

the experimental results of Stark and Tsui. '

The agreement is good. This fit does not produce
an Xz, pocket. Some numerical' results concerning
the calculated Fermi surface are presented in

Tables V and VI.

TABLE V. Extremal areas of Fermi-surface cross sections in atomic units.

Surface Present results Other values

Small square (spl)
Large square (spt)
I centered d, sheet

X5, pocket (1,0,0)

0.85
1.09
1.95
0.17

0.84'
1.24'
2.20'
0.038'

0.86b

1.18b

2.05
0.0665b 0.0665'

090
1.15

' C. S. Wang and J. Callaway, Phys. Rev. B 9, 4897 (1974).
" E. I. Zornberg, Phys. Rev. B 1, 244 (1970).' D. C. Tsui, Phys. Rev. 164, 669 (1967).

R. W. Stark (private communication).
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TABLE VI. Comparison of X» hole pocket dimensions in atomic units. The pocket is in
the (100) plane.

kxw kxU

Present calculation
a
b Parameters set IV

0.256
0.195
0.218
0.207

0.118
0.077
0.104
0.099

0.125
0.076
0.104
0.087

'C. S. Wang and J. Callaway, Phys. Rev. B 9, 4897 (1974).
E. I. Zornberg, Phys. Rev. B 1, 244 (1970).

'D. C. Tsui, Phys. Rev. 164, 669 (1967).
R. W. Stark (private communication).

V. DISCUSSION AND CONCLUSIONS

The principal uncertainty in the fitting pro-
cedure is the position of X2, specifically, is there
an X2, hole pocket? Failure to observe this pocket
in de Haas —van Alphen effect measurements has
led most investigators to conclude that this pocket
does not exist, i.e., X2, is below Ez. This point of
view has been adopted here. However, there is
some contrary evidence ' from studies of the an-

gular variation of the magnetic anisotropy that
there is a small X2, pocket. If this is so X2, must
be almost exactly at the Fermi energy. In this case
we do not require such a large difference between
the t2s and ez splittings to obtain a fit; in fact, cr,

g

and cr, would then be approximately equal.
2g

This point has important implications. First-
principles band calculations based on potentials ob-
tained from a local-density approximation do not
find much difference between the exchange split-
tings of states of these types. The fundamental
reason for this is that local-density exchange-
correlation potentials depend on the spin density of
states of spin cr in the form p' (times a function
of density). The cube root effectively smooths
out much of the angular anisotropy of the spin
density. Hence it is particularly important to es-

tablish whether or not o; and o., are substantial-
g 2g

ly different to determine whether local-density po-
tentials may give a quite poor description of the
actual exchange interaction in transition metals.

Aside from this uncertainty, we see that it is, in

fact, quite possible to obtain a band-structure fit to
the energy levels determined by photoemission ex-
periments which is at the same time in quite
respectable agreement with the observed Fermi sur-
face. We are presenting this semiempirical band
structure in the hope that it will prove useful in
the calculation of other properties of ferromagnetic
nickel. At the same time, it must be cautioned
that some difficulties may exist. The difference
between the calculated bands of Ref. 2 and the ex-
perimental bands must result from many-body ef-
fects. Presumably the experimental observations
locate the real part of the (complex) energy at
which there is a pole of the one-body Green's func-
tion. However, since the lifetime of states well re-
moved from the Fermi surface is probably rather
short, there may be significant error introduced if
one treats these empirical bands as sharp, i.e.,
neglects the imaginary part and assumes that the
Green's function actually has poles at the energies
of these bands. Further investigation will be re-
quired to determine whether these considerations
seriously limit the utility of these bands. It is sig-
nificant that their widths are not so large as to
make them impossible to observe.
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