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It is shown that the conductance of an interacting one-dimensional system may be expressed
in the form of a Landauer formula. An insulator —ideal-conductor transition is found as the in-

teraction is varied at zero temperature.

Since the introduction of a scaling theory by Abra-
hams et al. ' much progress has been made in under-
standing the properties of disordered electronic sys-
tems. In general, it is difficult to treat simultaneous-
ly electronic interactions and disorder. However, it is
known that interactions play an essential role in the
behavior of disordered systems in two and three
dimensions. ' In one dimension this is true a fortiori
since neither interactions nor disorder can be simply
treated in perturbation theory. In this Communica-
tion we discuss the effect of interactions on the con-
ductance of a disordered system of electrons moving
in one dimension under conditions in which a Peierls
transition does not occur. First we derive from
linear-response theory an exact expression for the
conductance of a finite (length L ) disordered system
of interacting electrons at temperature T. The con-
ductance has the form of the Landauer formula but
the derivation is different from that given by
Langreth and Abrahams for the noninteracting case.
Then we evaluate this formula in the weak scattering
limit and find an insulator —ideal-conductor transition
as the interaction between the electrons varies at zero
temperature. For the case of spinless electrons, this
transition was found previously in the frequency-
dependent conductivity. 4 We propose that the
unusual high conductivity of one-dimensional metals
which do not show a Peierls transition reflects this
enhanced conductivity.

We consider an infinite system of electrons in one
dimension. The electron-electron interaction is
parametrized by its q =2kF and q =0 matrix ele-
ments, gt and g2 (see Solyom's review article' ). In a
finite region the electrons are exposed to random im-

purity potentials f~(x) which scatter the electrons
with momentum transfer 2kF (forward scattering
does not affect the conductivity). The potentials cou-
ple to the 2k~ densities as follows
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We obtain from the condition that p equals (o.) ' the
following integral equation for R
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where Pt 2,(x) denotes the creation operator for
electrons with spin s and momentum + kF, —kF .
o-i", p, =1,2, 3 are the Pauli matrices and cr =1. The
(„(x) are taken to be Gaussian random functions
with white-noise correlations which are given by the
concentration of the impurities times the square of
their strength. To derive the formula for the conduc-
tance we drive a current J(x, t») through the system.
The resulting electric field E(k, co) is given by

E(x, o)) = „I dx'p(x, x';o)) J(x', co)

where the resistivity p is defined as the analytic con-
tinuation is co + i 0 of the inverse of the conductivi-
ty o (x,x', cu is) The free. part []„(x)=0] of a is

easily calculated from the density-density response
function at small wave vector' and we write

o (X,X';«») = (e'/m ) y exp(i «»~ x —x'~/v)+ o",~,(x,x';co),

(3)
where e is the electronic charge,

y = [(2mvF 2g +2g )/—t(2m Fv+2g2 —gt) ]'

v = vF2y/(y'+I ), and v~ is the Fermi velocity. The
impurity part of the conductivity is a response func-
tion involving the generalized forces' E(x)
= [J(x),H; „] and need not be specified for the mo-
ment. We split p also into a free part and a part R
coming from the impurities
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The kernel f is calculated from a.; „
2

f(x,x';cu) = —y, (((F(x);F(x')))
4 l Ca)8

+([J(x),F(x')) )], (6)

conductance

g = ygo/(1 go)

where

gp=l — dx lim J dx'f(x, x', ou)
aJ ~)~p

(8)

where double brackets denote response functions.
Now we make the current in (2) spatially homogene-
ous and then time independent. A current I gives
rise to a voltage drop [use (4)]

]
e2

U = —y dx lim dx'R (x,x';co) I
7p 4 Q) tp

The solution R of (5) then gives the resistance which
in turn determines the conductance. A further sim-
plification arises from the zero-frequency limit. Be-
cause fvanishes if x or x' leaves the impurity region
the integrals in (5) are finite. If the zero-frequency
limit of f dx' f(x,x';ou) exists (which is the case for
T A 0, see below) we are allowed to set cu =0 in (5)
and arrive at our main result for the dimensionless

Apart from the prefactor y, g has the form of the
Landauer formula where gp plays the role of the
transmission coefficient. It depends on the actual im-
purity configuration. We stress that we arrive at the
exact formula (8) without use of a multichannel
description of our interacting and temperature-
dependent system. In the noninteracting case our
result (8) [with (6) and (3)) is identical with that of
Langreth and Abrahams. '

The calculation of the weak scattering limit of gp is
now straightforward. First we note that the general-
ized force F(x) is given by 2k' density or spin-
density operators only. Working to lowest order in
the impurities we then take the 2kF response func-
tions of the pure system. In this approximation we
have for gp

3

go =—I+2my X &
dx de„( )xf„'( )xlim [N„(x—x';au) N„(x —x—';0) ]

„-p " ' P le)
(9)

Np is the 2kF charge-density response function,
N3 = X is the 2kF spin-density response

function of pure system. Averaging now lngp, as
should be done, 7 we obtain to lowest order (the aver-
aged gp is again denoted by gp)

gp —1 +2nyx —'lim [N„(0;co)—N~(0;0) ]
L . v

p f+ p lCLl

(10)

where we have introduced the mean free paths f„be-
longing to the different scattering processes. Confin-
ing our attention to the region of the interaction

g~ ~0, where the scaling theory of Ref. 5 is valid, we
put in for N„ the well-known power-law behavior as
co and T go to zero. 5 This yields

g =1—(L/l )(T/E )~ ' (gcga), T &&E, (11)

where c )0 is a result which follows from the spec-
tral representation of N„. f is the geometric mean of
the mean free paths f„. To this order, impurity po-
tential scattering ((p) gives the same contribution as
spin-flip scattering (f~, Q, Q), since the charge and
spin-density response functions diverge with the
same power.

We discuss first the behavior of the system at
T =0. Because f dx f dx'f(x, x';co) is no longer fin-
ite when we set co =0 and T =0, we cannot directly

I

use (11). But the leading singular behavior as L goes
to infinity can be inferred from (11) if we set
T = T;„(=u/L) as the smallest temperature for
which (11) still holds true. An alternative derivation
would be to set T =0 from the beginning but to give
co an imaginary part of the order of u/L. So we ob-
tain at T =0

g =1—(1k') '(k~L) c(g~,gq), k L )) I . (12)

For y & 2 the singular term is the leading term when
kFL )) 1 and one scales to a strong coupling region
as L becomes large. For y & 2 the singular term is
no longer the leading one. Going through the zero-
temperature calculation mentioned above we find a
regular term which gives a value of go(L = uu) & 1.
This in turn implies a finite conductance for L = ~
and therefore an infinite conductivity. ' This result
agrees with a previous calculation for the spinless
case4 which gave a conductivity in this range of in-
teractions, o (co) —igp/a), where gp is the value
gp(L =~).

If we express our results in terms of the P func-
tion' we have for y & 2,

P(g)= g =-(2-y) g, g-~ . (13)Bing g +1
QlnL g

It is negative and the asymptotic value P(~) depends
continuously on the interaction parameter y. In the
noninteracting case, y =1, we have P(~) =—1 in
agreement with the known result. "The sign of the
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leading correction term ( —1/g) is negative in agree-
ment with previous work but the value differs from
the exact value (—1/2g). ' For 7 & 2 the scaling
behavior of p is the same as in the noninteracting
case and we conclude that the system insulates in this
range of interactions at T =0. For y )2 we have

P(g) = —K ", as g g„=g(L =~), (14)g g~
g~

where ~ is the power of the next leading term in L '

in g. The ideal conducting behavior (see above)
manifests itself in an attractive fixed point of p.

Turning to the case T )0 in this region (7 )2),
where the weak coupling limit is valid, we find for
the conductivity with the aid of (11)

e2 e2
o =L g= —Ic(g&,—g2) '(EF/T)& '

For the spinless case, a corresponding formula was

given by Luther and Peschel. The impurity resistivi-

ty is strongly suppressed at low temperature. There
is experimental evidence of such a suppression in

one-dimensional metals which do not have a Peierls
transition. ' An alternative explanation of the
anomalous resistivity, proposed by Schulz et al. , " is a
large fluctuation regime belo~ a high mean-field
transition temperature TMF to a BCS superconductor.
We note, however, that in the model discussed here
with g~ )0 then TMF for a single chain is actually re-
duced to zero. ' In the other regime of the interaction

(7 & 2) g scales to the strong coupling limit and we
are not allowed to expand with respect to the impuri-
ties as is clear from the zero-temperature or nonin-
teracting limits. Only for very small lengths L (& l
can we apply (15).

To summarize, at T =0 we have a transition from
insulating behavior to an ideal conductor as the in-
teraction parameter y varies. At any finite tempera-
ture in the latter regime, however, we find finite con-
ductivity in contrast to conventional superconductivi-
ty.
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