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Striking differences in the boundary-scattered phonon conductivity and effective pho-

non mean free path are predicted along the principal axes of cubic crystals. The results

are shown to be the result of phonon focusing arising from elastic anisotropy. Normal-

ized curves of boundary-scattered effective phonon mean free path and phonon conduc-

tivity have been calculated for samples of square cross section as a function of the elastic

anisotropy, A =2C44/(Cii —Ci2), and the elastic ratio, Ci2/C~~. Normalized curves of
phonon specific heat and effective velocity have been calculated as a function of the same

variables. The effective phonon mean free path has also been calculated as a function of
the sample side-face —thermal-length ratio, D/L. Anisotropies of more than 50%%uo are

possible for different rod axes. Silicon and calcium fluoride, materials in which this an-

isotropy was first reported, are shown to be very favorable materials to demonstrate this

anisotropy. For silicon and calcium fluoride samples of rectangular cross section the
thermal conduction is shown to depend upon the crystallographic orientation and width

ratio of the side faces for samples with the same (110) rod axis. Results are expressed

in a convenient form for predicting the phonon conductivity of elastically anisotropic

crystals, given the linear dimensions, the density, and the elastic constants.

I. INTRODUCTION

Thermal energy in dielectric solids is carried by
phonons. At sufficiently low temperatures the
phonons propagate ballistically so that in the ab-
sence of defect or impurity scattering, the mean
free path becomes limited by the linear dimensions
of the sample. ' A theory of the thermal con-
ductivity applicable to this temperature range was
first developed by Casimir. ~ Corrections to
Casimir's theory have been derived for samples of
finite length 6 and for samples in which a fraction
of the phonons are specularly reflected from the
end surfaces. Calculations using the Casimir
theory, although in qualitative agreement with ex-

periments, nevertheless neglect the effects of elastic

anisotropy upon ballistic-phonon propagation.
Heat-pulse experiments, however, have shown

striking differences (up to factors of 100) in the in-

tensity of phonons propagating ballistically in an
elastically anisotropic crystal. ' These results were
shown to arise from phonon focusing owing to the
fact that in elastically anisotropic crystals the pho-
non constant-energy surfaces in wave-vector space
are nonspherical. The phonon phase velocity is
parallel to the wave vector k, but the group veloci-

ty is normal to the constant-energy surface in k
space. The group velocity or direction of energy
flow is therefore not, in general, parallel to the

phase velocity. ' The angular deviation between
the phase and group velocity depends upon the
direction of the wave vector k, the phonon polari-
zation, and the elastic anisotropy. Phonon focus-
ing occurs whenever the direction of the group
velocity varies more slowly over some small solid
angle with wave-vector direction than for an elasti-
cally isotropic solid, so that an isotropic distribu-
tion of wave vectors such as that emitted by an
ideal heat source gives rise to an increased density
in group-velocity space. Since the energy flow is
in the direction of the group velocity (i.e., normal
to the constant-energy surface in k space) an
enhanced energy flow occurs about any strongly
focused directions. ' The observed phonon intensi-
ties depend not only upon the propagation direc-
tion and the polarization but also upon the detector
size and shape, " and in high-resolution experi-
ments upon specular and diffuse phonon reflec-
tions.

The thermal conductivity in the boundary-
scattering region is approximately inversely propor-
tional to the square of the phonon velocity. The
slower modes, therefore, contribute most to the
flow of heat. It thus follows that any strong
enhancement of the thermal conductivity due to
phonon focusing arises primarily from strong
focusing of the slower-velocity transverse modes.
The strongest phonon focusing occurs along direc-
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tions where the group-velocity surface exhibits
cuspidal edges or cuspidal onset.

Calculations for silicon and calcium floride
showed strong focusing of transverse waves in sil-
icon about the (100) axes and in all directions in

I 100I planes, and in calcium fluorides about the
(111)axes and in all directions in I 110] planes. 'i
The strong phonon focusing in silicon is due to the
presence of cuspidal edges about the (100) axes
and very narrow cusps about the I 100[ planes. In
calcium fluoride, with contrasting elastic anistropy,
the strong focusing is due to narrow cusps around
a collinear axis near the (111)direction in the

I 110) plane and wider cusps about the I110I
planes. The wider cuspidal surfaces in calcium
fluoride result in lower phonon intensities and
sinaller expected anisotropies in the thermal con-
ductivity.

Subsequent measurements of the thermal con-
ductivity of silicon and calcium fluoride demon-
strated clearly observable anisotropies at all tem-
peratures below the thermal-conductivity max-
imum. '3' The thermal conduction for samples of
square cross section was found to depend upon the
crystallographic orientation of the rod axis, the
variation being as much as 50% for silicon and
40% in calcium fluoride. For silicon the thermal
conductivity of (100) axis rods was highest, that
of rods with (111)axis lowest. For calcium
fluoride the thermal conductivity of (111) axis
rods was highest, that of rods with (100) axis
lowest, in contrast with silicon. For samples of
rectangular cross section the thermal conduction
was found to depend, in addition, upon the orienta-
tion and width ratio of the side faces, the variation
being as much as 30% for silicon samples with the
same (110) rod axis. ' The sample having the
wider-side face in the I 100[ plane exhibited a
higher conductivity than the rod with the wider-
side face in the I 110I plane. All of these results
were consistent with phonon-focusing calculations.

The predictions of Casimir's theory, end correct-
ed for finite thermal length and generalized to in-
clude phonon focusing, gave quantitative agree-
ment with experimental results without using any
adjustable parameters. More recent measurements
of the thermal conductivity of lithium fluoride'
and diamond' ' were qualitatively consistent with
those expected from phonon-focusing considera-
tions. Similar anisotropies in the thermal conduc-
tivity have been predicted in sufficiently defect-free
superconducting lead and niobium at T/T, « 1.'

Phonon-focusing effects have also been studied
in elastically anisotropic hexagonal, ' tetragonal

and orthorhombic, and trigonal and monoclinic
crystals. ' Calculations have recently been pub-
lished for diamond, germanium, and silicon,
aluminum oxide and a-quartz, and gallium ar-
senide. " Effects of phonon focusing have been
recently observed in heat-pulse experiments in solid
He, diffuse and specular phonon-reflection ex-

periments in AlqOi, ' ' interaction of ballistic pho-
nons in the electron-hole liquid in germanium,
imaging of electron-hole droplets ' ' ' and ballis-
tic phonons in germanium, ' imaging of pho-
non distributions in silicon using the fountain pres-
sure of superfluid He films, and photoexcitation
experiments in GaAs and Alp 5Gap 5As.

Expressions for the phonon-focusing amplifica-
tion factor were originally derived by Maris. '

Amplification factors have also been derived for
collinear directions in the hexagonal' and the
orthorhombic lattice. ' Alternative expressions
suitable for numerical computation have also been
given for arbitrary directions in k space. Philip
et al. have shown that the inverse phonon-
amplification factor is proportional to the Jacobian
of the transformation relating the polar angles of
the group velocity to those for the phase velocity.
An alternative expression has been given by Lax
et al. " in terms of the Gaussian curvature of the
energy surface, the wave vector, and the angular
deviation between the phase and group velocities.

Calculations for silicon and calcium fluoride
have recently been generalized to include elastically
anisotropic materials of any crystal structure.
Boundary-scattered thermal conductivities have
been calculated for a number of materials includ-
ing A120& and a-quartz. ' Only results for cubic
crystals, however, are presented here. In Sec. II
the relation between the phase- and group-velocity
directions and phonon focusing is discussed for
elastically anisotropic crystals. Normalized calcu-
lations of phonon specific heat, effective velocity,
boundary-scattered mean free path, and phonori
conductivity are presented as a function of the
elastic anisotropy factor in Sec. III in a form easily
comparable with experiment. The results are dis-
cussed in Sec. IV.

II. PHONON FOCUSING EFFECTS
OF ELASTIC ANISOTROPY ON PHASE-
AND GROUP-VELOCITY DIRECTIONS

IN SYMMETRY PLANES

The elastic properties of a cubic crystal can be
characterized in terms of the second-order elastic
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constants, C&~, C44, and C&2. Maris' has shown
that the phonon-focusing properties of elastically
anisotropic crystals can be determined from the
elastic ratios Ct2/Ct t and C4s/C». A representa-
tive sample of elastic solids with widely differing
elastic ratios are shown in Fig. 1. The anisotropy
factor A, is defined as

A =2C44/(Ct) —C)s }

and is unity for elastically isotropic crystals.
In an elastically anisotropic crystal the phonon

phase-velocity surfaces are nonspherical (see Table
I} so that the phase and group velocities are col-
linear only along certain directions. The angular
deviation between the phase- and group-velocity
directions depends upon the polarization, the elas-
tic anisotropy, and the direction of the wave vec-
tor. This is clearly illustrated for wave vectors re-
stricted to the I 100j and (110j symmetry planes
of a cubic crystal in Figs. 2 —6. If the wave vec-
tors are confined to a particular symmetry plane,
then by symmetry the corresponding group-
velocity vectors are restricted to that same symme-

try plane. The symmetry plane in this case is said
to be cusp-free if d8kld8„&0, and exhibits cusp-
free phonon focusing wherever d8kld8„& l.20

Cuspidal onset in a symmetry plane (i,e.,
d8„/d8k =0 at 8„=8k) is thus associated with
very high focusing about 8„=8k. High focusing is
also associated with cuspidal extrema where

~
d8„/d8k

~

&&1. Conditions for cusp-free phonon
focusing for wave vectors in symmetry planes have
been derived by Winternheimer et al. Conditions
for cuspidal onset have been derived by Mus-

grave, ' Maris, ' and Winternheimer et al. , and
are plotted as curves C1 through C5 in Fig. 1.
Cuspidal onset can occur about the (100) direc-
tions in both the (100j and I 110j planes (curves
C3 and C4, respectively), about the (110) direc-
tions in both the t 100j and t 110j planes (curves
C2 and C5, respectively}, or about a direction

(8, ) with respect to the (100) axis in the 1 110j
plane (curve C 1). Angle 8, is given by

tan8, =[2(C»+C»)/(C»+3C»+2C44)]' '

l.o

0.5

I l
l I I

lo 4 2
c, )

2

and is usually not far from the (111)direction.
Cuspidal features in the group-velocity surface for
the longitudinal mode are nonexistent. 20, 36—39

Note that for A+1, the two transverse modes
have different phase velocities along the (110)
axis (Table I) so that this direction can be used to
identify the two phase-velocity surfaces. For con-
venience in this paper, the phase-velocity surface
having ps =(Ct t

—C~q)/2 along the (110) axis is
designated S 1; the surface having ps =C44 along
the (110) axis, designated S2. If A & 1, surface
S1 has the smaller transverse phase velocity in the
I110j plane between the (100) and (111)direc-
tions, and the larger velocity in the I 1 loj plane be-
tween the (111)and (110) directions. The con-
verse is true in the I 110j plane for A & 1. The

FIG. 1. Representative sample of elastic sohds with
widely differing elastic ratios Ci2/Ci~ and C44/Cii.
The slightly curved loci, C1—C5, are conditions for
cuspidal onset about collinear directions in the I 1 loj
and t 100j symmetry planes. They are defined as fol-
lows: C I is cuspidal onset about a direction, (8, ), with
respect to the (100) axis in the I 110j plane; C2, cuspi-
dal onset about the (110) direction in the I looj plane;
C 3 cuspidal onset about the ( 100) axis in the I 100j
plane; C4, cuspidal onset about the (100) axis in the

I 110j plane; C5, cuspidal onset about the (110) axis in
the I 1 loj plane. The straight A lines are labeled ac-

'

cording to their anisotropy factor.

TABLE I. Values of ps for the longitudinal (L) and the two transverse (T) modes for
the principal directions in cubic crystals in terms of the second-order elastic constants.

2 2 2Axis pSL ps' pST

( ioo) Ci 1

(110) (c„+c„)/2+c„ (Cii —Cip)/2
(»1) (Cii+2Ci2+4C44)/3 (C)i —Cig+C44. )/3 (Ci) —C)2+C44)/3
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FIG. 2. Relation between the direction of the wave
vector and the group-velocity vector in the I 100I sym-

metry plane for the two transverse modes. The col-
linear, straight-line relation applies to the phase-velocity
surface, designated S2 in the text, and is independent of
the anisotropy factor A. The relation for surface S1 de-

pends not only upon the anisotropy factor, but also upon
the elastic ratio C~2/C~~. Note the pronounced cuspidal
features about the (110) axis for A & 1/1.5, and about
the (100) axis for A & 1.5 not exhibited for this surface
in Fig. 4. Values of Cl2/C~& are 0.1 for A=0. 1 and
0.25 (dotted locus), 0.5 for A =0.25 —2, and 0.9 for A =4
and 10.

cusps about the (100) and (110) axis in the

I 100j plane are associated with the phase-velocity
surface Sl; the cusps about the (100), (110),and

(9, ) directions in the I 110j plane are associated
with the surface S2.

Narrow cuspidal edges about the (100) axes ex-
hibit fourfold symmetry, are localized and give a
high phonon intensity along the (100) directions.
Narrow cuspidal edges about the (110) axes, how-

ever, exhibit twofold symmetry and give sharp,
knife-like ridges of phonon intensity along a wide
angle in either the I 110j or [ 100j planes, depend-

ing upon the elastic anisotropy. ' For A & 1, these
long ridges occur in the [ 100j planes, but for

WAVE-VECTOR DIR ECTION, 8K (deg)

FIG. 3. Relation between the direction of the wave

vector and the group-velocity vector in the I 110j sym-

metry plane for the transverse surface designated S2 in

the text. The relation is dependent not only upon the
anisotropy factor but also upon C~2/C~~. Note the pro-
nounced cuspidal features about the (110) axis for
A & 2 not exhibited for this surface in Fig. 2. Note also
the pronounced cusps near the (111)direction for
A &0.5. Values of C~2/C~~ are 0.1 for A=0.1, 0.5 for
A=0.25 —2, and 0.9 for A=4 and 10.

A & 1, they occur in the I 110j planes. This is il-
lustrated for an isotropic distribution of wave vec-
tors such as that emitted by an ideal heat source in
silicon and calcium fluoride, Figs. 7 and 8, respec-
tively. ' In both figures the heavy dark areas are
bounded by cuspidal edges in the transverse
group-velocity surfaces giving rise to strong pho-
non intensities. The cuspidal features for A ~ 1

about the (110) axis are associated with surface
S2, and extend over a wide angle in the {100j
plane. These cuspidal surfaces are generated by
wave vectors which lie near, but straddle both sides
of the I 100j plane, and thus are not displayed
when wave vectors are restricted to I 100j planes.
Conversely, the cuspidal features about the (110)
axis associated with S1 and which, for A & 1, ex-
tend over a wide angle in the I 110j plane are not
displayed by wave vectors restricted to I 110}
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FIG. 4. Relation between the direction of the wave
vector and the group-velocity vector in the I 110j sym-
metry plane for the transverse surface designated S1 in
the text. Note that the relation is independent of
C]2/C]& ~ Note also that no cuspidal features are
displayed because wave vectors are confined to the
t110j plane.

WAVE- VECTOR DIRECTION, 8K (deg)

FIG. 6. Relation between the direction of the wave
vector and the group-velocity vector in the t 110j sym-

metry plane for the longitudinal mode. The relation is
dependent not only upon the anisotropy factor but also
upon C~p/C&i. Values of Ci2/C~~ are 0.1 for
A =0.1 —1, 0.5 for A =1.5 and 2, and 0.9 for A =10 and
15.
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planes (Fig. 4). The high-phonon intensities result-

ing from conditions near cuspidal onset about the
(110& axis in the I 100j plane are illustrated for
the (a) slower, (b) faster transverse modes in Figs.
9(a) and 9(b). Note, however, that the cuspidal on-
set is associated with surface S 1 and gives rise to
high intensities in the {110j planes. Since these
planes intersect along the (111)axes, an enhanced
phonon intensity occurs along these directions. A
brief qualitative description of phonon focusing for
each of the phase-velocity surfaces follows.
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FIG. 5. Relation between the direction of the wave

vector and the group-velocity vector in the t 100j sym-

metry plane for the longitudinal mode. The relation is
dependent not only upon the anisotropy factor but also
upon C~2/C~i. Values of Ci2/C~& are 0.1 for
A =0.1—1, 0.5 for A = 1.5 and 2, and 0.9 for A =10 and
15.
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FIG. 7. Simplified schematic diagram illustrating
phonon focusing for the two transverse modes of a cubic
crystal with the elastic anisotropy factor A of silicon.
Directions of high-phonon intensity are given by con-
structing lines from the origin to the heavy dark areas.
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A. Transverse waves

1. Surface Sl
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FIG. 8. Simplified schematic diagram illustrating
phonon focusing for the two transverse modes of a cubic
crystal with the elastic anisotropy factor of calcium
fluoride. Directions of high-phonon intensity are given
by constructing lines from the origin to the heavy dark
areas.

Note that for A & 1, focusing occurs about the
(100) axis in the {110I plane (Fig. 4}. The
strongest focusing about the (100) axis occurs in
the {100I plane (Fig. 2} for cuspidal onset condi-
tion C3. Defocusing occurs for A & 1, however, in
the {100[ and {110I planes along the (110) direc-
tion. For A & 1, focusing occurs about the (110)
direction in the {110I plane (Fig. 4}. The strongest
focusing about the (110) axis occurs in the {100I
plane (Fig. 2} for cuspidal condition C2. Defocus-
ing, however, occurs for A & 1 about the (100)
direction in the {100[and {110[planes.

2. Surface S2

l2 I I

(a) S LOW E'R T

Since the group and phase velocities are collinear
in the {100Iplane, the strongest focusing about
the (100) axis occurs in the {110I plane (Fig. 3}
for cuspidal condition C4. Similarly, the strongest
focusing about the (110) axis occurs in the {110[
plane for cuspidal condition C5. For A & 1, how-
ever, strong defocusing occurs in the {110I plane
about the (100) and (110) directions (Fig. 3}. In
this case the strongest focusing occurs in the {110I
plane about the (8, ) axis for cuspidal condition
C1.

90

C It 0) ( b) FASTER T

90 e 0

FIG. 9. Computer plotted profiles of phonon intensi-

ty near cuspidal condition C2 for transverse waves hav-
ing (a) slower and (b) faster phase velocities, respective-
ly. Since 8 and P are the spherical polar angles the
(100) directions occur at 8=0, 0&/ &45, and 8=90,
/ =0; the (110) directions at 8=45, /=0, and 8=90,
/=45; the (111}directions at 8=54.74, /=45. The
sharp ridges of high intensity arise from cuspidal onset
of surface S 1 about the (110) axes. Note that the high
ridges appearing in {110{planes, {b},continue in (a} to
the (100) axes. The serrated appearance of the ridges
is due to the coarse 1' mesh used in k space to generate
the group-velocity distribution and the coarser 2' incre-
ment to the plotter.

B. Longitudinal waves

For small A, the focusing occurs about the
( 100) axis in the {100) and {110I planes, Figs. 5
and 6, respectively. For large A, the focusing oc-
curs about the (111)directions (Fig. 6}. Focusing
about the (110) direction, however, depends upon
the relative strengths of the focusing and defocus-
ing ocurring in the two intersecting symmetry
planes, respectively. For large A, the focusing oc-
curring in {100) planes (Fig. 5} is stronger than
the defocusing in {llOJ planes (Fig. 6} so that a
net enhancement of longitudinal phonons results
about the (110) direction. For small A, however,
the defocusing in {100I planes is stronger than the
focusing in {110] planes and a net depletion of
longitudinal phonons occurs about the (110)
direction.

III. CALCULATIONS OF EFFECTIVE PHONON
MEAN FREE PATH, EFFECTIVE VELOCITY,

SPECIFIC HEAT, AND PHONON
CONDUCTIVITY

Calculations of the boundary-scattered phonon
mean free path A,ff for cubic crystals as a function
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of the elastic anisotropy factor A are performed us-

ing Eq. (3):
O

&IOO& AXIS

0/L ~ O. I

A,ff=3ir/(C„u, ff) . (3) r
I-

1.5-a.

~ is the end-corrected thermal conductivity for
samples of square cross section with side dimen-
sion D and thermal length L, ' ' and C„ is the
specific heat per unit volume. The thermal length
of the sample is defined as the length of the ther-
mal gradient produced along the heat-flow axis in
a conventional thermal conductivity measure-
ment, ' ' and thus is usually less than the overall
length of the sample. The effective velocity u,ff is
defined as

3

"ff g( Iu Is '&«sj (4)
j=1

where ( I
u

I
s ) is the direction average of the

phonon group velocity times the inverse cube phase
velocity for polarization j. The Casimir velocity

uc is defined as

3

Ug = sj sj

and is smaller than u,ff except for elastically isotro-
pic crystals. Dimensionless values of A,ff/D for
samples of square cross section are plotted in Figs.
10—18.

Z0
z
0
a. I.O-

I I

0 3
I I I I I I I I I I I I I I I I I I

I 3 IO

ELASTIC ANISOT ROPY FACTOR, A

FIG. 11. Dimensionless boundary-scattered phonon
mean free path A,ff/D for the (100) heat-flow axis as a
function of the elastic anisotropy factor A and the ratio
C»/C». Calculations apply to samples of square cross
section with D/L of 0.10. Side faces are oriented in
[100I planes.

Calculations of the specific heat C„and effective
phonon velocity u,ff as a function of the elastic an-
isotropy factor A are given in Figs. 19 and 20,
respectively. Results are displayed in dimension-
less units as C„/(C„) and v,ff/(uc ), respectively,
where (C„) and ( vc ) are the specific heat and
Casimir velocity, respectively, calculated using the
phase velocities along only the three principal axes
of the crystal. The specific heat is given by

3

C„=(2Ir /15)ks(ka T/Iri) g (sj ),
j=1

&IOO&

IR II
= 0-

& II 0& AXI S

0/L $ O. I

20
z0r
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I I I
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E LASTIC ANISOTROPY FACTOR, A
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z
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a- I.O-

~ o.s.
0.7

0.5

FIG. 10. Dimensionless boundary-scattered phonon
mean free path A,g/D for cubic crystals as a function
of the elastic anisotropy factor A for heat-flow axis

along principal directions. Calculations apply to sam-

ples of square cross section with side dimension D, ther-

mal length L, and D/L of 0.10. The value of C»/C»
was 0.3 for A (4 and 0.9 for A )4. Side-face orienta-
tions are I100J for the (100), I110I and I100I for the

(110),and I110J and I112) for the (111)heat-flow

axes.

I I I

0.3
I I I I I I I I I I I I I I I I I I

I 3 IO

ELASTIC ANISOTR0PY FACTOR, A

FIG. 12. Dimensionless boundary-scattered phonon
mean free path Acff/D for the (110) heat-flow axis as a
function of the elastic anisotropy factor A and the ratio
C»/C». Calculations apply to samples of square cross
section with D/L of 0.10. Side faces are oriented in
I110I and (100] planes.
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FIG. 13. Dimensionless boundary-scattered phonon

mean free path A,fq/D for the (111)heat-flow axis as a
function of the elastic anisotropy factor A and the ratio
Cl2/C». Calculations apply to samples of square cross
section with D/L of 0.10. Side faces are oriented in

]110] and ]112] planes.

X0
X I.Or

4J

O
LU
h.
Lt.
Ltl

0.1 0.2

O
l.5

C

I-
Q

LLI

UJ

K
h.

FIG. 15. Dimensionless phonon mean free path
A ff/D for the ( 100) heat-flow axis as a function of
D/L and the elastic anisotropy factor A. The value of
Cl2/C» was 0.5 for A =2, 2.5, and 3, and 0.9 for A = 4,
6, and 10. Calculations apply to samples of square cross
section with side dimension D, thermal length L, and
[100] side faces.

where (2H/15)ks(ks/A) is equal to 40.77
GJK-4s-'. Thus

3

c./(c. ) = g (s, ')/(s, '), (7)
Z
O
Xo I.O
Z
Q

tel

I-
O
LLJ

4
U

LLJ

I

O. I

I

O. Z 0 5 0.4

FIG. 14. Dimensionless phonon mean free path
A,ff/D for the (100) heat-flow axis as a function of
D/L and the elastic anisotropy factor, A. Calculations

apply to samples of square cross section with side di-
mension D, thermal length L, and I 100] side faces.

and

3

j=1

where (sj )3 and (sj )3 denote the arithmetic
averages over the (100), (110),and (111)direc-
tions of the inverse square and inverse cube phase
velocity, respectively, for mode j. Expressions for
ps, where p is the density, are given for the three
principal axes of the cubic lattice in Table I.

Calculations of a for samples of square cross
section are given in Figs. 21 —23. Values of a for
silicon and calcium fluoride samples of rectangular
cross section and varying side-face-width ratio are
given in Figs. 24 and 25, respectively. These re-
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FIG. 16. Dimensionless phonon mean free path
Adr/D for the (100) heat-flow axis as a function of
D/L and the elastic anisotropy factor A. Calculations

apply to samples of square cross section with side di-
mension D, thermal length L, and {100j side faces.

suits are expressed in dimensionless units as
«/(«c), where (~c ) is the Casimir thermal con-

ductivity for infintely long, elastically anisotropic
crystals defined here as

)=-, (C.)( )A . (9)

(C„) and (uc) are the approximate specific heat
and Casimir velocity, respectively, for elastically
anisotropic crystals given in Eqs. (7) and (8), and

Ac is the Casimir length for rods of infinite ther-
mal length. For rods of circular cross section with
diameter D

(10)

but for rods of rectangular cross six:tion with side-
face-width ratio n and sides Di nD and——
D D13,142=

(n i /2D /4) {3n i /21n [n
—i + (n

—2 + I )
i /2 ]

+3n ln[n +(n +1) ]

(n +n')'"+ n'"—
—(n '+n )' +n j (11)

FIG. 17. Dimensionless phonon mean free path
A ff/D for the ( 1 1 1 ) heat-flow axis as a function of
D/L and the elastic anisotropy factor A. The value of
C~2/Cl~ was 0.3 for A =1/1.8, 1/1.4, 1/1.2, 1, and 1.6;
0.5 for A =2; and 0.9 for A =4, 6, and 10. Calculations
apply to samples of square cross sections with side di-
mension D and thermal length L. Side faces ai'e orient-
ed in {110jand {112]planes. The reversed trend for
A =4, 6, and 10 is also evident in Figs. 13 and 23.

For rods of square section Eq. (11) reduces to

~c=& &&5D (12)

For elastically isotropic crystals A =1, and the
end-corrected thermal conductivity « /(«c ) =0.915
for D/L =0.1

Calculations of «were performed with double
precision on a digital computer using Casimir's
theory generalized for end effects and phonon
focusing. ' ' The details are essentially the same
as those already described elsewhere. '3 Phase and
group velocities for each mode were calculated for
a large number of different wave-vector directions
k in a hemisphere, the polar axis being parallel to
the heat-flow (100) axis of the sample and the
side faces oriented in {100j planes. Results for
heat flow along the (110) and (111)directions
were obtained by coordinate rotations so that one
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FIG. 18. Dimensionless phonon mean free path
A ff/D for the ( 1 1 1 ) heat-flow axis as a function of
D/L and the elastic anisotropy factor A. Calculations
apply to samples of square cross section with side di-
mension D and thermal length L. Side faces are orient-
ed in {110{and {112]planes.

8;=rrlp b8/2, —

p;=b, 8/2 .

(13)

(14)

& small multiplicative correction, (4n/m)sin8, was
applied to the partial summation in each full scan
over P at constant 8 before changing to a new
value of 8. This helped to eliminate any effects
arising from the slight nonuniformity of wave-

side face, respectively, was oriented in the j 110[
plane. The numerical integration over all k re-
quired to obtain the thermal conductivity was per-
formed using a uniform density of wave vectors.
The number of k vectors per unit solid angle was
maintained nearly constant over the entire hemi-
sphere by increasing the azimuthal mesh size hP
while decreasing the polar angle 0. The mesh size
b8 was 2 rr/n, where n is an integer, and the mesh

size b,P was 2~/m, where m is the nearest integer
to 4n sin8. The direction of the wave vector was
scanned over P and 8, respectively, from initial an-

gles (8;,P;) given by

vector density. This correction though most signi-
ficant near the pole made little difference, however,
in the final results.

Preliminary calculations of phonon conductivity
were performed for D/L =0.1 using a mesh size
b.8 of 3' with 2292 different directions in k space.
Accuracy was checked by making spot checks and
using a progressively finer mesh. For 4&A &9 a
maximum mesh size of 1' was found necessary to
obtain values for the (100) axis with less than
0.5% error. For A &0.8, however, the strong de-
focusing properties of both transverse waves about
the (100) axis required progressively smaller mesh
sizes as A decreased before (100) results converged

1
to a reliable value. For A = —, and D/L =0.10 a
mesh size of 0.5' with 82 508 different k directions
was required before results for the (100) axis con-
verged with less than 0.5% error. As expected, re-
sults for the (110) and (111)axes were less sensi-
tive to larger mesh sizes. End-correction calcula-
tions (Figs. 14—18) were performed using in each
case one-half the corresponding mesh size used for
D/L =0.1 and further served to check accuracy
Errors are believed to be less than 0.6%%uo for
A p 0.5 with maximum errors at A & 0.2 of 1%.
These results are thus more accurate than those re-
ported previously. '

Calculations of phonon intensity in Fig. 9 were
determined using a 1' mesh in the polar angles 0
and P, the number of wave vectors at each point
weighted to give a uniform density. The intensities
were calculated as the ratio of the number of
group-velocity vectors to the number of wave vec-
tors for a solid angle of four square degrees. Be-
cause of the fixed mesh in P a much larger number
of different azimuthal wave-vector directions occur
about the (100) direction corresponding to 8=0,
0& P &45 than about the (100) direction given by
8=90, /=0. As a result, the ridge in the {110I
plane near 8=90, /=0 [Fig. 9(a)] lacks the sharp
resolution and high amplitude of the one near
8=0, /=45. The calculated intensities appear
rather ragged and serrated for the two transverse
modes because a coarse mesh of only four different
wave-vector directions were used in each 2')&2'
box.

Use of Figs. 19—23 and a hand calculator to
determine (C„), (uc), and («c) yields the correct
specific heat, effective velocity, and phonon con-
ductivity, respectively, for elastically anisotropic
cubic crystals of square cross section and
D/L =0.10. The correction to the phonon con-
ductivity «/T for samples of square cross section
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FIG. 19. Dimensionless specific heat C„/(C„) as a function of the elastic anisotropy factor A and the elastic con-
stant ratio C~2/C». The approximate specific heat (C„) is defined in the text.
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FIG. 20. Dimensionless effective phonon velocity u,fq/(uc) as a function of the elastic anisotropy factor A and the
elastic constant ratio C»/C&~. The approximate Casimir velocity (uc) is defined in the text.
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FIG. 21. Dimensionless boundary-scattered thermal conductivity «/(«q) for the (100) heat-flow axis as a function
of the elastic anisotropy factor A and the elastic constant ratio C»/C».
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of the elastic anisotropy factor A and the elastic constant ratio C»/C».
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FIG. 23. Dimensionless boundary-scattered thermal conductivity s/(sc ) for the ( 111)heat-flow axis as a function
of the elastic anisotropy factor A and the elastic constant ratio C~2/CI&.

but different D/L can be obtained from Figs.
14—18. Values of a/T for silicon and calcium
fluoride samples of rectangular cross section and
(DtD2)'/ /L =0.10 can be obtained from Figs. 24
and 25, respectively. Note that the thermal con-
ductivity a./T depends only upon the linear di-
mensions D~, D2, and L the sample density p, and
the second-order elastic constants. With the use of
the supplied curves predictions of the boundary-
scattered phonon conductivity should be possible
with no more error than is presently reahzed in ex-
perimental measurements.
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IV. DISCUSSION

Cubic crystals exhibit a wide range of elastic an-

isotropies. Materials that have similar coordinates

C&2/C» and C~/C» (Fig. 1) have similar
phonon-focusing characteristics. Materials that
have coordinates on opposite sides of the elastic
anisotropy line, A =1, have contrasting properties.
Note that as A increases (A & 1), cusps in the
group-velocity surface appear about the (100)
axis, first in the t 100) plane (curve C3), then in
the I 110j plane (curve C4), and finally about the
(110) axis in the I 110I plane (curve CS). As A

SlDE - FACE —W IDTH R ATIO, DIED~

FIG. 24. Dimensionless boundary-scattered thermal
conductivity a/(sc) for (100) and (110) silicon rods
of rectangular cross section and varying side-face-width
ratio D1/D2, using the elastic constants of H. J. McSki-
min and P. Andreatch [J. Appl. Phys. 35, 2161 (1964)].
The wider-side face is indicated by an asterisk.
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decreases (A & 1), however, cusps appear about the
(110) axis in the I 100[ plane (curve C2), then
about the (8, ) direction in the I 110[ plane (curve
C 1). In I IOOJ planes cuspidal features in the
group-velocity surface arise from surface Sl (Fig.
2), but in the I 110I planes arise from surface S2
(Fig. 3).

Note that for further increases in A (A & 1.5),
the cusps that appear about the (100) axis (Figs. 2
and 3) and exhibit fourfold symmetry, and the
cusps that appear about the (110) axis (Fig. 3) but
exhibit twofold symmetry all increase dramatically
in width. For A =1.5, Ci2/Cii ——0.5, for example,
the cusp width about the (100) axis is 9' and 3' in
the I 100I and I 110[ planes, respectively, and the
cusp width about the (110) axis in the I 110I
plane is 1'. For A =4, Ci2/Ci i

——0.9, these cusps
have widened to 57', 38', and 32', respectively, and
for A = 10, Ci2/Cii ——0.9, to 78', 63', and 45',
respectively. As A decreases (A &0.7), it is the
cusp widths about the (110) axis in the t 100]
plane and about the (8, ) direction in the I110I

SIDE - FACE —WIDTH RATIO) Di/ Dg

FIG. 25. Dimensionless boundary-scattered thermal

conductivity «/(~c) for (100) and (110) calcium

fluoride rods of rectangular cross section and varying
side-face-width ratio DI, /D2 using the elastic constants
of D. R. Huffmann and M. H. Norwood [Phys. Rev.
117, 709 (1960)]. The wider-side face is indicated by an

asterisk.

plane which increase dramatically. For A =1/1.5,
Ciz/C» ——0.5, the cusp width about the (110)
axis in the j 100I plane is 8', and about the (8, )
axis in the t 110I plane 2'. For A =0.25,
Ciz/Cii ——-0.5, these cusps have widened to 58' and
51', respectively. The transverse intensities along
collinear directions reach a maximum on cuspidal
onset, then decrease as the cuspidal edges progres-
sively widen (see Figs. 2 and 3). Strong defocusing
can actually occur along these associated collinear
directions for sufficiently widened cusps. Under
these conditions the highest transverse intensities
occur along the cuspidal extrema.

For elastically isotropic crystals, phonon focus-
ing is absent and the only correction to the
boundary-scattered mean free path A,qq and ther-
mal conductivity «. is due to a finite thermal
length. For a slight increase in the elastic aniso-

tropy factor (1.5 &A & 1), however, there is a sharp
rise in A,rr and «along a (100) heat-flow axis as a
result of phonon focusing (see Figs. 11 and 21). A
decrease in A (0.6 &A & 1) decreases the heat flow
along a (100) axis, but increases the conduction
along a (111)rod axis (see Figs. 13 and 23). Sil-
icon (A=1.566, Ci2/Cii ——0.388) is very near the
maximum for (100) rods in Figs. 11 and 21, and
near the minimum for (111)rods in Figs. 13 and
23. The enhanced thermal conductivity along the
(100) axis is due to the strong focusing of trans-
verse waves resulting from cuspidal edges about
the (100) direction (Fig. 7). Similarly, the low
thermal conductivity for (111)rods is due to the
defocusing of phonons along the (111)directions.
Calcium fluoride (A =0.609, Ciq/Cii ——0.322) is
very near the maximum for (111)rods in Figs. 13
and 23, and near the minimum for (100) rods in
Figs. 11 and 21. The enhanced conductivity along
the (111)axis is due to the strong focusing about
(8, ) and in the I 110] planes that intersect along
the (111)directions (Fig. 8). Similarly, the low
conductivity for (100) rods is due to the lower
phonon intensities along this axis. In retrospect,
the elastic anisotropy factors for silicon and calci-
um fluoride were ideal for examining anisotropic
heat conduction in the boundary-scattering region.

For larger values of A (20 &A & 1.6), an increase
in A broadens the cusps about the (100) axes and
about the I 100[ planes, decreasing the heat flow
along the (100) rod axis. For large values of A,
these cuspidal edges broaden toward the (110)
directions and can contribute to increased heat
flow along a (110) rod axis in shorter samples.
Similarly, smaller values of A (0.16&A &0.6)
broaden the cusps about the (8, ) axes and about
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the I 110I planes, decreasing the focusing and heat
flow along the (111)rod axis. The broadening of
these cuspidal surfaces toward the (100) directions
can contribute to increased heat flow in shorter
samples along the (100) rod axis. There is some
evidence of this in Fig. 16.

Note also that for constant A an increase in

C&z/C» decreases C44/C» and thus increases the
relative contribution of the slower modes to the
heat flow. Since the slower modes are strongly
focused, there is an increase in the thermal-
conductivity maximum with C~q/C» for (100)
and (111)axis rods (see Figs. 21 and 23}. Con-
versely, a decrease in C&2/C&& increases the relative
contribution of longitudinal waves to the heat flow.
For small A and C&2/C~~, there is strong focusing
of longitudinal waves about the (100) axis. These
two effects, at constant A, cause a rapid rise in
thermal conductivity along a (100) heat-flow axis
with a decrease in C&2/C». For constant C&2/C~&
an increase in A increases C~/C~& and thus in-
creases the contribution of longitudinal waves to
the flow of heat. For A y 4, some focusing of
longitudinal waves occurs about the (110) and
(111)directions and is responsible for part of the
increase in ~ along these directions. The major
contribution to the increase in ~/(ac ), however, in
Figs. 22 and 23 is due to corrections for (C„) and
(Uc ) (Figs. 19 and 20}, which become more signi-
ficant for larger values of A.

Although there is some enhancement of the ther-
mal conductivity along (110) heat-fiow axes for
silicon and calcium, the differences for samples of
square cross section are relatively small (see Figs.
12 and 22}. Phonon focusing occurs along the
(110) directions in both silicon and calcium
fluoride; for silicon the focusing is concentrated in
(100I planes, for calcium fluoride in I110J planes.
Greater anisotropies can be observed along (110)
axes, however, for samples of rectangular cross sec-
tion with different orientations of the wider-side
face. Figure 7 shows that silicon samples with the
same (100) or (110) rod axis should have greater
conductivities when the wider-side face is oriented

in the j 100I plane (the plane of high phonon in-
tensity) than in the I 110I plane. This was indeed
observed in our original measurements with (110)
axis rods of silicon with rectangular cross sec-
tion. ' ' Conversely, Fig. 8 shows that calcium
fiuoride samples with the same (100) or (110)
rod axis should have greater conductivities when
the wider-side face is oriented in the I 110I plane
(the plane of high phonon intenisty} than in the

I 100) plane. Results for silicon are given in Fig.
24, and for calcium fluoride in Fig. 25. Both flg-
ures show that for samples of rectangular cross
section with the same rod axis, higher conductivi-
ties are predicted when the wider-side face is
oriented in the plane of high-phonon intensity, the
amount of anisotropy depending on the rod axis
and the width ratio of the side faces. The greatest
differences occur for rods aligned along the (110)
directions.

Note also that corrections for end effects (Figs.
14—18) depend particularly upon any focusing or
defocusing along the sample rod axis. Longer
samples have longer phonon flight paths to reach
the end surfaces and thus have longer phonon
mean free paths. Strong focusing (defocusing)
along the rod axis therefore increases (decreases)
the phonon mean free path and thus increases (de-
creases} the dependence of the thermal conductivity
upon sample length. For very short samples ef-
fects of elastic anisotropy disappear and all rod-
axis directions tend to have the same phonon mean
free path and thermal conductivity.
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