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The first application of the recently proposed variational cellular method (VCM) to
periodic structures is reported. The method is applied to the determination of the elec-
tronic structure of metallic sodium. The results of these calculations, when compared
with previous results obtained through other methods, lead to the conclusion that VCM is
an accurate and fast method. Empty-lattice energy eigenvalues for the A symmetry line
in a body-centered-cubic lattice are found to be correct to 0.001 Ry, when spherical har-
monic components up to /;,,, =4 are used in the cellular expansions.

I. INTRODUCTION

It has been shown that the recently proposed
variational cellular method (VCM) is a useful ap-
proach to the problem of finding the one-electron
solutions of the Schrédinger equation for mole-
cules.! Previous applications of VCM were con-
cerned with the self-consistent calculations for the
ground-state potential curves and ionizaton ener-
gies of H,,H," and some covalent diatomic mole-
cules.>3 From these results we concluded that
VCM is a very precise and fast method. The aim
of this paper is to report the results of the first ap-
plication of the formalism to the case of three-
dimensional periodic structures.

Electronic-structure calculations for metallic
sodium were carried out within the VCM frame-
work and results are compared with previous cal-
culations. A preliminary report of our work was
published elsewhere.* In this paper the relevant as-
pects of the formalism and the details of the calcu-
lations are discussed.

The starting point for the VCM goes back to the
old cellular method of Wigner and Seitz, one of
the earliest attempts to solve the crystal-wave
equation for a realistic crystal model.’ In this clas-
sic study of metallic sodium, the crystal volume
was decomposed into space-filling atomic polyhe-
dra (Wigner-Seitz cells), then these polyhedra were
replaced by equivalent volume spheres and suitable
boundary conditions were imposed on the surfaces
of these spheres. The cellular wave-function repre-
sentation was defined by solving a central-field
problem in each of these spheres. Soon afterwards
Slater applied an improved version of the cellular
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method to sodium, where the boundary conditions
were imposed at a selected number of points on the
surfaces of the polyhedron.® Schockley showed
that Slater’s procedure leads to large errors for the
free-electron energy eigenvalues of an empty lattice.
He concluded that spherical harmonics of higher
order than those used in Slater’s calculations had
to be used.” A great improvement on Slater’s cel-
lular method was made by taking advantage of the
crystal symmetry to increase the order of the
spherical harmonics used in the cellular expan-
sion.® It was shown that for certain special points
in the Brillouin zone (BZ) results of significant ac-
curacy could be obtained for sodium. This calcula-
tion was extended to other points in the BZ.’

In the earlier cellular calculations based on exact
point matching, it was found that the resulting en-
ergy levels depend on the choice of matching
points and on the related choice of cellular basis
functions. These convergence problems and
Kohn’s demonstration that Slater’s cellular method
could be derived from a variational principle,
prompted other authors to satisfy the boundary
conditions in a least-squares sense over a large
number of points spanning all the polyhedral faces,
instead of at a limited number of points.'® Alt-
mann and his collaborators have been successfully
applying the rigorous cellular method to many me-
tallic crystals.!! Slater’s cellular method or modi-
fied versions of it have also been applied to
diamond-lattice-type crystals'>~!# and insulators.'s
Recently a modified version of Altmann’s rigorous
cellular method was applied to calculate the elec-
tronic structure of fcc lanthanum and that of a
tungsten monolayer.!® The method was extended
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to nonspherical cellular potentials and the inclusion
of relativistic effects has been reported.”” On the
other hand, the basic concepts of the cellular
method have been recently used by several authors
to develop new models for molecular and crystal
electronic structure calculations.!8—2!

Leite, Herman, and Bennett carried out the
band-structure calculations of diamond using
Slater’s cellular method.”? The dependence of the

energy-level structure on the choice of matching
points and cellular basis functions was carefully

examined. It was demonstrated that the cellular
method based on exact point matching leads to en-
ergy levels that are relatively insensitive to the
choice and spatial arrangement of a limited num-
ber of matching points, provided the cellular wave
functions are represented by a sufficiently large
number of basis functions. Tetrahedral harmonic
expansions including orbital quantum numbers up
to I max =12 are necessary to ensure reasonable con-
vergence at the zone points I', X, and L. Although
it was concluded that the cellular method is an ac-
curate technique even for such loosely packed
structures as diamondlike crystals, this severe con-
vergence problem is one of the fundamental
weaknesses of the method. In Slater’s cellular
method the matching points sample only limited
portions of the cell surfaces, and therefore it is
clear that the eigensolutions cannot be derived
from a variational principle. Energy eigenvalues
not determined variationally demand wave func-
tions with high-order spherical harmonics. Thus,
in VCM an attempt was made to formulate the
cellular method in a variational way. The main
idea behind the method was to add a much faster
convergence to the flexibility of the cellular for-
malism. The theory of VCM is extremely simple
and has the advantage of discarding the muffin-tin
approximation of the self-consistent potential,
which is the main source of error in methods like
the augmented-plane-wave (APW) and Kohn-
Korringa-Rostoker (KKR) methods.?3~%

The electronic structure of sodium has been the
subject of calculations for almost fifty years. Since
the pioneering work of Wigner and Seitz most of
the standard band-structure calculation methods
have been applied to the alkali metals.?=%° Metal-
lic sodium has been a subject of research in most
of the classical works in the cellular method. We
have undertaken another calculation with the main
objective of developing and testing VCM for
periodic structures. Our intention was to establish
the VCM secular equation and to study the conver-

gence of the energy eigenvalues as a function of
the number of the cellular basis functions. There-
fore, no attempt was made by us to perform the
calculations self-consistently. It has been shown
from previous calculations that the general features
of the alkali-metals band structure are independent
of the precise form of the crystal potential. Thus,
although our results are not self-consistent, com-
parisons with more elaborate calculations were
made.

The paper is organized as follows: In Sec. II the
theory of VCM is reviewed and applied to a three-
dimensional periodic structure with one atom per
unit cell. In Sec. III the results of our studies for
metallic sodium are discussed. The empty-lattice
test is made with VCM and the results are
displayed in Sec. IV. Considerable emphasis is
placed on comparing the results from exact point
matching and VCM calculations regarding the
empty-lattice test. Finally the main conclusions
are summarized in Sec. V.

II. CELLULAR METHOD APPLIED
TO THE SODIUM STRUCTURE

The cellular method has been discussed by many
authors.!"3® The idea of the method is as follows:
The crystal is decomposed into space-filling atomic
polyhedra (Wigner-Seitz cells), one surrounding
each lattice site. The crystal potential is approxi-
mated within each polyhedron by its spherical
average with respect to the center of the poly-
hedron. Within each polyhedron i the crystal-wave
function corresponding to energy eigenvalue ¢ is
expanded as

Ui(T)=3 A fir( D), (1a)
Fy
where
D) =R r) Yo () . (1b)

A denotes the angular momentum pair Im, T
=(r;,#;) is a radius vector whose origin is at lattice
site i, the Y, (7;) are normalized spherical harmon-
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FIG. 1. Notation for cellular boundary conditions.
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ics, the RI6 %r;) are the solutions of the radial
Schrodinger equation for energy €, and the 4;; are
undetermined expansion coefficients.

In the periodic lattice ; is a propagating state
and exactly satisfies the one-particle Schrodinger
equation for the cellular crystal potential. Accord-
ingly, the coefficients 4;, in different cells are re-
lated by the Bloch theorem. Figure 1 schematical-
ly represents the atomic polyhedron (unit cell) of a
crystal with one atom per unit cell. The equations
which express the crystal periodicity (Bloch) condi-
tions appropriate to the reduced wave vector K can
be written as follows:

(T = Ry 1), (2a)
3, ()= —e K yu(F) . (2b)

The points T and '’ (conjugate points) lie on the
surface of the polyhedron i and are separated by a
direct-lattice vector R. 9, means an outward nor-
mal derivative. These equations ensure the con-
tinuity of the crystal-wave function and its normal
derivative on the surface of the polyhedra. Ac-
cording to Slater’s original cellular method, the
boundary conditions expressed by Egs. (2) are ex-
actly satisfied at a limited number of matching
points.® If the total number of matching points is

N (N /2 pairs of conjugate points) and the total
|

number of spherical harmonics is N, Egs. (2) de-
fine, for a fixed value of E, N linear homogeneous
equations for the expansion coefficients 4;;. In or-
der that the boundary conditions are satisfied non-
trivially, the corresponding N X N determinant

must vanish. We generate the functions R,E %r;) by
performing numerical outward integration of the
radial Schrodinger equation for each value €.
Therefore, one evaluates the functions f;; and their
nomal derivatives as a function of €, at all required
matching points, and then searches for the zeros of
the determinant as a function of €. There will be
a set of eigensolutions corresponding to different
energy bands, and therefore Egs. (2) lead to the
dispersion relations connecting €, and k.

In principle, one should impose boundary condi-
tions at a large number of points spanning all the
polyhedral faces, in order to ensure that the wave
function can be derived from a variational princi-
ple.!® If one requires the exact point matching
solution for the boundary condition problem, too
high a value for the maximum orbital quantum
number /,,, is needed in the cellular expansion
[Egs. (1)]. To overcome this severe limitation of
the cellular method without loosing its flexibility,
the VCM was proposed.!

The cellular function 1; is assumed as a trial
function to be used in the following variational ex-
pression for the energy e:

S [douive=3 [dOyi(—Vi4Vii+5 3 [ dS;—9;)0,¢ —3,9))
i i Sij

+3 Sz [ dS(F +493)@,9;+8,9) 3)
ij

where the volume integrals are performed in each
cell i and surface integrals in each boundary S;; be-
tween cells i and j. The summations run over
cells, ¥V is the potential and d,1; denotes the out-
ward normal derivative to the cell surface S;;, from
cell i. € is always real for any trial wave function.
We can vary ¢ to obtain the conditions for € to be
stationary

(—V2+ Vi, =ey; , (4a)
Uils,=¥ls, (4b)
3 |s,=—0n¥jls, - (4c)

Equations (4) imply that the wave function and its
normal derivative have to be continuous through
the cell boundaries. The variational expression for
the energy eigenvalue adopted in the VCM deriva-
tion [Eq. (3)] is the same one Antoci and Nardelli

Iused in their intersecting sphere model.’!

If the cellular representation of the wave func-
tion [Egs. (1)] is assumed and the Bloch conditions
[Egs. (2)] are used to relate the coefficients 4;; in
different cells, we can derive the secular equation
for the crystalline structure with one atom per unit
cell from the variational expression [Eq. (3)]

S (AH [A)Ap=0, 5)
2

where

(AMH[M)=3 [ dSge RIfuDo.f1(F)
R
FFEEB (D],

(6)

where the sum runs over all the lattice vectors con-
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necting parallel faces of the atomic polyhedron,
and the integrals are performed on the surfaces de-
fined by the T vectors. We have dropped the cell
index i to simplify the notation.

The secular matrix is then parametrized in terms
of €y and the one-electron energies are also ob-
tained by searching for the zeros of the associated
determinant. The surface integrations which de-
fine the matrix elements H,;+ are performed ac-
cording to the usual procedure of numerical in-
tegration, where the integrand is evaluated at a
finite number of points and summed with ap-
propriate weight factors. The practical use of the
VCM would be seriously hindered if these surface
integrations had to be made with much precision.
In that case we would be faced with the difficult
problem of establishing the net of points and their
respective weights which would permit a precise
evaluation of the integrals. It has already been
shown that the surface integrations need no special
care but can be performed very naively.! VCM is
also variational with respect to the number and lo-
cation on the cell surfaces of the points needed to
perform the integrations. This is the main reason
VCM is as fast as the standard multiple-scattering
Xa method for molecular calculations.? This
problem is carefully examined in this paper in or-
der to survey the possibility of the VCM becoming
a satisfactory tool for the solution of the
Schrédinger equation in crystals.

One important asset of the VCM is the defini-
tion of a criterion of precision that permits us to
reach conclusions on the accuracy of the calcula-
tions without increasing the basis set. The cri-
terion C of precision, defined according to Ref. 1,
can be written for the crystalline structure with
one atom per unit cell as

a
de

C=1+ |4% (HA,A')AA'/ZAXNAA'AA' ’
Yy

(7)
where the matrix N is given by

Nww= [ds

d |«
E;(f A0Sy

. (8)

d *
— fu g @)

We verified that the behavior of C, as a function
of the number of spherical harmonics in the cellu-
lar expansion and the number of points used to
perform the surface integrations, is a reliable cri-

terion of precision of the calculation.

In order to apply the method to metallic sodium
we considered the space-filling polyhedra for a
body-centered-cubic (bce) lattice. The Wigner-Seitz
cell is a truncated octahedron delimited by eight
octahedral faces (hexagons) and six cubic faces
(squares). There are seven lattice vectors connect-
ing seven pairs of parallel faces.® The crystal po-
tential could be expressed as the sum of a Coulomb
term and an exchange term. The former was
represented by a spatial superposition of atomic
Coulomb potentials, one centered on each atomic
site. The spherical average of the crystal Coulomb
potential was calculated with respect to the center
of the cell. The atomic Coulomb potential and
charge density were obtained from a self-consistent
Hartree-Fock-Slater atomic calculation with
Slater’s approximation for the exchange term.’
The crystal-charge density was also calculated by
considering a spatial superposition of free-atom
charge densities. The spherical average of the cube
root of the crystal charge density was performed
within the cell and was used to calculate the spher-
ically averaged Slater-type statistical exchange po-
tential. The crystal potential was determined by
taking the atomic contributions of up to 16 shells
of neighboring atoms into account. We assumed
as the sodium-lattice parameter the value
a; =4.225 A.%

2

III. VCM RESULTS FOR SODIUM

In the general formulation of the VCM no as-
sumption is made a priori about the shape of the
cells. This is an important asset of the method,
which makes it suitable to be applied to a wide
range of systems.! In order to calculate the secular
matrix elements it is necessary to perform the sur-
face integrations numerically. The integral of a
generic function g(T) on a cell surface S can be ap-
proximated by the expression

[ eDds= Jwe(F,), ©
p

where we are adding the values of g(T) at some
selected points T, on the surface S, multiplied by
the appropriate weight factors w,. For a three-
dimensional periodic structure, the Wigner-Seitz
cells are well-defined polyhedra delimited by planar
faces. These faces can always be divided into tri-
angles and the w, can be easily found.**

In Fig. 2 the sets of points we selected on the
faces of the atomic polyhedron to perform the cal-
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FIG. 2. Different sets of points used to perform the
cellular calculations. The square and the hexagon
represent the two kind of polyhedral faces.

culations are shown. Once the values of f; and
9,/ at these points for the eight hexagonal and
six square faces of the polyhedron are known, the
matrix elements are calculated using Eq. (9).
When only the center of the faces are used as
matching points the values of w, will be the areas
of the hexagon and of the square. In order to
make a careful study of the convergence properties
of VCM, we find it convenient to use cubic har-
monics as the basis functions, rather than the
standard spherical harmonics. Thus, we are using
linear combinations of spherical harmonics which
transform according to the irreducible representa-
tions of the cubic point group O,.%

In Table I a convergence study of the I',s level
of sodium as a function of the number of terms in
the cellular expansion and of the number of points
used to perform the numerical surface integrations
at hexagons and squares is shown (see Fig. 2). The
cellular representation includes cubic harmonics
whose maximum angular momentum is /,,. The
first interesting feature of Table I is that it em-

TABLE 1. Convergence of the I',s energy level of
metallic sodium. [, is the maximum spherical har-
monic angular momentum in the cellular expansion.
“Points” is the number of points used for numerical in-
tegration in the hexagonal and square faces of the poly-
hedron (see Fig. 2). Values are in rydbergs.

Points /., 2 4 6 8
1 0.194
7 0.385 0.490 0.489
9 0.368 0.530 0.476 0.477
12 0.430 0.517 0.507 0.507
15 0.429 0.516 0.507 0.507

phasizes the double variational character of VCM.
For a fixed value of /,,,, the solution converges if
enough points are used for the surface integrations.
When this number of points is reached, the solu-
tion is no longer sensitive to the number and loca-
tion of the points of the cell surfaces. It is clear
then that the lack of precision in the calculation of
the surface integrals is not important in the VCM.
On the other hand, VCM shows fast convergence
with respect to I. The solution is fully convergent
for I.,,,=6 and convergent for [ ,,, =4 within
tenths of eV. Comments should be made with
respect to the entries correspondent to /,, =8. No
solutions were found with one and seven points per
face. When nine points per face were considered a
solution which deviates from the converged value
was found. Finally, with 12 and 15 points we ob-
tained the converged result. This behavior of the
energy eigenvalue has a straightforward interpreta-
tion. One and seven points are not enough to sam-
ple a spherical harmonic whose angular momen-
tum is eight. The inclusion of this harmonic gen-
erates a mismatch at the cell boundaries and the
solution cannot be found. However, if more points
are considered in the calculations, the high-order
spherical harmonic is sampled correctly and the
converged value is obtained. Accordingly, one
point per face is not enough to sample spherical
harmonic whose angular momentum is greater
than two.

In Table II we show the calculated values for the
criterion C of precision related to the I',s energy
level. We expect C to be small compared to one
for converged results. We conclude from the re-
sults shown in Table II that a good accuracy is ob-
tained for /,,,, =4 or 6. Table II also shows that
the lack of precision in the calculation of the sur-
face integrals is not critical. Twelve points per
face is enough to ensure convergence.
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TABLE II. Behavior of the criterion C of precision
as a function of /,,,, and “points.” The entries corre-
spond to the I',s level and this table should be com-
pared with Table I. C is defined in the text by Eq. (7).

Points [, 2 4 6 8
1 0.6153
7 0.2474 —0.0984 —0.1054
9 0.2645 0.0785 —0.0097 0.0807
12 0.3008 —0.0177 —0.0302 —0.1264
15 0.2996 —0.0231 —0.0342 —0.1090

Thus we conclude that by using twelve points
per face and up to /., =4 in the cellular expan-
sion, the sodium energy bands can be calculated by
VCM with a good degree of accuracy. All the cal-
culations were then performed within this scheme.

Table III shows the energy levels of sodium at
some selected high-symmetry points in the BZ.
The I'; level was chosen as the origin. The WSS
entries are from a Wigner-Seitz-Slater cellular cal-
culation.’ The linear combination of atomic orbi-
tals (LCAO) values are from a self-consistent cal-
culation performed using the LCAO method.?
The APW entries correspond to an APW calcula-
tion.?” The quantum defect method (QDM) values
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were obtained using the quantum defect method?*®
(ay =4.3 A). Those entries labeled as KKRZ were
obtained from a self-consistent calculation using
the Kohn-Korringa-Rostoker-Ziman method*”-3
(a, =4.3 A). Finally, the orthogonalized-plane-
wave (OPW) entries are from an OPW calcula-
tion. When comparing the results displayed in
Table III we have to bear in mind that the poten-
tials used in the methods may have been rather dif-
ferent. Most of the earlier energy-band calcula-
tions on sodium were done with the use of the
Prokofjew potential.>%%° The recent calculations

* were performed by taking into account more ela-

borated descriptions of the exchange-correlation po-
tential.??%3% In spite of these observations, a fair-
ly good agreement between the VCM, APW, and
OPW calculations is found. It is interesting to ob-
serve that the VCM results represent a definite im-
provement on the WSS values.

Table IV compares the band gap

AE“O:E(N])*—E(Nl')

obtained from VCM with the results of other cal-
culations. The different labels for the entries are
the same as those of Table III. The agreement be-
tween the VCM, OPW, and APW calculations is

TABLE III. Energy levels of metallic sodium at some selected points in the BZ. The I,

level was taken as reference and placed at the zero of energy. Values are in rydbergs.

Level method VCM WSS? LCAOP APW® QDM KKRZ* OPW!
ry 0.0 0.0 0.0 0.0 0.0 0.0 0.0
| PP 1.125 1.033 1.092 1.028 1.073 1.114
| XD} 1.157 1.202 1.158 1.114 1.135 1.154
Iys 1.225 1.213 1.218 1.117 1.138 1.268
P, 0.427 0.498 0.438 0.436 0.437 0.425 0.432
P, 0.522 0.628 0.526 0.549 0.508 0.499 0.582
H, 0.583 0.595 0.602 0.567 0.573 0.565 0.569
Hs 0.592 0.625 0.567 0.594 0.579 0.568 0.593
H, 0.743 0.708 0.784 0.728 0.846
Ny 0.295 0.293 0.297 0.294 0.296 0.284 0.284
N, 0.343 0.340 0.317 0.325 0.313 0.308 0.335
N, 0.758 0.813 0.838 0.814 0.829 0.814
Ny 0.861 0.866 0.899 0.854 0.916
Ny 0.890 0.966 0.907 0.888 0914
N, 0.989 0.999 0.985 0.942

2Reference 9.

YReference 28.
‘Reference 27.
dReference 36.

“References 37 and 38.

fReference 39.
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TABLE IV. Energy levels at N; and N and the width of the energy gap E(N|)—E(N )
for metallic sodium. The references for the data sources are given in Table II. Values are in

rydbergs.

Level method VCM WSS LCAO APW QDM KKRZ OPW
N, —0.252  —0.268 0.317 0.325 —0.291 0.270 —0.128
Ny —0.300 —0.315 0.297 0.294 —0.308 0.246 —0.179

E(N,)—E(Ny) 0.048 0.047 0.020 0.031 0.017 0.024 0.051

of the order of +0.01 Ry. The APW value report-
ed in Table IV was obtained by using the Kohn
and Sham approximation to the exchange poten-
tial. When the Hartree-Fock potential is used the
value for the gap is 0.041 Ry.”’ By scaling the
statistical-exchange parameter a from 1 to % in
the Xa method it was observed that the gap AE
remains constant within 0.005 Ry.3° Accordingly,
the use of a more elaborated treatment for the
exchange-correlation potential is out of the scope
of the present work.”’ The difference between our
result and that of Howarth and Jones (WSS entry)
is remarkable in spite of the large cellular expan-
sion used by those authors. VCM is much more
accurate and faster than that early version of the
cellular method. Somewhat larger discrepancies
are observed between the VCM result and those ob-
tained from LCAO, QDM, and KKRZ methods.

The overall result of the energy band of sodium
as determined by VCM is shown in Figure 3.
Conduction and excited bands are present along
the A, F, A, 2, and G symmetry directions.

IV. EMPTY-LATTICE TEST

It has been continuously alleged since 1937 that
the cellular method does not satisfy the Schockley
empty-lattice test. This problem has been an object
of investigation for many authors along the history
of the cellular method.”~1%24! In the empty lat-
tice the cellular spherical potential is assumed to be
constant within the cells. This is an exactly solv-
able case which can be used as a test for the accu-
racy of the method.

We have carried out VCM calculations for an
empty bec lattice with the same lattice parameter
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FIG. 3. Energy-band structure of bcc sodium obtained from the VCM calculations.
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TABLE V. Convergence of the free-electron energy eigenvalue corresponding to the wave
vector k =(27/a L) (%,0,0) in the BZ of the bec lattice. [, is the maximum spherical har-
monic angular momentum in the cellular expansion. “Points” is the number of points used
for numerical integration in the hexagonal and square faces of the polyhedron (see Fig. 2).
Values are in rydbergs. The exact value of the energy is 0.154 822 Ry.

Points [, 1 2 3 4 5
1 0.134 0.134 0.149
7 0.135 0.134 0.154 0.153 0.152
9 0.137 0.137 0.155 0.155 0.155
12 0.137 0.137 0.155 0.155 0.155
15 0.137 0.137 0.155 0.155 0.155

of sodium. The sets of points used in this investi-
gation are the same considered previously and
shown in Fig. 2. The cellular method within the
framework of the exact point matching approach
was also applied to the bcc empty lattice and the
results were compared with those obtained from
the VCM calculations.

The energy eigenvalue of an electron of wave
vector K in an empty lattice is k2, in atomic units.
According to the cellular method the functions

R;“(r) are determined from the radial Schrodinger
equation, which for an empty lattice is written as

Ldd ey [l 105D

€
r2dr dr Rin=0.

(10)
The solutions of this equation which are regular at
the origin are the well-known Bessel functions.
They are then used to calculate the matrix ele-
ments of VCM and of the Slater cellular method
(exact point matching approach).

By applying VCM we performed the conver-
gence study of the free-electron energy eigenvalue
at kK= (2m/aL) (5 ~,0,0) as a function of Imax and

“points.” Tables V and VI show the results of this
study. According to the values obtained for the

criterion C of precision, shown in Table VI, the
optimal value for the convergence is I, =3. By
extending the cellular expansion up to I, =5, C
increases while the converged energy eigenvalue
remains constant. The inclusion of spherical har-
monic of higher order ([, > 3) generates a
mismatch at the cell boundaries, therefore increas-
ing the value of C. However, due to the variation-
al character of the method, the mismatch has no
first-order effect on the energy eigenvalue. It is
also observed from Tables V and VI that sets of 9
or 12 points per face of the polyhedron (see Fig. 2)
are enough to ensure convergence. The obtained
result for the free-electron energy eigenvalue 0.155
Ry, is in good agreement with the exact result,
0.154 822 Ry. In the present calculation we used a
more accurate numerical search for the energy
eigenvalues than that used in our previous work.*
This explains the small discrepancies between the
results shown in Table V and those already report-
ed by us.* Altmann and his collaborators applied
the empty-lattice test for the bee structure and
found errors of about 0.0001 Ry for high-
symmetry points using the rigorous cellular
method.*! For a general K value the errors are of
about 0.005 Ry but there are others of greater

TABLE VI. Behavior of the criterion C of precision as a function of /,,,, and “points.”
The entries correspond to the free-electron energy eigenvalue at k =(27/a;) (%,0,0). This
table should be compared with Table V. C is defined in the text by Eq. (7).

Points [, 1 2 3 4 5
1 1.1207 0.7437 0.5186
7 1.2641 0.5831 0.0894 0.7818 0.8453
9 1.1976 0.7384 0.0790 0.5692 0.7451
12 1.1972 0.7400 0.0805 0.5465 0.6539
15 1.1978 0.7400 0.0859 0.5457 0.6332
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FIG. 4. Comparison of cellular and exact solutions for the empty bcc lattice, 100 direction. VCM solutions, empty
circles; exact point matching (EPM) solutions, full circles; exact solutions, solid lines.

magnitude (~0.02 Ry). In order to reach this In Fig. 4 comparisons of VCM, exact point
agreement the boundary conditions were imposed matching (EPM) and exact solutions for the bce
over a grid of 256 pairs of conjugate points span- empty lattice, A direction, are made. The empty
ning - of the Wigner-Seitz cell. The wave func- circles denote the VCM results, the full circles
tion was carried out up to /,,,, =12 for high- denote the exact point matching results and the ex-

symmetry points and ., =6 for a general k. act solutions correspond to the solid lines. The ex-
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act point matching solutions were found by select-
ing points on the square and hexagonal faces of the
polyhedron, among those shown in Fig. 2. Cellular
components up to /,,, =4 were considered in the
wave-function expansion. Twelve points per face
and up to /,,,, =4 were considered in order to per-
form the VCM calculations.

From the results shown in Fig. 4 we conclude
that the agreement between the VCM results and
the exact solutions is very good. On the other
hand, the exact point matching results present
strong deviations from the exact solutions, for
values of k outside of the first BZ. Very large
gaps are observed at the zone boundaries and along
the symmetry line. These discrepancies noted by
other authors in the past have been quoted in dis-
favor of the cellular method. No attempt was
made by us to compare the exact point matching
results with those obtained by other authors. Since
we are using a different set of matching points and
the solutions are strongly dependent on the number
and position of these points on the cell surfaces,
the comparison would be meaningless.

V. CONCLUSIONS

The results reported in this paper show that the
VCM is an accurate and fast method to determine
the electronic structure of solids as well as of mol-
ecules. The energy bands of metallic sodium and

of an empty bec lattice were accurately determined
by assuming the cellular wave expansion with com-
ponents up to /., =4 and by using only 12 points
per face to perform the numerical integrations.
Therefore, the severe convergence problem related
to the point matching approach is avoided.

The formulation of the VCM as adapted to
three-dimensional periodic structures turns out to
be somewhat similar to the method used by Jen-
kins in the past.!* However, the procedure adopted
by this author to perform the surface integrations
seriously hindered the practical use of the method.
We believe that even today, when high-speed com-
puters are available, the way used to solve the cel-
lular matching problem would be very time con-
suming. With the VCM we provide a useful con-
tribution to solve this interesting problem. We
conclude that the results are sufficiently encourag-
ing to suggest that the method may be applied to
more complex periodic structures.
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