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Hydrodynamic models of surface plasmons on clean metal surfaces are studied for various
choices of additional boundary conditions and of equilibrium electron density profile. Both in-
trinsic and correctable defects of an approach based on hydrodynamics are illustrated. We con-
clude that for a clean metal surface, a hydrodynamic model of surface plasmons should only be

used with considerable caution.

In a recent paper! we studied the dispersion and
external coupling of phonons at metal surfaces. Our
theoretical approach was based on hydrodynamic
equations and required at an abrupt surface the impo-
sition of additional boundary conditions ABC’s. We
found that the derived results depend sensitively on
the choice of ABC’s and that the only satisfactory
choice in the phonon energy range was that at a free
surface, zero stress act on both the electrons and the
ions. This ABC is the usual one of continuum elasti-
city theory? for atom motion, but it has not been ap-
plied before to electrons, where the usual choice is
that of zero normal current.

The initial aim® of this note was to examine the
implications of this new ABC for electrons at
plasmon frequencies, where the ion motion is negligi-
ble. As we describe below, the results at the simplest
level are encouraging but there are definite
anomalies; i.e., qualitative disagreements with experi-
ments. When we make systematic improvements in
the model some of these anomalies are removed, but
new ones also appear. We finally are led to conclude
that an approach to surface plasmon oscillations at a
clean metal surface using hydrodynamic equations
and any ABC is not quantitatively trustworthy and is
often even qualitatively wrong. The continued use of
such an approach requires at the least that one be
aware of its intrinsic defects. We shall briefly illus-
trate these here. A similar criticism of the hydro-
dynamic model has been recently published by
Ahlqvist and Apell.*

Our basic method of calculation is the same as be-
fore! except that we omit all reference to the ions.
The electrons in the metal are described by the hy-
drodynamic equation
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while the (longitudinal) electric field E is determined
by Poisson’s equation,
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The phenomenological parameters in (1) are the plas-
ma frequency of bulk metal, w,, and the spatial
dispersion parameter 8. The dimensionless function
f describes the one-dimensional variation of the
equilibrium electron density through the surface re-
gion.

By adopting (1)—(3) as our basic equations we
have already dodged several questions of quantita-
tive, but not generally qualitative, importance for the
application of the hydrodynamic model. We mention
these points here for completeness and have in fact
investigated their numerical consequences™>; but for
the sake of simplicity we will omit them in this paper.
The first is that we work in the electrostatic limit, as-
suming in effect that the speed of light is infinite.
Second, we ignore any damping, either of the Ohmic
or Landau type. The former is omitted for simplicity;
the latter is beyond the scope of the hydrodynamic
model. Third, we assume that a linearized treatment
is sufficient and further we neglect the effect of
zero-order terms in (1). Thus the possibility of an
equilibrium electric field influencing (1) is ignored.5
Fourth, the spatial dispersion is described by a single
number, 8, and we shall not even assign it a value.
Instead we use the screening wave vector, k;=w, /8,
as a scale factor. This avoids the ambiguity about the
value of B, its possible frequency®® and/or spatial
variation.'® The latter possibility also raises the ques-
tion of the proper functional form of the last term in
(1). For example, if 8 is position dependent, on
which side of the gradient should it appear or is there
a more general expression for the pressure
term?*1112 We ignore these dilemmas here by
representing the electron pressure (stress) simply by
B*8p with B constant, even though f varies.

Our method of solving (1)—(3) is either that of
Boardman et al.!* when f has a stepwise variation or
that of Bennett® when f varies smoothly. In either
case one seeks at fixed frequency w and parallel wave
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vector (_j eigenmodes that are localized at the surface.
After reducing (1)—(3) to a fourth-order differential
equation® for ¢, the electrostatic potential, we either
write down® !> or numerically generate® the several
independent partial-wave solutions whose relative
coefficients are determined by boundary conditions at
points of discontinuity or vanishing of /. Two of the
boundary conditions are standard: (1) that ¢ is con-
tinuous and (2) that the normal component of the
electric displacement field is continuous.! However
with B finite ABC’s are also required. When fis fin-
ite on both sides of an interface we require continuity
of B26p and % - j/f, where % is the surface normal.
Thus the electron stress and the normal component
of the electron displacement are continuous. These
two together are consistent with conservation of en-
ergy through the interface,!* and are the usual
ABC’s of plasma physics!® or elasticity theory.? They
are not the ABC’s of Forstmann and Stenschke,'° as
discussed earlier."!4 At the one interface where f fi-
nally becomes zero, only a single ABC is mathemati-
cally required. We study the consequences of choos-
ing on the material side of the interface either

B¥p=0 , 4)
which we call the stress ABC, or
£-7=0, Q)

which we call the current ABC. Rather than repeat
the possible physical justification for these choices,!
we illustrate their effect in several model calculations.
These results are shown in Fig. 1 for the stress
ABC and in Fig. 2 for the current ABC. In each fig-
ure four different choices for f are studied. The f
variation versus normal coordinate x is shown in the
first column. The diffuseness parameter a is deter-
mined by k;a =2. In the middle column we show
the dispersion of the surface modes that lie below the
bulk plasmons, whose lower bound is w?=w?+g2Q?
as indicated by the dashed curve. Finally the third
column exhibits the smooth part of the density fluc-
tuation associated with the eigenmode whose fre-
quency tends to w,/~/2 as Q —0. The normalization
of the 8p is arbitrary in our linearized theory. In ad-
dition there are 8-function contributions to 8p when-
ever X - T is discontinuous; i.e., at all discontinuities
and the vanishing point of f for the stress ABC and
only at x =0 in the second row for the current ABC.
Now we discuss the figures from top to bottom,
which is in the direction of more realistic choices for
f. At the simplest level f drops discontinuously from
1 to 0. For the current ABC, the resulting dispersion
which increases linearly at small Q was first derived
by Ritchie.!® The dispersionless result for the stress
ABC may be understood as follows. The only
partial-wave solution of (1)—(3) that is localized at
the surface and that allows a smooth 8p varies as
expli (Q- X — wt)1e?, where X is parallel to the sur-
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FIG. 1. Hydrodynamic model results under the stress
ABC. In the first column is the equilibrium electron density
profile; in the second the mode dispersions; and in the third
the smooth part of the charge fluctuation of the circled
mode to its left. The scales are the same within each
column, except for the abscissa in the last row of the last
column. See the text for the definition of symbols.

face, ¢ is time, and 0°= Q%+ (w}—w?)/B% When we
require 826p =0 at x =0~, we force the coefficient

of this partial wave to vanish. Indeed the only
surviving partial-wave solution in the metal is

expli (Q- X — wt)1e?, which has no 8 dependence.
Hence all the results in the first row of Fig. 1 are the
same as if B8 were zero.

When we compare the dispersion with experimen-
tal data, for example,!” the stress ABC prediction of
the first row is a better fit at low Q than the current
ABC. Since previous hydrodynamic analyses of sur-
face plasmons used only the current ABC, work-
ers® 1013 were forced to give f a less abrupt fall from
1 to 0 in order to obtain an initially flat or decreasing
dependence of w on Q at small Q/k;.

However the simple stress ABC model of the first
row also has a major defect. It predicts no plasmon
excitation in this films by p-polarized light. This
phenomenon which has been observed in various
ways!® 19 is absent theoretically because the stress
ABC at both surfaces eliminates 5p (and hence any
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FIG. 2. Hydrodynamic model results under the current
ABC, with the same format as in Fig. 1.

plasmon field) inside the film. One must resort to a
more sophisticated form of f to correct this defect, or
change the ABC.2 Thus for different reasons with
the stress or current ABC’s, we consider the remain-
ing rows of the figures.

For all of these cases plasmon excitation in thin
films is possible and there are certainly many in-
stances where o initially decreases with Q. Hence the
defects of the first row have been repaired, but at the
cost of the general appearance of a multitude of extra
modes. These have two discernable origins. First
the mode in the second row of both Figs. 1 and 2
that starts from zero is an artifact of the discontinuity
of fat x =0 interface, and depends only slightly on
the ABC at x =a. This identification derives from
the mode spectrum of an interface between two met-
als, which corresponds in the second row to letting
a — o0. One finds?! then at small Q/k; the lowest
mode varying as o « QY2 For finite a, this depen-
dence softens to w « Q as Q — 0, analogous to gravity
waves in shallow water.2? When we remove discon-
tinuities in f within the metal, as in the last two
rows, this anomalous mode disappears.

The other extra modes are not so easily removed.
Indeed, as we allow a more realistic variation of f,
they proliferate.* These modes are commonly re-

ferred to as multipole modes, while the single mode
that starts from w, /2 is called the monopole surface
plasmon.!>2 This terminology arises from an
analysis of the modes based on moments of 8p and a
low Q expansion. Although the analysis was derived
for the current ABC it may be readily generalized to
the stress ABC,’ if one also keeps track of the §-
function contributions to 8p. We do not present it
here but instead offer the interpretation that these
extra modes are simply standing plasma waves
trapped in the selvedge. This is most clearly seen in
the second row case where the condition for the first
appearance of a multipole mode at w =w, and Q =0
is

pa=mm/2 , )

where p?= (0?— w?)/B? with w, as the “‘bulk”
plasmon frequency of the selvedge. Thus p is the
wave vector in the self-edge of a plasmon at w = w,.
The integer m in (6) is even (odd) for the stress
(current) ABC. Zero is an even value so at least one
multipole mode is always present with the stress
ABC, while a critical size of a (i.e., diffuseness) is
needed to find the first such mode with current ABC.
In the second row of Fig. 2, a multipole mode has
just appeared and it only survives over a small Q
range.

This qualitative behavior is also apparent in the last
two rows where the stress ABC multipole modes are
in general more numerous and at lower frequency.
For the third row of Fig. 2 a multipole does not ap-
pear until k;a = 2.88, in qualitative agreement with
Bennett’s results.® It is worth remarking too that the
striking difference in the §p of the monopole mode
between the second and third row of Fig. 2 is also a
consequence of standing-wave resonance, since
roughly a quarter wave is trapped in the selvedge.

This allowance of standing plasmon waves in the
selvedge region is a serious flaw of the hydrodynamic
model for a clean metal surface.* The number of
multipole modes and the number of nodes in the
monopole 3p depend sensitively on where one finally
lets f be zero. In the fourth row f decays exponen-
tially (as e=>/% for x > a/2) out to x = 6a where it
drops to zero. Extending this cutoff point merely
produces more modes and nodes.?* Allowing 8 to
decrease with x only worsens the situation.*® It
seems that the only way to remove this behavior is to
include wave-vector—dependent damping, but it is
not clear to us how in a hydrodynamic model this in-
troduction of Landau damping may be done in any-
thing less than an ad hoc manner. Thus for a clean
metal surface it is probably best not to allow f to be
too realistic (i.e., to extend too far), with the con-
comitant realization that fitting experimental data to a
surface profile such as in the middle two rows gives
little insight into either the proper choice of ABC’s or
the true shape of f. The situation is better if one is
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dealing with metal layers, where standing-wave
plasmons have been found both in more sophisticat-
ed theories? and in experiments.!®!° It is just when
the overlayer corresponds to the intrinsic diffuseness
of a free-metal surface that the hydrodynamic predic-
tions become quite dubious.
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