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The paper presents an application of reaction-rate theory to nonradiative electron tran-
sitions in polar crystals based on a "two-site" model. For this purpose localized electron-
ic states are described by using the adiabatic approximation. Both "large" polarons in
ionic crystals and "small" polarons in molecular crystals are considered from a unified
point of view. By assuming a single frequency of the lattice vibrations (Einstein model)
one can calculate the transition probability for both the limits of adiabatic and nonadia-
batic electron transfer as well as for the whole intermediate range. The relevarit expres-
sions, earlier derived in treating electron transfer in solution, are reviewed and discussed
in order to give a justification of their application to polaron hopping in crystals. In a
similar way, a review is made of the reaction-rate approach to electron transfer to obtain
the appropriate rate equations for the low- and high-temperature limits and the inter-
mediate temperature range as well. New expressions for the polaron-hopping rate are
also derived. The conditions of its validity are discussed. This paper provides an essen-
tially new approach to nonradiative electron transfer in polar crystals. It permits one to
overcome the limitations of the usual methods, such as the multiphonon approach, entire-
ly based on time-dependent perturbation theory and/or the Franck-Condon approxima-
tion which restrict their applicability only to nonadiabatic polaron hopping. The
reaction-rate treatment exactly reproduces the results of the more rigorous multiphonon
theory of nonadiabatic transitions. Moreover, it yields correct rate expressions for adia-
batic transitions, in particular, in the high-temperature range, in which the classical
occurrence-probability approach greatly overestimates the activation energy. Some prob-
lems concerning the Einstein one-frequency oscillator model assumed and the irreversibili-
ty of the electron transfer are discussed with some details from standpoint of both
reaction-rate theory and multiphonon theory. The advantages of the reaction-rate ap-
proach are emphasized.

I. INTRODUCTION

The notion of polaron first introduced by Lan-
dau' is the basis of extensive theoretical studies on
the interactions of an electron with the crystal lat-
tice in both perfect and imperfect crystals. With
the use of a continuum model for an ideal ionic
crystal the polaron theory has been developed in
different ways depending on the strength of the
electron-lattice interaction. ' A theory developed

by Pekar considers the case of strong interaction
making use of the adiabatic approximation. Alter-
»atively, Frohlich' proposed a theory of slow elec-
trons in polar crystals by assuming a weak
electron-phonon interaction that allows application
of perturbation theory. In a similar manner Lee
et al. treated the intermediate case of a moderate
interaction of the electron with the crystal lattice.
A generalization comprising weak, intermediate,
and strong electron-lattice interactions is proposed
by Feynman. All these theories concern the

"large" polarons in ionic crystals.
The continuum polarization model for "small"

polarons was- first considered by Tjablikov and
Yamashita and Kurosawa making use of a pertur-
bation approach. The same approach was then
employed by Holstein' in treating small polarons
in molecular crystals by using the adiabatic (tight-
binding) approximation in a discrete (one-dimen-
sional) model.

The polaron concept has been first applied to the
theory of electron conduction in defect-free ionic
and molecular crystals '; however, electron transi-
tions via point defects have been also considered.
The adiabatic approach was used by Kubo and
Toyozawa" to treat both radiative and nonradia-
tive transitions of trapped electrons in insulating or
semiconducting (ionic and covalent) crystals. Mak-
ing use of Kubo density matrix formalism, ' Lang
and Firsov' further developed the small-polaron
theory.

The polaron concept does not appear to give an
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adequate description of electron motion in organic
solids. ' A variety of electron-transfer mechanisms
have been proposed for an explanation of various
phenomena in ordered and disordered molecular
systems. A critical discussion of all these possibili-
ties was recently made by Duke. '

The aim of the present paper is to consider a
simple "two-site" polaron model of electron
transfer in polar crystals based on the adiabatic ap-
proximation, which, however, is not restricted by
the limitations of perturbation theory. It presents
an extension of previous studies on similar prob-
lems in chemistry' and electrochemistry' in the
framework of a general reaction-rate theory. ' ' It
is hoped that this extension may be useful in treat-
ing some important phenomena in solids such as
the ionization of excited F centers in ionic crystals,
the interimpurity electron transfer in covalent crys-
tals, the electronic conductivity in molecular crys-
tals, etc.

A comparison between the results of the
reaction-rate approach and the usual multiphonon

approach in studying large-polaron hopping in po-
lar media was first made by Christov. ' A similar
comparison was recently done by Holstein' con-

cerning the small-polaron hopping in molecular

crystals. In this way some essential advantages of
the reaction-rate approach are recognized. It will

be, therefore, useful to give a critical discussion of
the main results of reaction-rate theory' with re-

gard to their applicability to the study of both
large- and small-polaron hopping in crystals. This
is the goal of the following considerations.

II. BASIC ASSUMPTIONS

We now consider a crystal as a system of oscilla-
tors (atoms, ions, or molecules) and an "extra"
electron interacting with them. The crystal may
have some point defects (such as ion vacancies)

that can trap the electron, but a "self-trapping'* is

possible also in any lattice site of a defect-free

crystal because of the lattice polarization due to
the electron.

For ionic crystals one usually assumes that the
electron motion is only coupled with the longitudi-

nal-optical (LO) vibrations that consist of a relative
displacement of the positive and negative ions in

any elementary lattice cell (dielectric polarization).
As is known, the frequency dispersion of these vi-

brations may be disregarded since the electron-

phonon coupling is particularly strong for the vi-

brations for which the phonon wave number is

zero (k~h
——0). Therefore, at a later stage, we will

consider only LO vibrations with a single frequen-

cy corresponding to the maximum of absorption of
ionic crystals. The same one-frequency oscillator
model (Einstein model) may be used when treating
molecular crystals by assuming that the electron
interacts most strongly with a particular vibration
of the molecule at any site of the crystal lattice.

In ionic crystals the dielectric polarization is
spread over a wide region around the instant elec-
tron position so that the linear dimensions of the
polaron are large compared to the lattice constant.
Therefore, the continuum model for the ionic crys-
tal is justified for "large" polarons. In molecular
crystals, however, the polarization region (the po-
laron radius) is comparable with the spacing be-

tween the molecules; therefore, a molecular model
for the "small" polaron must be used. ' Our treat-
ment will be based in both cases on models that
consider the discrete structure of the crystal.

There are two approximations that are used, de-

pending on whether the electron-phonon interac-
tion is weak or strong. For ionic crystals, where
the continuum theory of large polarons is applica-
ble, one makes use of a criterion based on the value
of the Frohlich coupling constant

2
ep m*

2hv

' 1/2

ep and e„being the static and optic dielectric con-
stant, respectively.

In the weak-coupling limit e «1 the electron is
considered to move much slower than the lattice
ions so that the dielectric polarization follows the
electron motion immediately. In the strong-
coupling limit u pal, in turn, the electron motion
is much faster than the ion vibrations, which justi-
fies the usual Born-Oppenheimer adiabatic separa-
tion of electron and ion motions. In practice, the
adiabatic approximation seems to be good enough
if a y 4, which is the case of alkali halides, for in-

stance. We will, therefore, admit, that this condi-
tion is fulfilled when treating ionic crystals.

For molecular crystals the adiabatic approxima-
tion is justified as far as the overlap of the elec-
tronic wave functions of the neighbor molecules is
small, which results in a relatively stable localiza-

where e0 is the electron charge, m* is the effective
(conduction-band) mass of the electron, and e is an

effective dielectric constant defined by

1 1 1
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tion of the electron in a molecule of the lattice. It
is suitable in this case to consider the orientations
and centers of gravity of molecules as being
fixed, ' since the localized electron is strongly cou-

pled only with the intramolecular vibrations.

III. BASIC EQUATIONS FOR A LOCALIZED
ELECTRONIC STATE

H =H, +H„+H,„, (4)

which is a sum of three terms corresponding to the
electron motion, the lattice vibration motion, and
their interaction, respectively.

The electron Hamiltonian

$2
H, = — V +V(r}

2m

is a sum of the kinetic-energy operator that in-

volves the free-electron mass m and the potential
energy of the "static" interaction of the conduction
electron with the crystal lattice as a function V(r)
of the electron position vector r. In defect-free
crystals V(r ) represents a periodic function if the
lattice particles are fixed at their equilibrium posi-
tions but their electron clouds adiabatically follow
the "slow" motion of the conduction electron. In
the general case, however,

V(r)=W(r)+V (r),
where W( r ) denotes the periodic potential and
V (r) the electron potential energy of interaction
with the distorted crystal lattice and some point
defects (such as impurity atoms, ion vacancies,
etc.), under the same adiabatic condition for the
lattice electrons related to an "induced" polariza-
tion of the lattice.

If the conduction electron is fixed at some point
of the crystal, then the lattice Hamiltonian can be
written as

a2

i i i+k (7)

if we use the dimensionless coordinates

g; =(2nv;p;/A)'~ x;,

The time-independent Schrodinger equation of
the crystal plus electron system

HP=Eg (3)

involves the Hami&tonian operator

where v; are the vibration frequencies, p; are the
corresponding reduced masses, and x; are the
Cartesian normal coordinates of the harmonic os-
cillators relative to their equilibrium position
(x; =0), where account has been taken of the lattice
distortion due to the presence of the electron and
some lattice defect. The second term in (7}
represents a weak coupling between the vibration
coordinates that results from an expansion of the
potential energy of the crystal about the configura-
tion Ig;) of its minimum value. This term is
necessary to ensure the vibrational relaxation and
the thermal equilibrium of the crystal; however,
under certain conditions it may be neglected when
considering the electron transfer from one to
another localized state.

In band theory the lattice particles are fixed at
their equilibrium positions (g; =0) so that H„=O
(and H,„=O), and the electron-lattice interaction is
described only by the periodic potential
W(r ) = W(r + n), where n is the lattice vector.
The solutions of (3) are Bloch functions

Pk(r)=uk(r)e'"'", uk(r)=uk(r+n)

and the corresponding eigenvalues E(k) are func-
tions of the wave vector k whose components k;
(i =1,2,3) are usually restricted to vary between

vr/a and—m/a (first Brillouin zone) when consid-
ering for simplicity a crystal of cubic symmetry
with a lattice constant a. An energy band E (k)
corresponds to a variation of

~
k;

~

from 0 to n/a.
Near the miniinum of E~(k) (small k values) the
parabolic approximation

AkE (k)=E'+
2pl

may be used, where E =E (0) and m* is an effec-
tive electron mass. This is equivalent to replacing
the periodic potential W( r ) by a constant potential
and the Bloch functions (8) by plane waves [i.e.,
ui, ( r ) by a constant mean value].

In the polaron theory one takes into account the
dielectric polarization caused by the electron,
which results in a shift of the equilibrium positions
of the lattice particles in such a way that the elec-
tron is "self-trapped" at a given site of the crystal
lattice. For a defect-free crystal this static interac-
tion is represented by the second term V (r) of the
electron potential energy (6), which may include,
however, also the interaction of the electron with a
crystal imperfection.

The third term H,„of the total Hamiltonian (4)
describes the interaction between the electron
motion and the lattice vibrations; hence it is essen-
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H,„=Vg(r, g)= —gb;(r)g; (10)

tially a dynamic coupling term. If the lattice vi-

brations are restricted in the vicinity of the equilib-
rium configuration [g; ) =0 (harmonic approxima-
tion), then H,„will be small compared to the static
potential energy V (r) and may be regarded as a
small perturbation that depends linearly on the
(small) lattice displacements g;. Therefore, in such
a case we may write

which can be computed in continuum polaron
theory by using the variational principle. " This ap-
proach is suitable only when treating "large" po-
larons in ionic crystals. A discrete-crystal model is
necessary to describe "small" polarons in molecular
crystals. ' In both cases, use can be made of per-
turbation theory by considering the coupling terms
b;(r )g'; in (10) as sufficiently small.

If we write the perturbed electronic wave func-
tion as

where b (r ) = —8 V~IB(; is a force which tends to
decrease the displacement g;.

The adiabatic approximation consists of neglect-
ing the kinetic energy operator of the lattice vibra-
tions in (7), which means solving the wave equa-
tion (3) at fixed lattice coordinates tg;J. With the
use of (3)—(7) and (10) the adiabatic Hamiltonian
of the system then becomes

hvar

2m
V'+IV(r)+ V (r)+ g l

hv;k
+ g 2 04 —Xb(r4

iQk l

'pl ( r k ) '!!'I( r ) +q'! ( r k) (16)

h vIk( 0 0+ g (k' gal)(kk Ok!)+Ql
l~k 2

(17)

where

g'! bi/ ~&'! bi! f b!(r)
I
O'Ilr)

I

'd'r

using the adiabatic Hamiltonian (11) with m =m*
and W(r }=0,we obtain

4(r k)= XA(k)m!(r k»
l

(12)

which yields two separate equations for any bound
electron state I:

In the effective-mass approximation the free-
electron mass m is replaced by m* and the periodic
potential 8'(r ) by a constant term that may be set
equal to zero. The general solution of (3) is writ-
ten as

and

with

Q!=&!'+V! +&p,

0
Eg ———2

f y!(r)V q!(r)d r,2m*

V! ——f V (r) ~p!(r)
~

d r,

(18)

(19)

(20)

H de l(r k) Vl(k)'Pl(r 4) (13}

hv;
2 + Vl(k) Ol(k)=+Ill(0)

2 (jg,.

(14)

V/(g) = f g/( r g)Hyde!( r (15)

where g= j g; ) denotes the set of coordinates g;.
These equations are obtained by a known standard
procedure by neglecting the coupling terms be-
tween the electronic and lattice wave functions
q&!(r,g) and tP&(g), which is justified if q&!(r,g) is
only weakly dependent on g, as is the case when
the lattice particles make small (harmonic) vibra-
tions.

The electron energy V!(g) is given by the expres-
sion

hv,

I

In (17) the small coupling terms, which may cause
a change of the electronic state 1 (as well as of the
vibration frequencies), are neglected.

Equation (18) gives the new equilibrium posi-
tions of the lattice particles that result from the
dynamic interaction of the electron with the lattice
vibrations. Equation (19) represents the "binding
energy" Q! of the electron as a sum of three terms
corresponding to its mean kinetic energy E~, its
mean "static" potential energy V~ of interaction
with the crystal lattice (including some imperfec-
tion), and the "dynamic" potential energy E re-!
lated to the displacement of the equilibrium lattice
configuration. The energy is referred to the bot-
tom of the conduction band a =a, by setting
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E =0 in (9) when the electron is at rest far from
C

the imperfection. In defect-free crystals Qi is sim-

ply the "polaron" binding energy in the adiabatic
approximation.

The electron energy V~(g) defined by (17) plays
the role of an adiabatic potential in the wave equa-
tion (14) of the lattice vibrations. The solution of
this equation is simplified if the small second term
in (17) is neglected (v;ki

——0). This yields the
known wave functions for a system of independent
harmonic oscillators

g„'(g)= g (V~2 'n;!) ' H„(g;—g;I)

l'I ~~/2
l l (21)

in terms of Hermitian polynomials of order n,;, and
the corresponding eigenvalues are

E„'=g (n;+-, ),
2

(22)

where n= I n; I is a set of oscillator wave numbers.
The effective-mass approximation used to derive

equations (11)—(20) is valid if the de Broglie wave-

length A. =h/I*V (v=6'
~

k
~

) exceeds the lattice
constant a. In continuum polaron theory this cor-
responds to the condition

ro & a, ro-2A e/m*eo (23)

2M gR2
(24)

where R is the position vector of the polaron
center and M is an effective polaron mass. In this
situation the sums over the vibrational-degrees of
freedom in (7) must be reduced by three terms.
The effective mass M has been estimated by Lan-
dau and Pekar' under the condition

Up «2mvro ~ (25)

where ro is the polaron radius, e being the effective
dielectric constant (2). On the other hand, accord-
ing to (9) and (20) the effective-mass approxima-
tion is justified when the average kinetic energy Ei
of the trapped electron is considerably lower than
the conduction-band width. Therefore, for ionic
crystals for which ro »a the concept of a "large"
polaron is well applicable.

In a defect-free crystal the "large" polaron is al-
lowed to move across the crystal. To take this
translation motion into account the Hamiltonian
should include the additional term

which means that the polaron group velocity Uz is
small, i.e, the translation motion of the polaron is
slow compared to the ion vibrations. This condi-
tion is fulfilled when Uz is of the order of the ther-
mal velocities (MU&/2-kT). Therefore, in such a
case

Hp «H„, (26)

so that in some problems the adiabatic condition
(25) allows us to disregard the translation motion
of the polaron when using (15)—(20).

The effective-mass approximation is not justified
for molecular crystals where the overlap of the
electronic wave functions of neighbor molecules is
small; therefore, the conduction electron can be
easily localized at a lattice site in a deep potential
well to form a "molecular ion." In this case the
polaron radius is small (ro-a) so that a tight-
binding approximation seems to be very suitable. '

With the use of this approach for fixed (equilibri-
um) positions of the lattice particles the band
theory yields the well-known energy dispersion for-
mula

E (k)=E —zV cos(k.a),
where z is the coordination number and

V = f gi(r+a)U(r)yI(r)d3r

(27)

is the mean value of the interaction potential
U( r ) =w ( r ) —IV( r ) between two neighboring mol-
ecules, w ( r ) being the unperturbed "molecular" in-

teraction potential. One thus obtains narrow ener-

gy bands of width 2zV (corresponding to a varia-
tion of k

~

between —~/a and ~/a). If ka && I
from (27) the quadratic energy-momentum relation
(9) follows, in which the effective mass is

m*=4 /za V

but this approximation is not useful when treating
"small" polarons in molecular crystals.

In the framework of the tight-binding approxi-
mation it is more reasonable to use the free-
electron mass m but to disregard the periodic po-
tential W(r) in (6), as it represents a small pertur-
bation of the electron energy due to the influence
of the neighbor molecules. '

A full Hamiltonian of the form (11) with
8'(r ) =0 may be used also for molecular crystals
if the different terms are interpreted in a relevant
manner. Thus V ( r ) is to be considered a "static"
potential energy of an "extra" electron in an isolat-
ed molecular ion, provided the nuclei are at rest at
their (distorted) equilbrium positions g; =0 and the
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other "fast" electrons are in a stationary quantum
state that adiabatically follows the "slow" motion
of the "extra" electron (induced polarization of the
molecular ion). Then, the "lattice" Hamiltonian
(7) will actually represent the intramolecular vibra-
tions when the electron is fixed at the point r. If
both the "extra" electron and the nuclei are al-
lowed to move, then, because of their "dynamic"
interaction, an additional contribution b;(—r )g; to
the energy of any vibrational coordinate g; arises.

Under these conditions the electronic energy
V~(g) of the molecular ion can be evaluated by
(15), making use of the above-mentioned perturba-
tion approach, which implies that the "dynamic"
coupling term gb;( r )g; is small compared to the
"static" potential energy of the electron V (r).
Then, using (16) one obtains again expression (17)
for V&(g) in which g;& and Q~ are defined by (18)
and (20) in terms of the unperturbed electron wave
functions qP~( r ) of the molecular ion.

In this way we see that the "small" polaron in
molecular crystals can be treated in a similar
manner as the "large" polaron in ionic crystals
when the conduction electron is localized at some
point of the crystal (a molecule, or an ion, or a lat-

tice defect). Under certain conditions this similari-

ty provides a general basis for a treatment of the
electron transfer from one to another lattice site.

IV. ELECTRON TRANSITIONS BETWEEN
TWO LOCALIZED STATES

We have considered so far the electron localiza-
tion at a given lattice site (point defect, ion, or
molecule) on the basis of the adiabatic approxima-
tion. We will now investigate the radiationless
electron transfer from one localized state to anoth-
er in an ionic, atomic, or molecular crystal. The
adiabatic energy of the crystal plus electron system
for any of these two electronic state ( 1= 1 and 2) is
expressed by Eq. (17), which describes a many-
dimensional paraboloid. The two corresponding
paraboloids V~(g) and V2(g) intersect in a plane S
along a line L, which represents a transition-state
configuration of the crystal lattice. There is a
minimum on this line that will be a saddle point
between the two minima V&(g) =Q~ and

Vz(g) =Q2 of the two paraboloids if they are lo-
cated sufficiently far from each other in the con-
figuration space g= {g;I.

In order to simplify the problem we will first
neglect the small coupling terms in (17), i.e., we
will set all v;k ——0 for both electronic states l=1

Vi(k)=
2

0'+Qi

' 1/2
V2(k)=

2
(4—4o)'+Q2 ko= gC2

(29)

by simply denoting g„by g.
The second kind of approximation, which is

suitable for molecular crystals, is to admit that the
"dynamic" electron-lattice interaction is very weak
for all vibrational modes except for a single mode.
This means retaining only one term of the sum in
the interaction Hamiltonian (10) that we denote by
b (r )g if g is simply the coordinate of the vibration
concerned. Then, by rotation of the coordinate
system we can make this coordinate coincide with
the corresponding principal axis of the similar (el-

lipsoidal) paraboloids V&(g) and V2(g), where the
set of coordinates g= {g; I is now replaced by a
single coordinate g. In this way we come again to
Eqs. (29), which represent the profiles of a cross
cut of both paraboloids along the g axis. These
profiles are two parabolic curves with a crossing
point that corresponds to the saddle point of the
two paraboloids. The height of this point is easily
found to be

E'= (E,+Q)'
4E,

where Q=Qq —Q~ and

ko.
hv
2

(30)

(31)

According to (30) it is convenient to measure the
energy relative to the minimum (Q~) of the elec-
tron energy V&(g') of the initial state by assuming
Q2&Q& =0.

At the intersection line L of the paraboloids

and 2. Furthermore, one can make use of two
kinds of approximations.

The first approximation is to assume that all fre-
quencies of lattice vibrations are equal (v; =v) by
neglecting the frequency dispersion, as is usual for
the LO vibrations of ionic crystals. Then V~(g)
and V2(g) will represent two similar rotational
paraboloids and the saddle point will lie on a
straight line g„connecting the positions g~

——{g;~ I
and gq

——{g;qI of the minima of both paraboloids.
We can conveniently change the origin of the coor-
dinate system by setting g&

——0 and $2=(o.
The energy profiles along g, are described by the

equations
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V, (g') and V2(g) the system degenerates, since the
electron energies of the initial and final states are
equal. The degeneracy is removed by introducing
the coupling between the two localized electronic
states, which leads to a "resonance" splitting in the
intersection region, i.e., to the formation of a lower
and an upper adiabatic surface V(g) and V'(g).
Correspondingly, lower and upper adiabatic curves
along the axes g„—:g arise.

The change of the lattice configuration can be
described by the motion of a point from the initial
state ((=0) to the final state (/=go) along f,
which is the line of minimum energy, i.e., the most
favorable path for a classical transition. It
represents, however, a "reaction coordinate" that is
dynamically separable from the other coordinates.
Thus the many-dimensional "two-state" problem of
calculating the quantum-mechanical transition pro-
bability can be reduced to a one-dimensional prob-
lem making use of the parabolic potential curves
(29).

Using the linear combination (12) with 1=1,2

Wr k} Pl(k}'Pl(r f)+ P2(P'P2(r k} (32)

where the nondiagonal matrix element

V»(k}= f V i(r 4}H.dm2(r k}d" (34)

we can first solve the electron wave equation (13)
at fixed g, which yields a system of two linear
equations for the determination of 1(& and g2.
From the condition of resolubility of this system
one obtains two eigenvalues V(g) and V '(g),
which represent two nonintersecting "adiabatic"
potential surfaces: V'(g)& V(g). Their separation
is given by the approximate expression

4«(g) = V '(g) -V(g)

=
I l Vi(k }—V2(k }l'+4Vf2(( }J

'"
(33)

where E,' is expressed by (30}. This equation is a
definition of the classical "activation energy" of
the electron-transfer process considered.

A solution of the Schrodinger equation (3) by
means of (32}yields two coupled differential equa-
tions for the lattice vibrations,

H1) Pl (k } Vl 2(k 4'2(k }

hv d
, + V)(g)

(E —H2)$2(g)= V)2(g)g)(g), (37)

hv d2
+ V2(g)

2

where V~(g) and Vz(g) are defined by (29) and
V] 2(g) by (34).

We will now consider the conditions under
which the probability of a radiationless electron
transfer from state 1 to state 2 can be defined.
Such a definition implies that there is no return
from state 2 to state 1, at least within a time of the
order of a period of vibration. This requires either
a low transition probability or a fast relaxation of
the vibrational state after the electron transfer. In
the latter case one should take into account the
small coupling terms in the lattice Hamiltonian (7)
that lead to a frequency dispersion. ' However, in

order to simplify the calculations it is usual to
neglect this frequency dispersion (Einstein model).

With the above-mentioned implications the tran-
sition probability can be defined in the familiar
way' by considering a flux of system points mov-

ing along the reaction coordinate g from the initial
state ((=0) towards to the transition state (g=g, )

of the lattice configuration. This flux is partially
reflected back to the initial state ((=0) and partial-
ly transmitted to the final state ((=go). The tran-
sition probability is then given by the ratio

(the electron "resonance" integral) is a measure of
the interaction leading to the electron transfer
from one localized state to another (1—+2) of the
crystal lattice. The minimum value of AV(g) is at
the crossing point (g =g, ) of the "diabatic" poten-
tial curves (29) (at which V~

——V2), hence

hv — dfk d4k
(38)

hV;„=2
I V)2(g, )

I
.

Therefore, the maximum energy on the lower
adiabatic surface is given by

(35)

(E,+Q)'
E.=E' —

I V12(4. }
I
=

4E
—

I V12(4') I

(36) W= WIW, (39)

of current densities j, and j; of the transmitted and
the incident system points, the current density in
the reverse direction in the final state being set
equal to zero.

The transition probability W can be generally
represented by t;he product
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of two factors, where W~ is the probability for
rearrangement of the lattice configuration and W,
that of the electron transfer when passing the tran-
sition lattice configuration (g=g, ), under the con-
dition of energy conservation. If 8', =1 the transi-
tion is called "adiabatic" and if 8', «1 it is
"nonadiabatic. "

The possibility of an electron transfer leads to a
perturbation of the initial state of the system (crys-
tal plus electron), which will be small or large de-

pending on whether the transition probability 8' is
small or large. In an adiabatic transition (W, =1)
W~ may be small for energies that lie considerably
below the barrier peak (E «E, ), i.e., when a lattice
rearrangement by quantum-mechanical "tunneling"
is possible. In a proper one-dimensional treatment
of the two-well problem the tunnehng is related to
a splitting of the vibrational levels in both wells,
which is given in a quasiclassical approximation by
the formula '

( 1+ E(E))—1
(42)

(E„—Q)

2Eh2E,h v
(42')

must be used, which involves (41) as a limiting
case for E «E, . It yields 8'~ ——0.5 for E=E,
(g, =g, ) and 0.5 &W«1 f«E&E, (g, and/,
imaginary). The application of (42) to adiabatic
transitions in the high-energy range E)E„in
which W~ is large, implies a fast vibrational relaxa-
tion after the transition through energy exchange
between the reaction coordinate and the nonreac-
tive coordinates.

The phase integral in (40)—(42) can be easily
calculated using the intersecting parabolic poten-
tials (29) provided in (36}

~
V& 2 ~

&&E,', i.e.,
E, E,'. The result is' "

Q2 (E +Q)~E(E)= + — [1—y(ai)]
hv Ehv 2Ehv

EEg = exp
hv ' f pgdg, (40}

pg
—[2[E—V(g)]/hv J'i

where

tp(a)=v a —(1—a)ln
1 — a

where g~ and g2 are the points of the potential
barrier V(g) between the initial and final configu-
rations ()=0 and g =go) at which the momentum

pg along g is zero, i.e., E= V(g }.
The tunneling probability can be calculated in

the same approximation by (38) provided the other
two classical turning points (g ~ and g2) in the po-
tential wells 1 and 2 are far away from g~ and g2,
respectively. ' ' In the low-energy range (E«E, )

one thus obtains the known &KB expression '

W, = -e'"x, SC(E)= '
p,g.

h
(41)

Therefore, from (40) and (41)

hv ~]/2
7T

(40')

Since W~ &&1, hE, /hv&&1, hence the tunneling
splitting bE, is small compared to the separation
EE„=hv between the unperturbed energy levels
E,=(n + —,)hv of the lattice vibrations. If, howev-

er, the tunneling probability W~ is large, hE, will
be comparable with AE„so that the discrete vibra-
tional energy spectrum may be replaced by a con-
tinuous spectrum. This is, in particular, the case
for energies which are somewhat below or higher
than the barrier peak (E &E,); then, instead of
(41}, the more general quasiclassical formula' '

a) ——1 (E/E, )—,

az —1 —[(E—Q)/(E, —Q)] .

For a symmetric barrier (Q =0) one has E,=4E,
[see Eq. (36)] and a

&
——a2,' therefore

4EcE(E)= Ql (E/E, )—
hv

E QE/E,
ln

E, 1 —+1 (E/E, )—
(42")

In the low-energy range the time-dependent per-
turbation theory may be used to calculate the tun-
neling probability 8'~ &&1 when assuming a
quasicontinuous (weakly quantized) energy spec-
trum (for which hv «E, } if in (36)

~
V, z ~

&&E,'.
A modification of Bardeen's approach then yields
the expression' '

n& n2—
where P& and $2 are the (real) oscillator wave func-
tions of the initial and final states, respectively.
This formula involves the current density in the
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barrier region to be evaluated at the crossing point
g=g, of the parabolic curves (29). This can be
done accurately to give the formula' "

mIi„„(gp,g, )

W) =8'„„=
1 2 2n1+n2 t in ).ng.

(+
$ '+Q ) ~+IEp Eg Ih~

(43)

E„&Q=(ni n—z)hv

where n
&

and nq are the vibrational quantum num-

bers of the initial and final states (E„,=E„,), E„ is

the "reorganization energy" (31) and

I'...,((p4. )=kpH. , (k. )H.,(k. k)—
—2niH„, i(g, )H„, i(g, —gp)

+2nqH„(g, )H„, i(g, —gp),

H„. being the Hermitian polynomials of order n;.
Expression (43) agrees well with (41), with K(E)

given by (42'), in a range of variation of E„/hv be-

tween 10 and 100.'@' This justifies its use even
for a strongly quantized energy spectrum
(E„/hv —10) when there are a few energy levels

below the barrier maximum (E„&E,). In particu-
lar, it is to be preferred for the lowest vibration
levels for which the WKB approximation (41) is
inaccurate.

If the transition is nonadiabatic (W, «1), the
transition probability W= WI W, may be small
even when WI is close to unity, i.e., when the lat-
tice rearrangement occurs in a classical way (over
barrier transition). Then, W, can be calculated us-

ing Landau-Zener theory. '

In the general case of arbitrary value of Wi and

W, one must solve the system of coupled differen-
tial equations (37). This has been first done by
Ovchinnikova for the simplest case of two linear
diabatic potentials that represent good approxima-
tions to the parabolic curves Vi(f ) and Vz(g) only
in the vicinity of their crossing point. It is as-
sumed that Viz(g) is a constant Viz(g)= Viq(g, ).
The formulas derived in this way are valid, howev-
er, for large absolute values of the energy variable
e =E E„i.e., for energy—levels considerably
above and below the crossing point (g=g, } where
the linear approximations to Vi(g) and Vz(g) are
not quite good (E »E,') or are completely inappli-
cable (E «E,'). Nevertheless, it has been shown
by Christov' ' that the expressions derived for
linear adiabatic potentials are valid also for para-

bolic potentials, to a good approximation. This
has been done by a comparison with the results of
inore accurate calculations for adiabatic and nona-

diabatic transitions based on essentially different

approaches. ' '

An important result of these investigations is
that the transition probability can be well expressed

by the product (39). For large positive values of
e(E »E,' }, Wi =1 and W, is an oscillating func-

tion of e=E —E,' which can be averaged over a
small energy interval to obtain the expression' '

where'

y=
/ Viz f /2hv(E„/ e

/

)'~~

and e& 0. This is a generalization of the semiclas-
sical Landau-Zener formula '

(45)

Formula (45) gives the probability of a one iJay-
transition (single passage of the crossing point of
the diabatic curves) while (44) represents the proba-

bility of a many ioay transitio-n (multifold passage
of the crossing point) as first shown by Holstein'

in a direct intuitive way.
For large negative values of e(E «E,') one ob-

tains for 8'~ &&1 the WKB expression (41) and for
W' &1 the formula' ' '

2m(2y)r

y[r(y)]'

with y defined by (44') and e &0. For y& 1 this
formula yields W, =l (adiabatic transition) and for
y « 1, W, =2m.y (nonadiabatic transition). Similar
results for the case of linear diabatic curves are re-

cently obtained by Holstein' "making use of an
alternative approach.

Introducing (46) in (39) we may use the more ac-
curate formula (43) for Wi for parabolic diabatic
potentials instead of (41). As shown by
Christov'+ " the resulting expression for W
= WI W, agrees very well with earlier calculations
for nonadiabatic transitions (y « 1) for which (46)
reduces to W, =2ny This justif. ie.s the use of (46)
for any form of the diabatic curves and for arbi-
trary values of y in the energy range e ~&0
(E «E,'} in which the lattice rearrangement is pos-
sible only by tunneling (Wi « 1).
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V. RATE EQUATIONS FOR
POLARON HOPPING

According to the general formulation of reaction
rate theory' ' the rate constant of any reaction
can be conveniently written in the form

kT Z* —Eclk~
V=K

h Z
e (47)

kT .
U =2K sinh exp( E, /kT), —

2kT
(48)

where v~ is the frequency of a (harmonic) vibration
of reactants along the reaction coordinate g and ~
is defined by

where E, is the classical activation energy, Z is the
full partition function, and Z* is the partition
function of the nonreactive modes (i.e., all motions

normal to the reaction coordinate) of reactants, T
is the absolute temperature, and k and h are

Boltzmann and Planck constant, respectively. The
factor ir considers the reaction dynamics through

the statistical averages of the transition probabili-

ties over the initial quantum states.
Equation (47) is based on the assumption that

the reaction is irreversible, i.e., after the transition
of the systems to the final state it is unlikely to re-
turn into the initial state. Expression (47) is close-

ly related to the collision theory approach to gas-
phase reactions but is essentially different from
Eyring formulation of transition-state theory. ' '
In particular, for unimolecular reactions from (47)
one obtains' '

W= gk„(e„)f(E„,T)=k„(e)—= W(e) (50)

so that W(e) can be computed using the formulas
of Sec. IV with e„=e=E E, wher—e E may have

n~
— c

both discrete and continuous values.
We consider first adiabatic polaron hopping for

which y/1; hence, according to (45) and (46),

W, =1. This will be, in particular, the case when

the resonance energy Vi i is sufficiently large.
Then Wi can be computed by (42) in the whole en-

ergy range (E&E,). In this case a represents the

"tunneling factor" for lattice rearrangement.
At sufficiently high temperatures the tunneling

transitions (E &E,) and the over-barrier transitions

(E & E, ) occur with a comparable probability

( W, -0.5 —1) in an energy range

b,e„ /kT=hv~/kT && 1, the summation may be
n~

well replaced by integration in the whole energy

range.
The rate equation (48) can be directly applied to

the present two-site model for polaron hopping in

crystals with the great simplification that the vi-

bration frequency v~ along the reaction coordinate

g and the vibration frequencies of all nonreactive
modes i are equal, i.e., v~ ——v; =v. The separability
of the g vibration then leads to the result that the
evaluation of the factor a by (49) requires the solu-

tion of a one-dimensional dynamic problem, since
the transition probabilities k„= g„,k„„are in-

dependent of the initial and final states n and n' of
the nonreactive modes. Therefore,

—e„ /kT
i~= g W(e„)e b,e„ /kT,

n~

(49)

where n~ is the quantum number of the g vibra-

tion, and

e& —kTk or EpE, —kTk

where Tk is a "characteristic temperature"

Tk hv*/hark——, hv*=(d V/dg )g

(51)

(52)

W(e. )=Eked«n )f«n T) (49')

is the statistical mean value of the total transition
probability

n'

over the nonreactive quantum states n of reactants,

f(E„,T) being the occupation probability of state n

(with energy E„) and n' denoting an energetically
accessible nonreactive quantum state of products.
The energy variable e„=E„E,in (49) has-

n~ n~ c

discrete values in the low-energy range (E & E,),
but the summation involves also the continuous
part of the high-energy range (E & E,). If

defined in terms of the barrier curvature at the
maximum point V(g, )=E,. A parabolic approxi-
mation

V(g) E, = —hv*g —/2 (53)

of the potential barrier in the energy range
e & kTk (E & E, kT—k) allows an e—valuation of
the phase integral K(E) in (42), which yields' ' '

(5

For e & —kTk, WI & 0.12, so that according to
(40') hE, /hv & 0. 11; hence a continuous energy
spectrum can be used (see Sec. IV) to calculate a

by means of (49), (50), and (54) by replacing the n~
summation by an integration over e=E E, (An~—
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=hv~de) from —oo to ao. We note first that
the maximum of the integrand

1X=1——
2 3

' 1/2 1/6

l 1+@(y)1
kT

IV (e)e e/—kT

lies at the energy value

e =E —E, =—

(55)

kTk Tk
~

2T
ln (56)

2 1 —(Tk
~

2T)
where

g e
—3(a /kT)1/3

(59b)

so that for T =Tk we obtain e =0 (E =E,) and
for T=0.567Tk, e = —kTk, which justifies the
above approximations in the temperature range
T & Tk/2. Thus, one obtains the simple expres-

n15 —17

(n./2)( Tk /T)
sin[(n. /2)(Tk/T)]

' T) Tk/2.

This formula yields

~=1 for T&2Tk,

(57)

which defines the "classical temperature range"
where the lattice reorganization occurs via over-
barrier transitions. In this range from (48) the po-
laron hopping rate is found to be'

a=~
I

Viz ~'/2hv~E,

and the error integral

(59')

' 1/6

4(y)= f e '/dt, y=~3
v'Z~ o

' kT

(59")

(60)

is well tabulated. The formula (59a) is valid only
for the nonadiabatic limit g « 1), but (59b) ap-
plies to the remaining range of 7 & 1 including the
adiabatic limit g= 1) which is obtained for
(a /kT)' & l.

From (48) and (59) we obtain in the high-
temperature range the formula

—E /kT l

u =Eve ', hv/kT & —, .

E /kT — (E,+Q)

4E„

under the conditions

(58) In particular, for nonadiabatic polaron hopping
g«1) one has'

2
' 1/2

m ~F.„+g)~/4Z„kv.

EkT
T&2Tk, hv&kT/2, (a /kT)' )1 (58')

1/2
2 Q

v~ (59a)

where the adiabatic parameter a is defined below

by (59'). Equation (58) represents the well-known

Kramers formula. The above derivation gives
the correct activation energy E, defined by (36) in
contrast to the semiclassical approach, '
which yields, instead, expression (58) with E, re-

placed by E,', i.e., it disregards the barrier lowering

~
V& z ~, which may be considerable in adiabatic

processes (
~

V~&
~

&&kT ).
We will now consider the classical temperature

range (T & 2Tk) in the general case in which the
polaron hopping is not adiabatic, hence y ( 1.
Then, the semiclassical dynamic factor a =X & 1

can be computed by (49) making use of the
Landau-Zener formula (45) for IV= W, in order to
evaluate the sum, by replacing it with an integral
over e from 0 to 00 which can be calculated by the
saddle-point method. Thus one obtains the expres-
sions 16 17

(61)

where E,=E,' is expressed by (30); this formula
holds under the conditions

T&2Tk, hv &kT/2, (a /kT)'/ «1 . (61')

For Q =0 this formula coincides with the expres-
sion of Holstein' based on a semiclassical
occurrence-probability approach (if we take into
account that E„=4E,' when Q =0). Similar ex-
pressions have been derived by using different oth-

er approaches. '

In the temperature range of moderate lattice tun-

neling

2Tk Q T Q Tk/2

a rough approximation for polaron hopping rate in
the nonadiabatic limit (X « 1) and the intermediate
range (X & 1) can be obtained by introducing in (60)
an additional "tunneling" factor sc„ i.e.,

—E /kT
U=~,Lee ', T~Tk/2 (62)

where a, is given by (57). This approximation is
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—E /kT
v =~,ve (62')

which is the Kramers equation (58) including the
tunneling correction (57).

In the low-temperature range (T & Tk/2), ac-
cording to (56) the maximum of the transfer prob-
ability (55) lies below the energy level e~ = kTk,—
hence the lattice rearrangement occurs almost en-
tirely by tunneling. In this energy range, however,
W(e) &&1 so that in the general case, as discussed
in Sec. IV, a discrete energy variable

justified as far as for ~, =1 or +=1 it yields the
correct results. In particular, in the adiabatic limit
g= 1) one obtains

2 iV

hvE„2 'n)!

—n
l
hv/E„—E /hv

Xe "e

which yields for n
&

——0 (Q=O)
r '2

2~~ V)p
~

v h

—E /hv

&( [KOH„, (k, ) —2n, H„ i(k, ) 1'

(65b)

(65b')

e„=E„E,=(n—+ —, )hv E, — (63)

under the conditions

E„,=E„, , (64)

T & Tk/2, hv) 2kT . (64')

In (64) WI can be computed by either (41) with
(42') or (43) and W, by (46).

At very low temperatures (T « Tl, /2) only one
term of the sum in (64) will contribute to the hop-
ping rate. Then, a resonant transition (E„=E„)isnl n2

possible only from a definite initial state n
~

to the
ground final state nz ——0 so that

Q =(n
&

—nq)hv=n &hv .

If W, (E„)=1 (adiabatic transition) using (43)

and (64) we obtain
—n l hv/kT

me

2 'n, !
[$0H„,(g, ) —2n)H„, )(g, )]~

—n l h v/E„—E„/h v
Xe ' "e (65a)

In particular, for a symmetric barrier for which

n) ——0 (Q=O)

is to be used. Thus, from (48), (49), and (50) with
(39) we obtain

—E„ /kT
u=ve"" " g WI(E„)W,(E„)e

Equation (65) can be compared with the result of
a perturbation treatment of Levich and Dogo-
nadze that was also derived more recently by
Mott et al. and Kobertson and Friedman using
other approaches. See, for instance, Eq. (1) in Ref.
37(b) by noting that the reverse transition rate is

uo„, ——u„,oexp(+ n, h v/kT) .

Despite the different mathematical form for n
~ +0,

this equation gives for n
&

——0 the same expression
as (65b), namely (65b'). For n

~ +0 a very good nu-

merical agreement between both expressions is
found. '

Our approach yields somewhat more complicat-
ed expressions for nonadiabatic transitions at low
temperatures (T & Tk/2); however, it is applicable
also to adiabatic transitions and the whole inter-
mediate range between them, which cannot be
treated by the methods used by other authors
based entirely on time-dependent perturbation
theory and/or the Condon approximation. Indeed,
the general rate expression (64) is not limited to
nonadiabatic transitions, since W, (E„)as given by
(46) ranges between 0 and 1 (0& y & ao) [although
W~(E. ) «1).

If the number of energy levels below the barrier
peak is relatively large so that hv «E, and
hv «E, —Q, then the sum in (64) may be well re-

placed by an integral over E even when hv & kT.
In this case it is more convenient to use (41) with
(42') to calculate Wi. Thus from (48) one obtains
in the adiabatic limit (W, =1)

2&Er —E„/h v

h
(65a')

2kT .
h

hv K(E) E/kTdE/kT
I 2kT

If W, (E„)« 1 (nonadiabatic transition), using (43)
and (46) with (44') for y«1 (when W, =2m.y)
from (64) one finds

(66)

1he integral has been evaluated' "by the saddle-
point method, which yields the expression
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hv 2m
u =sinh h'K"(E )

—F(Em)Xe

' 1/2

[I+@(y ))

(67)

Expressions (67) and (76) are applicable as approxi-
mations under the conditions

0(Em &E,—kTk

or from (70) and (56)

where E is the energy value at which the function E~QK"(E~))0, T & Tk/2 (77)

F(E)=K(E)+(ElkT)

has a minimum; hence F'(E)=dF/dE=O, or

K'(E~ )kT= —1,

(68)

(69)

and K"(E )=(d KldE )E . The Gaussian error

integral

4(y~)= f e ' i dt, y =E QK"(E )
2n

(70)

is a function of E~ through y; it can be easily
computed from tabulated data.

Expressions for all parameters in (67) can be
derived. ' i' In particular, for Q=O using (42")
from the condition (69}we obtain

where E and K"(E~ ) are given by (72) and (75),
while Tk is defined by (52). It should be noted,
however, that the first condition (77) is not very
stringent, i.e., (67) and (76) are still valid also for
small negative values of E~ (E~ & 0), for which

4(y~ ) becomes negative. This is due to the fact
that the error function (70) arises in (67) because
the integral in (66) comprises only positive E
values.

The limitations of the second condition (77) can
be avoided if we use in the energy range E)E,
—kTi, the more general formula (42) for Wi by re-

placing (66) by the expression

2kT . hv p c
—

k F(E) dE

(E /E, )' '
=exp(hv/4kT) .

1 —[1 (E /E, )]'—
(71)

e
—E/kT

E —kTk i +eE(E) kT

(78}
A solution of this equation is

E~/E, =sech (hv/4kT) .

From (42"), (68), and (71) one has
' 1/2

4E, E~F(E )= 1—
hv C

so that using (72) we find

hvF(E~ ) = tanh
hv

From (42") and (72) one further obtains

(72)

(73)

(74)

2kT 'h hv
u = sinhh

2w @(y )+@(y' )

K"(E~ ) 2kT

—F(E ) —E /kT
Xe +&t e

where F(E) is given by (68). The first integral can
be evaluated again by the saddle-point method and
the second by means of expression (54) in which
K(E)= 2elkTk ——2(—E, E)kTk. We —thus obtain

K"(E }= [sech(hv/4kT)
hvE, where

(79)

Xtanh(h v/4kT)] ' . (75)
Introducing (74) and (75) in (67) yields the rate
equation

and

y' =(E, kTk) E)0— — (80)

2[1+4(y»] . , hv
mh vE, sinh3

4kT

1/2 (rrl2)( Tk /T)
sin[(m. /2)( Tk /T) ]

4' hv
Xexp — tanh

hv

(76)

—(Ti, IT) ( Tk /T) —2

1 , ( Ti,/T)——
(81a)
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x,
' = Tk/T, T=Tk/2 . (81b) VI. DISCUSSION

2If T & —, Tk the first term in (79) and the second
term in (81a) can be neglected so that we obtain
expression (62') with v given by (57). For
T & Tk/2 the second term in (79) becomes small
and in the first term y' is so large that 4(y' )=1;
hence (79) turns into (67).

Recently, using a similar reaction-rate approach,
Holstein' "has derived by the saddle-point
method an equation for the hopping rate of small

polarons in the nonadiabatic limit (8', « 1). In
our notations it is written as

I
I'x2

I

'
2+

2' E,hv csch(hv/2kT)

4' hv
tanh (82)

This equation is based on the parabolic potentials
(29) for the special case Q =Qz —

Q&
——0 for which

according to (36) E„=4E,(
I V~ 2 I

&&E,); therefore,
it corresponds to Eq. (76), which is valid for Q=O
in the adiabatic limit (8', =1). For hv/kT «1,
Eq. (82) turns into Eq. (61) (with E„=4E„Q=O);
however, the actual high-temperature limit of va-

lidity of Eq. (82) is E &E, kT~ or acc—ording to
Eq. (77) T & Tk/2. The low-temperature limit,
however, is not well defined. When E~ is near to
zero Eq. (82) comprises a considerable range of in-

tegration over negative E values; therefore it irn-

plies a sufficiently large positive E~ value. We
may, however, modify Eq. (82) in order to extend
its validity to lower temperatures at which Em -0
by using the same improvement of the saddle-point
method, which yields the corresponding adiabatic
equation (76). Thus, instead of Eq. (82), we obtain

)(exp

(I+@'(y )] I V12 I'
4R

2'
E,hv csch(hv/2kT)

4E, hv
)(exp — tanh

hv 4kT
(83)

It should be emphasized that at very low tem-
peratures (T-+0) the correct expressions for the
hopping rate in the adiabatic and nonadiabatic lim-
it for Q=O are given by Eqs. (65a') and (65b'),
respectively. This implies, of course, that the elec-
tron transport via polaron band states is disregard-
ed, although it actually is the prevailing conduc-
tion mechanism in molecular crystals at T~O. '

The present treatment of polaron hopping in
crystals is based on a reaction-rate approach' '
which has been previously applied to chemical re-
actions in both gas and dense phases' ' and, in
particular, to electron transfer processes in solu-
tion. ' In the latter case a two-site model, includ-

ing a donor and acceptor center, is used under the
assumption that the medium represents a system of
harmonic oscillators. It has been noted, ' ' ' how-

ever, that such a description is much more suitable
for electron transfer in polar crystals than in

liquids where not only vibrations but also relative
translations and rotations of molecules must be in-
cluded in the reaction dynamics. ' ' This is the ac-
tual motivation of the present work, which
presents a consideration of the applicability of the
reaction-rate approach to polaron hopping in crys-
tals where the vibrations of atoms (ions and mole-
cules) are the only modes which are coupled to the
electron transitions.

The current theories of electron transfer in polar
media are usually based on a perturbation treat-
rnent, ' ' ' ' which restricts their applicabili-
ty to nonadiabatic transitions. It has been
shown, ' ' however, that the reaction-rate ap-
proach is equally well applicable to both the nona-
diabatic and adiabatic limits as well as to the
whole intermediate range between them. It repro-
duces exactly the results of the multiphonon ap-
proach for the nonadiabatic hopping rate1025 35-37

and yields correct results for the adiabatic hopping,
in particular, for the high-temperature activation
energy which is overestimated by the classical
occurrence-probability approach to the vibrational
motion. ' '

The advantages of the reaction-rate treatment of
small-polaron hopping in molecular crystals have
been recently recognized by Holstein, ' who de-
rived in this way the rate equation (82) that refers
to the limiting case of nonadiabatic transitions.
The latter equation agrees completely with the re-
sult of the more rigorous multiphonon theory. '

This agreement can be considered as an indirect
justification of the reaction-rate approach also for
the case of adiabatic hopping for which the multi-
phonon method is very difficult to apply. It
should be also emphasized that, in principle, the
reaction-rate theory' is not restricted by the as-
sumptions of harmonic lattice vibrations and linear
electron-lattice interaction as is usually the case of
multiphonon theory. ' '

An inherent shortcoming of the Einstein one-
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frequency model of the lattice vibrations is the
neglect of their coupling, which is a necessary con-
dition for the thermal equilibrium of the crystal.
The influence of the frequency dispersion, resulting
from the vibrational coupling, on the electron-
transfer probability has been studied by Holstein, '

Soules and Duke, and Robertson and
Friedman ' ' in the framework of multiphonon
theory. Recently, Holstein' investigated the role
of the vibrational relaxation after the electron
transfer in order to give a justification of the sim-

plest version of the reaction-rate approach in

which the vibrational coupling is not explicitly in-

cluded in the transition probability. In this way
Holstein' has shown that Eq. (82) for the nonadia-
batic hopping rate follows from an expression of
the type (64), by replacing the summation by in-

tegration over energy, when the effective
"transition-time" ~, is much shorter than the
period r„=I/v of the lattice vibrations (r, ~~r„).
The same conclusions are certainly valid for Eq.
(76) for the adiabatic hopping rate that results
from (66). The physical reason is that if the lattice
tunneling is presumed to be a relatively fast pro-
cess, it will lead to a broadening of the discrete vi-

bration energy spectrum into a continuum, as dis-
cussed in Sec. IV. At this situation the validity of
rate equations of the type (66) or (78) implies a fast
vibrational relaxation. '

If, however, the tunneling probability is so low
that the "transition time" is much greater than the
vibration period (r, »r„), then a definition of the
transition probability by Eq. (38) is possible
without the implication of a fast vibrational relaxa-
tion. This is so because before the transition the
system has enough time to reach a stationary
quantum state (within an equilibrium energy distri-
bution), and after the transition there is also
enough time for a relaxation (after many vibra-
tions). Therefore, the vibrational coupling must be
taken into account before and after the hopping
event, but may be disregarded when calculating the
probability of a "slow" tunneling transition along
the reaction coordinate g, which can be separated
by imposing suitable boundary conditions. ' ' In
this case, in principle, a discrete vibrational spec-
trum should be used. However, in practical calcu-
lations one is allowed to replace (64) by an integral
expression like (66) if the number of energy levels
in the energy range 0&E„&E,—kTk is sufficient-
ly large so that hv«E, . In this situation one is
allowed also to use time-dependent perturbation
theory' ' to derive expression (43) for the proba-
bility of lattice rearrangement. It is important to

stress again that this expression yields numerical
results in good agreement with those obtained from
formula (41), based on the time-independent defini-
tion (38), even when applied to a properly discrete
(strongly quantized) one-frequency oscillator
model ' "

It should be recalled that the present reaction-
rate treatment of polaron hopping is based on the
adiabatic approximation, i.e., the motion of the
trapped electron is assumed to be much faster than
the lattice vibrations. Therefore, the electron po-
tential energy V(r, g) changes slowly with time
so that the electron remains in the same quasista-
tionary quantum state a corresponding to a
discrete energy value V (g ) =E (t). If the fre-

quency dispersion of the lattice vibrations is
neglected, then a change of the electron energy E~
at a given lattice site by absorption or emission of
phonons hv is excluded, since the adiabatic condi-
tion means that hv«EV, where AV =bE
=E —E

&
is the energy difference between any

two nearest electron energy levels. At this situa-
tion the electron transfer by tunneling from one
site to another of the crystal lattice is possible only
in the transition region of the lattice configuration
space g= tg; I, i.e, near the intersection line of the
potential-energy surfaces V~(g) and V2(g) where
the electron energies of the initial and final states
are either equal (V~ ——V2) or differ by
hv(

~
V2 —V~

~

=hv). Therefore, one distinguishes
between elastic (or "resonant") electron tunneling
and inelastic (or "phonon-assisted") tunneling. In
the case of a discrete vibration-energy spectrum the
probability of inelastic electron tunneling is actual-

ly very small; however, it increases greatly when

considering the frequency dispersion that facilitates
the absorption and emission of many phonons by
the electron before and after the tunneling process.
This dynamic electron-transfer mechanism is an
essential feature of the adiabatic multiphonon
theory of (nonadiabatic) polaron hopping. ' ' '

In the semiclassical Landau-Zener theory, ' in-

stead, one introduces a static perturbation, resulting
in an avoided crossing of the diabatic potential
curves V&(g) and V2(g), which produces an elastic
(resonant) electron transfer. Nevertheless, in the
framework of reaction-rate approach this theory as
well as its quantal generalization' ' ' yields the
same equations for the nonadiabatic polaron hop-
ping rate as the multiphonon theory. ' ' '

In the general formulation of reaction-rate
theory, ' based on the adiabatic approximation, the
detailed mechanism of electronic rearrangement is
not specified so that it comprises many kinds of



26 ADIABATIC POLARON THEORY OF ELECTRON HOPPING IN. . . 6933

adiabatic and nonadiabatic reactions. In particular,
when applied to electron-transfer processes in
solids both elastic and inelastic electron tunneling
can be incorporated into the rate equation (48)
through the transition probabilities k„(g) by using
corresponding models for the transfer mechanism.

An essentially different approach to polaron
hopping implies that the motion of the trapped
electron is much slower than the lattice vibrations,
which results in a very fast fluctuation of the elec-
tron potential energy V( r, g) and thereby in a
broadening of the discrete electron-energy value
into a continuous spectrum. The dispersion of
the lattice vibrations plays an important role in
these electron density-of-states effects. Soules and
Duke showed that these effects are responsible
for the elastic electron tunneling provided the elec-
tron is coupled at the two lattice sites to different
lattice vibrations. In contrast to this, inelastic elec-
tron tunneling occurs by emission or absorption of
many phonons when the electron at both sites is
coupled to the same lattice vibrations. In the
case of a strong electron-vibration interaction, the
elastic and inelastic electron tunneling are connect-
ed with two essentially different mechanisms of ac-
tivation of the electron transfer. Nevertheless, they
lead in the high-temperature limit (hv «kT) to
similar equations for the nonadiabatic transition
rate that have the same form as Eq. (61). There-
fore, the experimental verification of a rate expres-
sion of this form is not a sufficient criterion for
the actual mechanism of the hopping process. The
unambiguous determination of this mechanism ap-
pears to be a very difficult problem'; however, for
the purposes of rate calculations it is evidently of
secondary importance. In this respect the
reaction-rate approach, when applied to simple
models for the hopping event, may be very useful.

An inherent assumption of reaction-rate theory
is that Eq. (47) describes an irreversible process.

In the present case of electron transfer in solids
this assumption requires a justification as dis-
cussed, in particular, by Duke' ' and Holstein'
from the standpoint of multiphonon theory, which
is based on a perturbation treatment. They showed
that the coupling of the electron to a quasicontinu-
ous energy spectrum of lattice vibrations plays an
essential role for the irreversibility of the electron
transfer. Beyond the perturbation approach a sim-

ple way of introducing irreversibility is the imposi-
tion of appropriate boundary conditions' '

when calculating the transition probability.
It should be noted that the general reaction-rate

theory, used here in treating polaron hopping, is
essentially different from Eyring "activated com-
plex theory" in two points: (1) It is based on a
quantum-mechanical description of the vibrations.
(2) A thermal equilibrium is postulated only for
the initial and not for the transition state of the
system. The first assumption can be introduced in
a formal generalization of Eyring theory, ' ib"
while the second one is usual in the collision
theory of chemical reactions. ' Both theories be-

come identical only in the particular case of a
dynamically separable reaction coordinate, in

which the Eyring concept of the "activated com-
plex" loses its usefulness. This is just the situation
in a theory of polaron hopping in which the cou-

pling between the lattice vibrations is ignored.

This situation is sometimes misunderstood. '

The reaction-rate theory is certainly applicable
to small-polaron hopping in molecular crystals;
however, it may be used also in some cases of elec-

tron transitions in ionic crystals in which the con-

cept of large polaron is adequate. Such is, for in-

stance, the electron hopping from a F center to an

ion vacancy or a localized polaron state outside the
F center. This may be, in particular, the mecha-

nism of ionization of excited F centers which will

be considered elsewhere. '
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