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A theory developed earlier is analyzed in the strong-field quantum as well as the weak-field

classical limit for the longitudinal magnetoresistance for an anisotropic model of a multivalley

semiconductor band structure. The simple analytical expressions so obtained show a change in

the power law of the magnetoresistance as a function of magnetic field from the classical limit

(quadratic behavior) to the quantum limit (linear behavior), in agreement with the experimental

observations. The anisotropic effect which is quite important in the classical limit becomes

negligible in the quantum limit.

It is well known that at intermediate temperatures,
the acoustic-phonon scattering is the predominant
mechanism of scattering in semiconductors. ' The
theories'~ for the longitudinal magnetoresistance
(LMR) for the acoustic-phonon scattering in isotropic
parabolic semiconductors based on the solution of the
Boltzmann transport equation give no LMR in the
weak-field classical limit, but a linearly increasing
LMR is obtained in the strong-field quantum limit.
But, the experimental results for n-type germanium,
which has anisotropic ellipsoidal energy surface, indi-

cate a quadratic rise in the classical limit' and an ap-

proximately linear rise in the quantum limit6 of
LMR. It is interesting to observe from the experi-
mental results that the classical-limit LMR is not only
nonzero, but is bigger than the transverse effect.

A quantum theory based on the solution of
Liouville s equation for the density matrix for arbi-
trary values of the magnetic field was developed ear-
lier. 7 The numerical computations of the complicated
expressions so obtained show that the LMR is larger
than the transverse magnetoresistance in the classical
limit. In the theoretical development, it was found
that the longitudinal velocity operator v, is given by
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these are off diagonal in the basis representation in a
magnetic field. If this anisotropic term is neglected,
as in the approach following the Boltzmann transport
equation, a difficulty arises in the correct approach to
the zero-field limit. In this Brief Report, we derive
analytical expressions for LMR in the weak-field clas-
sical as well as the strong-field quantum limit to
study the importance of this effective mass anisotropy.

In the cubic-axis coordinate system, the longitudi-
nal magnetoconductivity o.L (o. ) in a many-valley
model of a semiconductor with ellipsoidal energy sur-
face is given by the expression'

v (n]3p + a33p, ) /me

where p„and p, are the xand zcomponents of the
momentum of an electron, n& = ( mo/m")

&&
are the

components of the normalized inverse effective mass
tensor (me/m'), and mc is the free-electron mass.
Here, (x,y, z) and (1,2,3) are used interchangeably
for the coordinate axes in the laboratory frame in
which the applied magnetic field B is along the z axis
(8 II i). Equation (1) indicates that the longitudinal
velocity operator v, is not only dependent on the
momentum component p„but also is dependent on

p„ through effective-mass anisotropy (n~3 %0).
These transverse components cannot be averaged by
the solution of the Boltzmann transport equation as
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Here i stands for the valley index, g„being the
number of valleys (g„=4 in Germanium). t)( is the
angle between the principal (longitudinal) axis of the
kh ellipsoid and the direction of the magnetic field B.
0., and nI are the principal components of the recipro-
cal effective-mass tensor in the ellipsoidal frame
(a, =12.3, a(=0.63 for n-Ge) (n.k) =(n, ky, k, )
stands for the set of quantum numbers of eigenfunc-
tions in a magnetic field (n =0, 1,2, ... is the Landau
quantum number, and k~, k, are the components of
quasicontinuous momentum wave vector k = p/ii).
s is for the two spin states of an electron. n, is the
electronic concentration, E~ is the deformation poten-
tial constant for electron-acoustic-phonon scattering,

pq is the crystal density, u is the sound velocity, and
the prime on the summation indicates that x '~'=0
when x &0.

In the limit of zero magnetic field (B 0), aL, (8)
of Eq. (2) approaches o(0) given by

This equation is an agreement with that obtained by
Abeles and Meiboom by the classical treatment.
Equation (19) gives a quadratic rise of LMR with in-
creasing magnetic field. The ratio hp'/[po((»'ro)']
= 1.4 for n-type Germanium and gives 5p'/po82 = 8.7
x 10 ' G at 77 K, where ~0=1.9 x 10 "s is ob-
tained from the zero-field mobility data. This is con-
sistent with the experimental results of Pearson and
Suhl. ' In terms of a =t(»'/k((T, the Eq. (19) can be
written as

bp/po=1. 4(k((Tro/ir )a ='512a (20)

The value of the magnetic field at which co'vo —1 is
B -4 kG which corresponds to a =0.05 at 77 K.
Equation (20) is, therefore, expected to be valid for
magnetic fields lower than 4 kG. This is indeed ap-
parent from the experimental data. In Fig. 1, we
show, on a log-log plot, the relationship between
Ap'/po vs a. The straight line (dashed) so obtained
has a slope of value 2.

The other extreme (t(»' » k((T, (»' » ro') de-
fines the quantum limit, and most of the electrons
occupy the lowest quantized level (n =0). The onset
of the strong-field quantum limit (a =4»'/k((T —I)
for the (100), (110),and

(ill�)

directions, respec-
tively, occurs at 8 = 1.01, 2.7, and 1.54 times the
temperature T, where B is in kG. At 77 K, 8 = 77.8,
208, 118 kG, respectively, for the three orientations
given above. Obviously, the quantum limit in
(100) configuration sets in at much lower values of
the magnetic field. In this limit, only n =0 level is
appreciably populated, and Eq. (2) can be approxi-

m,
"=3mo/(2n1+a3) (17)

is the conductivity effective mass.
In the classical weak-field limit (h(»(' « ks T,

(»(' (( ro') for a magnetic field applied in any of the
equivalent crystallographic (100) directions
(cos8(= I/J3 for all four (111)-oriented valleys in
n-Germanium), oL(B) of Eq. (2) reduces to
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which is consistent with Eq. (15) in the limit 8 ~0.
Here index i on ~I' is suppressed since all four val-
leys are equivalent in the (100)-configuration con-
sidered. The relative change in LMR hp'/po is then
given by
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FIG. 1. Log-log plot of the relative change in the classical
magnetoresistance hp'/pc vs a =t(» /k((T (dashed line which

has a slope of value 2) and the relative quantum magnetoresis-
tance p&/po vs a (solid line which has a unity slope ).
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and

x (t/rpksT)2, (22)

E'I(u ) J dy exp( —y)/y (23)

In semiconductors, for acoustic-phonon scattering,
the collision broadening A7p is usually much smaller
than the thermal broadening (g/roks T ((I). In n

Ge, at 77 K, ir/Toks T =0.052. In this case, the an-
isotropic effect becomes negligible, and the relative
LMR p&/po is given by the simple formula

p&(8)/p(0) = o-(0)/uL(8)

= a [(2u, +ui) (u, +2ui)/27u, ui]

=1.64a . (24)

Equation (24) shows a linear rise in the LMR with
the magnetic field. Equations (21) and (24) are valid
for all temperatures and magnetic fields in any orien-
tation provided the quantum limit is satisfied and
u~~(1) used in the evaluation of rsI", and mI' is that
corresponding to a valley with least ~'. This is be™
cause the valleys with greater eo' have been depleted
of their carrier concentration in the quantum limit
(quantum transfer effect). ' Numerical factor in Eq.
(24) will then be different for different orientations.
In an isotropic parabolic semiconductor (uI = u, = I ),
the coefficient of a in Eq. (24) is —, . Equation (24)
is an agreement with the expression obtained by Mill-
er and Omar, where the anisotropic effect was ab-
sent because of the use of the Boltzmann transport
equation. The value of p&/poa =1.64, is in agree-
ment with the high-field experimental data. When

mated' to give the analytical expression

ui(8) =27uoa-'[(2u, + ul) (u, +2uI) ]

x [uru, +(4/81n)(u, —uI)2

x (h'/books T)2exp(u, ) Et(u, ) ], (21)

with
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plotted on a log-log scale, pa/po versus a relationship
is represented by a straight line which has a unity
slope (solid line in Fig. 1).

A point regarding the correct use of the Boltzmann
transport equation for high-field transport needs a lit-
tle clarification. For an isotropic parabolic band
model, the anisotropic term is absent (u~3=0). The
matrix elements of u, of Eq. (I) are then diagonal
and can be properly averaged by the distribution
function obtained from the Boltzmann transport
equation. This distribution function is the diagonal
matrix element of the more complete density matrix.
When n~3 W 0, the matrix elements of v, contain ma-
trix elements (n'k'~ p„~ nk), in addition to diagonal
matrix elements of p, . (n'k'/p„~ nk) is nondiagonal
in the basis representation (nk), ' and gives zero for
the expectation value of p„ if the Boltzmann trans-
port function is used. But, if the density matrix is
used, which is also nondiagonal in the basis represen-
tation, a nonzero expectation value of p„ is obtained.
This is precisely what we have for the anisotropic
term above. In the classical limit, this term is quite
important as this makes o.

L (8)/o. (0) = I in the limit

8 0. If this anisotropic term is absent, ~

o L(B)/o (0) =0.2. But, for high fields, this aniso-
tropic term is negligible, confirming the correctness
of the theory of Miller and Omar' in analyzing the
high-field LMR experiments.

V'e have thus shown that the general theory
developed earlier extrapolates very well to the weak-
field classical and the high-field quantum limit
behavior of the LMR in a many-valley semiconduc-
tor. The anisotropic part of the magnetoconductivity
which gives the nonzero LMR in the classical limit is
found to be negligible in the quantum limit.
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