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TABLE I. Calculated vs experimental N~ values for Te/Cu(100) and Te/Cu(111).

Atop Bridge Hollow Subst. Expt. '

Cu (100): 40'
90'

40'/90'

1.2
0.7
1.7

2.3
1.6
1.4

4.3
3.7
1.2

3.6
4.5
0.8

3.9+0.7
3.2 +0.6
1.2 +0.1

CU (111) 20'
90'

20'/90'

1.5
0.7
2.1

2.7
1.6
1.7

3.8
2.5
1.5

4.9
6.6
0.7

5.4+1.0
7.0 +1.3
0.8 +0.1

' See text with reference to error bars.

dence that the Te—Cu bonds are oriented very dif-
ferently with respect to the surface. We now quantify
this result.

The first NN bond lengths in the surface systems,
R ~, are determined using the phase shift of the
model compound Cu2Te and the assigned Te-Cu
distance of 2.667 A. s Allowing +0.04 A uncertainty
in the actual Te-Cu distance in this compound, we
obtain R t

=2.62 + 0.04 A for Te-Cu {100) and
2.69+0.04 A for Te-Cu(111). For both systems the
individual measurements taken at two different 8
values agreed with each (i.e., independent of model
compound) to better than +0.005 A.

The effective surface atom coordination numbers
Ns for different 8 values are determined with respect
to N =4 in Cu2Te and are compared in Table I with
the calculated absolute amplitudes (in terms of Ns)
assuming Te occupation in the highest-symmetry
sites of Cu (100}and Cu (111}according to'a

Ns = —, X (1.4/3 +0.6 ( e r;(')
I

The results for Cu (100) show that only the fourfold
hollow site is consistent with our measurements, in
agreement with an earlier LEED study. " Confirma-
tion of this is provided by comparing the experimen-
tal and calculated relative amplitudes (i.e., the ra-
tios), which avoids the uncertainties in absolute am-
plitudes introduced by reference to the model
compound"b' (this explains the smaller quoted er-
rors). We see that Te adsorption on Cu (100) is well

described in terms identical to that for I (Ref. 5) and
for other chalcogens on this and similar (100}sur-
faces.""

The amplitude data of Te on Cu (111)at 8=90 'is
greater than that at 8=2G ' necessarily implying that
the Te Cu(111) bond is-oriented predominantly within

the surface plane The unrec.onstructed closepacked
(111) surface cannot accommodate this condition
without atomic rearrangement, and the simplest one
appears to be substitutional displacement of

3
mono-

layer surface Cu atoms by Te." The resulting over-

Te/Cu (100) Te/Cu (111)

1.90

2.62

0.84

FIG. 2. Top and side views of overlayer structures for Te
(shaded) on Cu(100) and Cu(111) surfaces.

layer structure is shown in Fig. 2 along with the
structure determined here for Cu {100}-p(2x 2) —Te.
Comparison of both the absolute and relative calculat-
ed amplitudes of our suggested model with the corre-
sponding experimental values (see Table I) shows the
agreement to be very good. Note that our short-
range structural model does not attempt to account
for the observed (2J3 x J3)R30'pattern, but in-

stead predicts a simple (J3 x J3)R30'pattern. The
doubled unit cell size could be explained either by
nearly substitutional Te dimerization, surface or sub-
surface buckling, previously displaced Cu adatom
decoration, or a combination of these factors. Our
present data cannot distinguish between these possi-
bilities. Despite the lack of a complete picture for
describing the long range prop-erties of Cu (111}-
(2J3 x J3)R30'—Te, however, the extremely isotro-
pic first NN bond length and the very good absolute
and relative agreement seen in Table I both support
the essential validity of the short-range features of our
proposed model.

A strength and weakness of the SEXAFS technique
is its ability to determine only short-range structural
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information. Second and higher NN bond lengths up
to -5 A have been easily observed in bulk6 and sur-
face" "EXAFS measurements in which the number
of scattering atoms, their vibrational properties, their
backscattering probabilities, and the statistical quality
of the data were all favorable. Despite the compar-
able statistical quality of the present data to these
other SEXAFS studies, " "reliable second or third
NN substrate bond lengths were nevertheless not ob-
served, a situation similar to that found for I on
Ag{111),Cu {1ll), and Cu {100).5 From comparison
with SEXAFS data from Ni {100)-c(2x 2)—S (Ref.
13) and Cu {100)-c(2 x 2)—Cl (Ref. 14), we attribute
this result to vibrational damping between the sub-
strate and higher Z (more weakly bound) Te and 1

adsorbates. This unavoidable short-range limitation'
implies that additional measurements of Cu {111)-
(243 x J3)R 30'—Te using techniques more sensitive
to long-range properties, e.g. , LEED, surface x-ray
scattering, or high-energy ion backscattering with
blocking, would provide important complementary in-
formation on this interesting overlayer structure.

Based on a small sampling of LEED and SEXAFS
data, a previous study suggested ' that halogen-
metal surface bond lengths may be generally longer
than those in the stable bulk analogs whereas
chalcogen-metal surface bond lengths may be gen-
erally shorter. Our new SEXAFS results for
Cu {100)-p(2 && 2)—Te, along with those for Ni {100)-
c(2X 2)—S (Ref. 13) and Cu{100)-c(2x2)—Cl, '4 are
consistent with these conclusions. This remains so
despite the fact that the new SEXAFS bond lengths
are larger relative to the earlier LEED results, viz. ,
2.62 + 0.04 A. vs 2.48 + 0.10 A (Ref. 11) for Te-

Cu {100)and 2.23 + 0.02 A (Ref. 13) vs 2.19 + 0.06 A
(Ref. 17) for S-Ni {100). Because this surface versus
bulk bond length trend only considers surface data in
which the conventional highest-symmetry metal hol-
low sites are occupied, it is not surprising that R i in
the Cu{111)-(2&3Xv3)830'—Te structure does not
obey this trend. It has also been pointed out that,
in general, X-M {ill) bond lengths are shorter than
those of X-M {100)assuming conventional site occu-
pation. Following Madhukar, ' this is due to the in-
creased bond order in the threefold versus fourfold
coordinated systems. Within this framework of
correlating bond length (strength) with bond order,
the atypically longer Te-Cu {ill) bond length relative
to Te-Cu {100)provides additional support for the in-
creased sixfold versus fourfold coordination proposed
in our model of Cu{lll)-(243 x v3)R30'—Te.

In summary, we have found very different chem-
isorption behavior for submonolayer coverages of Te
on Cu {111)vs Cu {100)surfaces. An unusual over-
layer structure is proposed for Te on Cu {111)which
differs from all previously reported adsorbate-metal
structures involving medium- or high-Z adatoms.
Additional measurements using complementary tech-
niques are required to characterize its long-range
properties and to understand the driving force(s)
responsible for its occurrence.
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