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Raman scattering from the surface phonon mode in Gap microcrystals
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The Raman scattering from GaP microcrystals prepared by a gas-evaporation technique has

been investigated. A new peak, which can be identified with the surface phonon mode, was

found. The present results demonstrate that the surface phonon peak can be clearly observed

only when the microcrystals are about one order of magnitude smaller than the wavelength of
the incident laser radiation.

Effects of finite crystal size on long-wavelength op-
tical phonons in ionic crystals have been investigated
extensively by infrared absorption measurements.
For a wide variety of ionic microcrystals, new absorp-
tion peaks, which can be assigned to surface phonon
modes, have been observed and the observed
features of surface mode absorption have been inter-
preted successfully by electromagnetic theories. '

Theoretical discussions of Raman scattering from the
surface phonon modes have been presented by
several authors. ' Evans et al. ' and Ushioda et al.
have succeeded in observing the Raman scattering
from surface phonon modes in two-dimensional sur-
faces (thin films). However, experimental results re-
ported so far on microcrystalline samples are some-
what ambiguous. As far as the authors know, only
two works made by Scott and Damen7 on CdS crys-
tallites in thin films and by Bockelmann and
Schlecht on MgO microcrystals seem to suggest posi-
tively the observation of surface phonon modes by
Raman spectroscopy. However, it is still necessary to
elucidate the effect of surrounding medium to judge
whether the observed Raman peaks are truly attribut-
able to the surface phonon modes or not. In other
reports, ' no positive indication of observing the
surface phonon mode is found.

According to the electromagnetic theories, ' the Ra-
man peak due to the surface phonon mode should
show the following three characteristic features: (i)
The intensity of the peak increases as the size of mi-

crocrystals decreases. (ii) The peak is located
between the bulk TO and LO phonon frequencies.
(iii) The peak shifts to lower frequencies as the
dielectric constant of surrounding medium increases.
Raman results which demonstrate all these features
have not been reported so far. In this paper, we re-
port the first unambiguous observation of the surface
phonon mode in GaP microcrystals by Raman spec-
troscopy. For GaP microcrystals prepared by the
gas-evaporation technique, a new peak which shows
the above three characteristic features of the surface
phonon mode was found. The new peak can there-

fore be assigned to the surface phonon mode.
GaP microcrystals were prepared by means of the

standard gas-evaporation technique. " We evaporated
the single crystalline GaP from a tungsten basket in
argon gas. Sootlike deposits were collected onto glass
plates positioned above the basket. Evaporation tem-
perature was kept at about 1700'C. In order to ob-
tain the particles of various sizes, the gas pressure
and the height of particle collection (vertical distance
between the basket and the glass substrate) were
varied from 10 to 100 Torr and from 2 to 10 cm,
respectively. We also prepared relatively large parti-
cles by grinding the bulk GaP crystals in a mortar.
The Raman spectra were recorded by a JRS-
400T(JEOL) spectrophotometer, equipped with a tri-

ple monochromator and a photon counting system.
The spectra were excited with the 51454 line of an
Ar-ion laser. The measurements were performed in
a backscattering geometry. Laser power of 50 mW
was used. Typical spectral slit width used was 1.5
cm '. After completing the Raman measurements, a
part of sootlike deposit corresponding to a region
sampled by the incident laser beam was scrapped off
from the glass plate. The resulting powder was

dispersed in ethyl alcohol, and a drop of it was put on
Formvar-backed carbon thin film which was support-
ed by an electron microscope grid. After the eva-
poration of alcohol, the grid was studied by a JEM-
6A(JEOL) electron microscope.

In Fig. 1 we show typical transmission electron mi-

crographs and diffraction patterns obtained for vari-
ous samples. Hereafter, we denote the samples as A,
B, C, and D. The sample A was prepared by grind-

ing, and the others by the gas-evaporation technique.
The average particle size was determined from these
electron micrographs. Although the particles are not
spherical, we adopted the following simple procedure
to determine the average size, since the random
orientation of particles can be assumed. We simply
measured the linear dimension of particles along only
one direction of micrographs. For every sample,
such a measurement was made for more than a hun-
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of the peak in the cases of liquid surrounding.
Although a proper account for the effect of particle

shape and that of particle aggregation cannot be made
within the framework of Eq. (1), we attempted tenta-
tively to search values of L which can best fit the ex-
perimental points. The broken curve (b) and the
chain curve (c) in Fig. 4 were calculated by setting
L =0.359 and 0.422, respectively. The experimental
point for the air surrounding agrees fairly well with
the curve (b), and the points for the liquid surround-
ing can be fitted well by the curve (c). Possible in-

terpretations of the values of L obtained are as fol-
lows. The value L =0.359, corresponding to the
curve (b), is only slightly larger than the value for a

sphere, 3. This value may reflect the fact that the

particles are not spherical. On the other hand, the
relatively large value L =0.422, corresponding to the
curve (c), may result from the effect of particle ag-

gregation superposed on the effect of nonspherical
particle shape. This last interpretation of L is
equivalent to the idea of the effective depolarization
factor introduced by Granqvist and Hunderi. ' For a
more quantitative analysis of the present data, it is
necessary to develop a theory which describes the Ra-
man intensity of surface phonon modes in nonspheri-

cal particles. It is also helpfui if experimental
methods of knowing the geometry of particle aggrega-
tion are invented.

In conclusion, we measured Raman spectra of GaP
microcrystals prepared by the gas-evaporation tech-
nique. A new peak which can be identified with the
surface phonon mode was found. It was shown that
the effects of particle shape and particie aggregation
should be taken into account to explain the observed
shift of surface mode peak with respect to the dielec-
tric constant of the surrounding medium. Our results
suggest strongly that the Raman spectroscopy is suc-
cessful in investigating the surface phonon modes in
microcrystais, provided that the microcrystals are
small enough. Extension of the present study to oth-
er materials including II-VI and III-V semiconductors
is straightforward.
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