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Localization with off-diagonal disorder: A qualitative theory
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I present a theory of localization for Hamiltonians with off-diagonal disorder in general

dimension d. At d=2 for weak disorder the E=0 eigenstate decays as exp[ —y(lnÃ) t ], with

the coefficient y varying with disorder. For strong disorder in all dimensions there is weak lo-

calization at E =0 and associated anomalies for E 0: the local density of states and rate of ex-

ponential decay are of the form found by Dyson in one dimension.

There has recently been an upsurge of interest in
the Anderson localization of eigenstates of Hamil-
tonians with disorder in off-diagonal elements. ' In
part, this is motivated by the possibility that the
fluorescing states in ruby, for example, may become
localized at certain concentrations of the optically ac-
tive ions owing to disorder in the exchange rather
than the "diagonal" single-ion elements. Theoreti-
cal work has been popular in models of "quantum
percolation. "' A related problem with correlated di-
agonal and off-diagonal disorder occurs in the theory
of dilute ferromagnets. ' I shall present a qualitative
theory of the models considered which gives definite
predictions for the localization at the center of the
band. On a cautionary note, I also point out to what
extent the anomalous behavior found is special to the
class of models that have been proposed.

Consider the Hamiltonian for random nearest-
neighbor bonds on a d.dimensional hypercubic lattice
with coordinates ( n t, n2, . . . , nq) n& integers:

I tttQt QJ
NN

The t& are non-negative independent real random
variables, al, aJ denotes annihilation and creation
operators on nearest-neighbor sites i and j. For
(bond) "quantum percolation" ttt is 0 or 1 with

probability p and 1 —p, respectively. We shall allow
the distribution of t& to be more general, however.
Raghavan and Mattis' showed, in a numerical study
of quantum percolation, the utility of "tridiagonaliza-
tion": a one-dimensional submanifold is found on
which the Hamiltonian is isomorphic to that of
nearest-neighbor overlap on a semi-infinite linear
chain. Diagonalization of the Hamiltonian on this
subspace is sufficient to calculate the site-diagonal
Green's function. Consider first the regular
Hamiltonian, ttt constant. Starting with vector qhc

for a particle at site 0 the procedure generates a
sequence of orthonormal vectors P„,where for a
Hamiltonian of the form (1), $„is a linear combi-
nation of wave functions at sites (nt, . . . , nq)
(denoted l nt, . . . , nd) ) of "generation number" n

= X, , l n&l. For large n there are C(n) =—Aqn~ '

such sites, with Ad a geometric constant. It is conve-
nient to define a sequence of vectors which are not unit
vectors but have modulus squared (P„lP„)= C(n):

4n = Xttnt, . . . , n&l ttt ~ ttd)

for the regular case a =1. We now introduce the
crucial simplification of the theory: We make the ap-
proximation, which is accurate for weak disorder,
that in the random case we can also write the vectors
$„generated by tridiagonalization as linear combina-
tions of wave functions at sites of generation number
n only. That is, at each step we neglect the part of
the projection of $„onthe subspace of sites of gen-
eration (n —1) that is orthogonal to the previous
vector P„t. We therefore generalize the a 's to be
real variables satisfying X„a„' „=C( n), where

X„denotes a sum over all sites of generation
number n. For the regular Hamiltonian the diagonal
elements are zero and the off-diagonal elements
b„+t= (Q„lXl Q„+t)are 1. In the random case qh„+t
and b„aredefined iteratively by XQ„=b„t P„t

+ b„+tqh„+tand the normalization (P„lP„)= C(n).
Thus given the amplitudes a for the nth generation,

1 1(2b„=X (a„',, . . . .„„)'C(n +1)'t',
n+1

~n, . . . , n

p.+t= X '& 'lnt, . . . , nd),
bn+1

where a„' „„=(nt, . . . , nqlXQ„). Apart from

atypical sites (corners and edges) the random vari-
ables a' are determined from an equation

d
(J)

~n1, . . . , nd ~ ~j~n
J-1

where the tJ are independent random variables, a„
are d amplitudes on sites in the nth generation. To
give a specific example, for n =6 in d =2 the equa-
tion reads a(3 4) E1a(2 4) + t2a(3 3). For the atypical
site (7,0) there is only one term: Such sites are rela-
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tively few for large n and will be ignored.
Let us now construct a theory for weak disorder:

We assume that for large n the variables a„'can be
considered statistically independent with mean 1 and
variance cr„'. The t&'s by definition are independent
and will be normalized to have mean (t) =1/d and
variance a,'/d', the assumption of independent a's is
not correct. We will return to this point later and ar-

gue why it is a good approximation for ~eak disorder.
Now from (3) we find

a.„'+t=o„'(o,'+1)/d+o. ,'/d . (4)

The difference equation (4) with boundary condition
0-0=0 has the solution

1

1+Cr,
2

d
o& 1+0&2 2

d d
t

Thus for 0-&' & d —1, cr„converges to
' 1/2

CT

(d —1) —o.~

For large n each a„'has mean 1 and variance cr'. '
Again ignoring correlation and assuming 0-' small,
since b„+1is the r.m.s. of =Adn ' variables a, it will

have mean 1 and standard deviation decreasing as

~/A 1/2&(d-1)/2 (6)

The localization properties of the semi-infinite
chain so defined can be formulated in terms of the
product of random transfer matrices just as for the
homogeneously disordered chain. 7 While for general

energy E the matrices do not commute, at the special

point E =0 the difference equations for eigenstates
EP„=b„iP„t + b„+if„+ican be solved explicitly

and the asymptotic properties depend on the product

M M
= (—1)~exp Xln

bog-1 ) 1 b2J 1

To study the convergence of the sum it can be ap-

proximated by its asymptotic form

~ f,(2~'/A, '/')

4 +2

(2~
Ad

4 +2

(S~) —' 1n(2M), d = 2
Ag

k(d-1)
2'—1

where f~ is a random variable of mean 0 and variance
1. Taking the f/ independent and approximating the
sum by an integral, we find (SM) =0

Thus with probability 1 either the product (7), or
its inverse, diverges as exp[a. '(2M)" +/']x~ for
d & 2 and as exp[a'(ln2M) ' 'xM] for d =2 (x~ is a
random variable of order 1) and for d & 2 it con-
verges. For weak disorder, then, we predict that the
eigenstate Q~(E =0) decays as exp[ —(r'N" ' ']
for d & 2, with the law exp[ —y(o.,) (lnN) ' '] at
d =2, with coefficient

y(~, ) = [4~,'/Ad[(d —1) —~,']]'"
varying with the strength of disorder, and is extended
for d & 2. This new behavior predicted for weak dis-
order in d =2 is not the same as power-law localiza-
tion but it may be difficult to distinguish numerically
between the two.

Let us now pause to consider the range of validity
of the results for weak disorder. The most glaring
omission is the neglect of correlations, of which there
are two major sources. The first is that while each
bond r/ appears in only one equation of form (3), a
single a„'occurs in d distinct sums. Thus even if
the a's of one generation are assumed to be indepen-
dent, correlation develops in the next. We can, how-

ever, calculate the correlations that develop and show
that for small 0-„correlations decay exponentially
with separation. Such short-range correlations do not
affect the scaling behavior (6) and consequently the
predictions of localization, although the value of the
coefficient y(o, ) will be altered. Thus the weak re-

gime so far considered is consistent with these corre-
lations.

The second important correlation is implied by the
normalization of („which provides that for a given

n, a particular a„/ cannot exceed (Adnd ')'/' For.
o,' large ( &d —1 to the lowest-order approximation)
the exponential growth implied by (4) must be in-

correct. The expectation for this case of strong disor-
der is that a few of the individual a„grow to dom-
inate the sum, in contrast to the weak regime for
which all the a„areof the same order of magnitude.
This argument can be made more plausible by noting
that if initially the a's have mean 1 and variance 0-„,
as cr„increases to become comparable to the mean,
the (non-negative) a„must have an increasingly
skew distribution. Unusually large values will tend to
dominate in sums of squares. To estimate the scaling
of the elements b„take the most extreme case in

which a single a„is taken as having all the weight. In
that case b„+1has variance approximately a, /'d, i.e.,
a constant. In this strongly disordered regime the
problem is therefore reduced to that of homogeneous
off-diagonal disorder as originally studied by Dyson. '
The localization and spectrum close to the band
center are well understood: The E =0 wave function

~1/2
decays as e s", where o.s is (lnb„). The local
density of states and rate of exponential decay are
singular as E ~0: po(E) —1/EilnEi', l.(E) —1/
lnE. We find then that these singularities in the lo-
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cal density of states and localization length persist in

any dimension for a Hamiltonian of form (I) provid-
ed the disorder is sufficient.

At this point we should return to the initial simpli-
fication of the theory, that each @„hasamplitudes
only on the shell of generation n. For weak disorder
the amplitudes neglected at each stage are weaker by
a factor proportional to the disorder and, more im-

portantly, it is straightforward to argue that if includ-
ed to low order they do not affect the scaling
behavior. Thus the conclusion for weak disorder
should remain good, with corrections to y( o.,).
What is not clear is whether the transition from weak
to strong disorder is properly described. The con-
clusion that the strongly disordered regime maps onto
a homogeneously disordered chain should not be af-
fected. One feature of the theory which is not ap-
proximate and which is essential to the behavior at
band center is that the diagonal terms vanish. This is
an exact symmetry of the model whose significance
will be discussed later.

What does this picture imply for "quantum per-
colation"? In d =3 there should be a region of weak
dilution bounded by Pg (in the notation of Ref. 1),
in which the eigenfunctions at band center, and
presumably a finite range of energies, are extended.
For pg & p )p„the geometric percolation threshold,
the center eigenstates decay as exp[ —a (p) JN ] and
for small energies the rate of exponential decay and
local density of states exhibit the Dyson anomalies.
Note that the equivalence of "weak disorder" and
"weak dilution" is not complete: Dilution gives
strong local disorder leading to strongly localized
states that contribute 5 functions to the average local
density of states at special energies (e.g. , E =0) that
we would not expect for a weak continuous distribu-
tion of bond strengths. The definition of "genera-
tion number" of a site has to be modified to take
into account missing bonds to make the present
theory valid even for low dilutions, although again
the scaling of asymptotic coefficients should be the
same.

In two dimensions arbitrarily weak dilution is

predicted to cause decay as exp[ —y(p) (lnN) '~'1 at
band center, i.e., more weakly than a power law. At
stronger dilutions there should be a transition to a
strong-disorder regime. In contrast to Ref. 5, in
which the Dyson singularities were introduced to in-
clude the quasi one dimensionality of a nodes-and-
links picture of the percolating cluster, here they ap-
pear independently of such an assumption. The
theory presented is not detailed enough to predict the
position or nature of the transition: Taken beyond its
likely range of validity (5) would suggest that the
coefficient y(o.,) may diverge. It is possible that
there is an upper bound to y(o, ).

So far we have concentrated on the band center at
which eigenstates can easily be found once the off-
diagonal elements are determined. For finite ener-
gies localization depends on the product of transfer
matrices that do not commute. As has recently been
discussed for one-dimensional problems, the ex-
istence of weakly localized states at E =0 can be as-
sociated with anomalies in the densities of states and
a divergent localization length as E 0.' It was
found that the anomalies could be derived simply by
supplementing perturbation theory with a scaling hy-
pothesis: Perturbation theory alone does not take full
account of the lack of commutation of the matrices.
For strong disorder the present problem is mapped
onto a homogeneously disordered chain and thus the
singularities first found by Dyson will also occur,
although in the dilution problem they may be masked
by the 5-function singularities mentioned earlier. For
the case of weak disorder in d =2, it is still an open
question whether for small energies the eigenstates
are exponentially localized. Recent numerical studies
of Soukoulis, Webman, Grest, and Economou' sup-
port the belief that they are exponentially localized
except at band center. This is what one might expect
from the scaling theory. "

While considering the significance of these results
for experiment it is well to remember that a certain
symmetry has been imposed on the model: The lat-
tice can be decomposed into two sublattices such that
the Hamiltonian applied to states of one sublattice
generates nonzero amplitudes only on the other.
This apparently innocuous restriction ensures that the
tridiagonal Hamiltonian has zero diagonal elements
and therefore that the central eigenstate is never ex-
ponentially localized. Addition of next-to-nearest-
neighbor interactions, for example, breaks the sym-
metry and generates a Hamiltonian similar to that of
diagonal disorder. For ruby, in particular, the sym-
metry may be broken.

In conclusion I have presented a perturbative
theory of off-diagonal disorder which leads to predic-
tions of anomalies in the localization and local densi-
ties of states —behavior that can be considered the
higher-dimensional analog of the singularities found
by Dyson in one dimension. Clearly many details of
the problem remain to be elucidated: It is hoped this
Communication will stimulate precise numerical stud-
ies, in particular.
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