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We discuss the nature of polaron excitations in two models of current interest in the

study of quasi-one-dimensional materials: the coupled electron-phonon and molecular-

crystal models. Using for definiteness parameters appropriate to trans-(CH)„, we show

that, although qualitatively very similar, the two polarons differ quantitatively in many
respects. We then consider the very weakly bound polaron limit and show that here the
two polarons become identical. We indicate that this limit, although not applicable to
trans-(CH)„, may be relevant to other interesting quasi-one-dimensional materials.

I. INTRODUCTION

The past few years have witnessed an enormous
growth of interest in nonlinear excitations corre-
sponding to intrinsic defects in quasi-one-
dimensional condensed-matter systems. ' One of the
most celebrated examples has been the linear conju-
gated polymer trans-polyacetylene [(CH)„]. Here
both microscopic coupled electron-phonon and
phenomenological ' models have shown that the
double degeneracy of the ground state allows kink-
like solitons to exist. Apart from their possible
direct experimental implications' '7'9' " ' for
transport properties, doping mechanisms, and the
observed metal-insulator transition in (CH)„, these
kink solitons, with their unconventional spin and
charge assignments, have stimulated theoretical
work on the existence and role of "fractional
charge"' ' in both solid-state systems and field-

theory models.
More recently it has been recognized that the

same theoretical models that predict kink solitons
in trans-(CH)„also predict nonlinear "polaron" soli-
tons is —20 This result is important because po-
larons, although more familiar and conventional in
their properties than kinks, are also more generic, in
the sense that they do not require the (atypical}
ground-state degeneracy for their existence. Thus.
in the more typical case of polymers with a nonde-
generate ground state —cis-(CH)„and polypara-
phenylene are examples —polarons (but not kinks)
are expected. Indeed, polarons in cis (CH)„have-
been explicitly studied' ' ' ' in a variant' of the
coupled electron-phonon model, and the optical-
absorption effects of polarons have been calculated
for both isomers of polyacetylene. Further, recent

experiments provide some indications that polarons
are observed in both cis (Re-f. 23} and trans
(CH) .

Given the rapidly developing interest in the po-
larons that emerge from the coupled electron-
phonon model of conjugated polymers, it is natural
to consider how these excitations are related to the
more standard models of polarons in quasi-one-
dimensional systems. To understand this relation is
of more than academic interest, in view of the re-
cent studies ' of the conventional polaron of the
molecular-crystal model ' in the context of the
dynamics of self-localized charge carriers in quasi-
one-dimensional solids. ' In particular, the exten-
sive calculations of polaron dynamics and possible
implications for transport that are currently being
made in the molecular-crystal model have not yet
been carried out in the coupled electron-phonon
model.

Thus in this paper we study the relation between
the polarons described by the molecular-crystal and
coupled electron-phonon models. To permit analy-
tic calculations, we work in the continuum limit of
these models, an approximation validated by the
large spatial extension of the polarons. 's ' For de-
finiteness, we present our results in the specific con-
text of trans-(CH), . However, as we have stressed
above, similar polarons are expected to occur in a
much wider class of quasi-one-dimensional materi-
als. Hence our conclusions concerning the relations
between these two polarons are of applicability and
relevance beyond trans (CH)„-

In Sec. II we review the lattice versions of the
coupled electron-phonon and molecular-crystal
Inodels. ' %e indicate a set of relations among
the parameters of these two models that makes
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them as similar as possible in the continuum limit.
In Sec. III we discuss in detail this continuum limit
and show that, for the paraineters appropriate to
trans-(CH}, the polarons in the two models are
qualitatively similar but differ quantitatively. In
particular, the polaron in the coupled electron-
phonon model is somewhat less extended and sub-

stantially more bound than its counterpart in the
molecular-crystal model. In Sec. IV we establish
that, in the very weakly bound limit, the static po-
larons of the two models become precisely
equivalent. We indicate that, although not ap-
propriate to trans (CH)-„, this limit may apply to
other members of the class of interesting quasi-
one-dimensional materials. In Sec. V we compare
the effective polaron masses, finding that for the
parameters appropriate to trans (CH)„-, the coupled
electron-phonon polaron, although light, is much
more massive than that in the molecular-crystal
model. In Sec. VI we summarize and discuss our
results. Finally, in the Appendix we present the
technical details necessary for one of our calcula-
tions.

II. THE LATTICE MODELS

To understand the similarities (and differences) of
the polarons in the continuum versions of the cou-

pled electron-phonon and molecular-crystal models,
it is illuminating to start from the lattice form of
the models. In the case of the electron-phonon
model, the lattice version is the Su-Schrieffer-
Heeger (SSH) Hamiltonian, which has the form

HssH ———,M g u„+—,Eg (un+ i u„)—
—to ~ (Cn+1,sc sn+Cn, scn+ i,s }

n, $

+ X(un+i u. }(c.—+i,.c.,s
n, $

+Cn, sen+i, s } ~

(2.1)

Here u„represents the deviation from its equilibri-
um position of the nth molecular unit on the chain
and c„(c„,) creates (annihilates) an electron at the
nth site. The physical interpretation of the four
terms in (2.1} is clear. The first represents the lat-
tice kinetic energy, the second the bond strain ener-

gy between adjacent molecules, the third the con-
stant part of the electron hopping integral between
adjacent sites, and the fourth the "phonon-

mediated" hopping term, which couples the electron
and lattice motions and is responsible for the in-
teresting physics of the model. In its application to
trans-(CH)„, HssH is supplemented by the require-
ment that there is precisely one electron per site:
that is, the (m-electron) band is half-filled. Thus
HssH considers all the electrons in the relevant band
and includes their interactions as mediated by the
phonons.

The values of the parameter in (2.1) in the case of
trans (CH-)„are taken to be (Ref. 3) M = 13
a.u. =2.18&&10 g, X=21 eV/A, tz ——2.5 eV,
and a =4. 1 eV/A. In addition, the lattice spacing
along the chain, which is necessary to relate (2.1) to
its continuum limit, is a =1.22 A.

In contrast to the SSH model, which although of
wider applicability was developed specifically in the
context of trans (CH), -the molecular-crystal model
was developed ' ' ' as a generic model of po-
larons: that is, electrons that are "self-trapped" due
to their interactions with the vibrations of a molec-
ular lattice. In one spatial dimension, the lattice
form of the molecular-crystal Hamiltonian (denoted

by HH, where the subscript stands for Holstein3'i2)

ps
33

HH ———,M gy„+ coF. gy„
n n

Jg (ansan+ i,g +an+ i,gang )
5%$

~ gyn san san s ' (2.2)
SgS

Here y„ is conventionally interpreted as the vibra-
tional displacement of the individual diatomic nu-

clear coordinate from its equilibrium value and

a„(a„)creates (annihilates) an electron on the nth
molecule. In (2.2) the four terms represent, respec-
tively, the lattice kinetic energy, the (vibrational po-
tential} energy of the molecular lattice, the hopping
energy associated with moving an electron between

adjacent sites, and, finally, the coupling of the elec-
tron and lattice motions. In its application to a sin-

gle polaron on the molecular chain, HH is con-
sidered as acting on a one-electron state, the wave
function of which is (in general) spread over the lat-
tice sites.

Apart from the clear differences in the underly-

ing physical motivations and assumptions, the de-
tailed structures of the two lattice Hamiltonians
differ substantially; for example, both the lattice
strain energy and the electron-lattice interaction are
bond diagonal in HssH and are site diagonal in HH.
Further, the explicit ground states of the two
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and

M~M,

4K~Ma)E,

40.~A .

(2.3a)

(2.3b)

(2.3c)

In addition, one requires a relation between the
constant hopping terms in the molecular-crystal
model (J} and in the electron-phonon model (tp).
Here a slight subtlety arises, since the SSH model
includes all the electrons in the half-filled band,
whereas the molecular-crystal model focuses on the
single- (localized-) electron state just below the con-
duction band. The single-electron energy spectra
for the two cases are sketched in Figs. 1 and 2. For
the molecular-crystal model, as shown in Fig. 1, the
energy levels are given by the standard form

models are quite different. For the continuum
electron-phonon model, the ground state contains
the dimerized lattice and a filled valence band

separated by a gap from an empty conduction band.
For the molecular-crystal model, the ground state is
the (unexcited} molecular lattice and an empty con-
duction band. Nonetheless, in both models, the re-

sult of adding a single additional electron to the
ground state is a polaron excitation. In addition, in
both models, for the parameter values appropriate
to trans (CH)„-, these polarons are extended over

many lattice sites. This (correctly) suggests that the
continuum limits of HssH and Htt can usefully be
studied. This is particularly fortunate, since analy-

tic solutions exist in the continuum limit for po-
larons in both models. These solutions will allow us

to establish that the two polarons are always quali-

tatively similar and, in a particular limit, become
identical. Thus, although the underlying physics
and the lattice models do differ strikingly, their po-
laron excitations are closely related.

To relate the electron-phonon and molecular-

crystal models in the context of trans (CH)„ -it is of
course necessary to choose the coupling constants
appropriately. Introducing in (2.1) the staggered
displacement co„=(—I)"u„and noting that the
leading term in the continuum limit will have

tp„+i ——co„+O(a), we see that the models in (2.1)
and (2.2) can be made to correspond in the continu-

um limit by the identifications

0

k

FIG. 1. Generic single-electron spectrum of the
molecular-crystal model illustrating the conduction band
and the localized electron state with energy e =—eo with
respect to the bottom of the band.

For the electron-phonon model, as indicated in
Figs. 2(a) and 2(b) the (initially) relevant limit is
that of a half-filled band, in which case for excita-
tions near kF m l2a, wit—h—k'= kt +k,

G(k' }= —2tpcos(kg+ k )a (2.5a)

=+2tpsinka=2tpak =UFk, (2.5b)

(2.6a)

or, for states near the bottom of the conduction

band,

k u
E(k) =hp+

2bp
(2.6b)

Hence to identify the two models correctly we ex-

pect that

as shown in Ref. 36.
As discussed in detail elsewhere, ' ' this ap-

parently linear Luttinger-type spectrum is altered
by the familiar Peierls instability of coupled
electron-phonon systems. This results in the forma-
tion of a gap, of full width 2b,p [=1.6 eV in trans
(CH) ], in the electron spectrum. In the continuum
limit [see Figs. 2(c} and 2(d)] the resulting single-
electron energy spectum is

e(k) =—2Jcoska, (2.4a)

which, for the states (near the bottom of the band)
relevant to the limit of a single electron, become

e(k)= 2J+2J , k a +——2 2

2 Ja'~UF'imp

or, using vF ——2tpa,

J~2t plop .

(2.7a)

(2.7b)
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FIG. 2. Single-electron spectrum in the coupled electron-phonon Hamiltonian: (a) the lattice spectrum before the
Peierls s instability, (b) the Luttinger-type spectrum obtained by expanding (a) around E'=Ep, k =kF, (c) the continuum
spectrum after the Peierls's instability for constant gap parameter b, =6 p' ski) = [(k vF+hp)]'/, and (d) the spectrum for
the polaron solution. For the electron polaron the state at (—coo) is doubly occupied and that at (+coo) is singly occupied.
For the hole polaron, the state at (—coo) is singly occupied. Possible bipolaron states are described in Refs. 21 —23.

III. THE CONTINUUM LIMIT

The adiabatic continuum limit of the molecular-
crystal model has been derived and discussed else-
where ' ' ' in considerable detail, and thus we
shall here only briefly motivate the results. One in-
troduces an adiabatic electron wave function a„' ',
and treats the lattice displacements as c numbers,
y„' '. Varying the expectation value of HH in this
one-electron state with respect to y„' ' determines the
minimal energy displacements to be

(0) ~ (0) 2
3'n =

2 I
as

MME
(3.1)

whereas varying with respect to the a„' ' leads to
Schrodinger-type equation,

ea(0) A (0)a(0) J(a(0) + (0) 2a(0))~~n 3n an n+] +~n —1 n

Thus substituting (3.1), one obtains the equation for
the continuum polaron in the molecular-crystal
model as

d a' '
—J

dn
( g (0)

( 2 g (0) (0)

COE

(3.4)

' (/2

a„' '= sechy(n —no), (3 5)

with n0 being the (lattice-site) location of the po-
laron and y [=A i(4MroEJ)] being the inverse po-
laron width. The normalization condition on (3.5)
1s

This is (a time-independent version of) the well-

known "nonlinear Schrodinger equation, " ' and
the polaron is just the familiar (envelope) soliton
solution"

(3.2)

Assuming a„' ' is a smooth function of its lattice-site
"argument" n one can approximate

d 2g (0)

(3.3)
dn

y (a(0) (2

The energy eigenvalue in (3.4) is

E' —= —6'0 = —Jp 2

and the total polaron binding energy is

(3.6)

(3 7)
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g'r = — —ep+ —,Mto~ g (y„' ')

= —,eo ———,Jy (3.8}

In (3.11c) the summation is over the full valence
band plus, for the polaron, the appropriate states in
the gap' ' [see Fig. 2(d)].

The analytic form of the gap parameter for the
polaron solution to (3.11) is

For later comparative purposes, note that if we use
the correspondences indicated by Eqs. (2.3) and (2.7)
to determine the parameters appropriate for trans-

(CH), we find that the polaron is about 22 lattice
sites wide (y=0.045}, the localized electron energy
level lies 0.036 eV below the conduction band
(ep ——0.036 eV), and the polaron binding energy is
0.012 eV.

The adiabatic continuum limit of the SSH model
has also been extensively discussed, ' ' and
thus we shall again merely sketch the results. The
continuum Hamiltonian corresponding to (2.1) is

2

with

and

hr (x}=hp —sour [tanllo(x+xp )

—tanlMp(x —xp }]
= ~o—(&ovF) too 'sechco{x+xo)

X sectucp(x —xp),

Cop+(ICpvp)
2 2 2

(3.12a)

(3.12b)

tanh2Koxp =Kpvi;/Ap . (3.12c)

The electron wave functions for the positive-energy
localized state are

Bu (x) Bv(x)
tuz d—x u(x) —u(x)

Bx Bx

+ x4x u*xvx+u*xu x (3.9)
and

up(x) =Np[ ( 1 —i )secllp(x +xp)

+(1+i)seclmo(x —xo)] (3.13a)

up{x}=Np[ (1+i )sectucp(x+xo)

cog ——4K/M,

g =4a(1/M)'i

and"

(3.10a}

(3.10b}

Up=2toQ . (3.10c)

The continuum equations following from (3.9) are
for the single-electron wave function (u„,u„)

e„u„(x)= iui; u„—(x)+ 6 (x )u„(x),
a

Bx

(3.11a)

e„u„(x)= +iu~ u„(x)+b (x)u„(x),a

(3.11b)

and for the (self-consistent) gap parameter
2

b,(x)= —
z g'[v„"(x)u„(x)+u„'(x)u„(x)].

~g ns
(3.11c)

Here 6 is the (real) band-gap parameter and u and u

are the two components of the electron field. For
b, =0, u and u correspond (respectively) to right-
and left-going electrons [see Fig. 2(b}]. In terms of
the lattice parameters,

+(1 i )sect—ucp(x —xp)] (3.13b)

with Np ——(~Kp )/4 so that

f dx{
I uo I'+

I
vo

I
'}=1. (3.14)

2xp =( W/2hp)V 21n( 1+W2)a =8.9a

(3.15)

using W =4to ——10 eV and 2ho ——1.4 eV. The
amount by which the localized electron state lies
below the conduction band is

o
—~o=~o 2 —1

v2
=0.21, (3.16}

Since we do not need the explicit forms of the wave
functions in the conduction and valence bands, we
shall not quote them here. It is important to re-
call, however, that the electron wave functions satis-
fy (3.11a) and (3.11b) with h(x)=br(x) for any
shou~ in the allowed range 0&~ou~ &ho. The self-
consistency condition (3.11c) determines the specific
value of spur for a solution to the full-coupled
equation. For trans (CH)», aouF ——h-o/@2=too. In
this case the characteristic width of the polaron,
which we take as 2xo, is ' '
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and the binding energy of the polaron is'9'2o «om (2.6b), En=&p+O(k ) . Thus, since e„+6
2bp, we see that (4.3b) implies

1 ho=0 1~o=007

(3.17)

gy() )

—UF
Bx

(4.4)

both values being expressed in units of eV. These
numbers all indicate that the continuum polaron in
the electron-phonon model is, for corresponding
values of the parameters, less extended and more
deeply bound than that in the molecular-crystal
model.

so that 1(( ' is of order ( I/b, o) relative to f") and,
further, that this leading term in g„' ' can be calcu-
lated directly from g„"'. Hence to leading order in
I /b p, only the fn" equation (4.3a) remains. i

Focusing on a weakly bound state with

ep =(6p KpvF—) ~5p KpvF—/25p,2 2 2 1/2 2 2

IV. EQUIVALENCE IN THE WEAKLY
BOUND LIMIT

KpVF/kp (& 1 (4.1)

To see how the equivalence appears when (4.1)
holds, let us start with the electron wave-function
equations. We first transform from the right- and
left-going components I u„,u„j to components
[gn",Pn 'J which satisfy

Deeper insight into the relation between the po-
larons in the two models can be obtained by consid-
ering a formal limit of Eq. (3.11},in which the po-
larons of the continuum electron-phonon model be-

come precisely equivalent to those of the continuum
molecular-crystal model. This limit is that of a
very weakly bound polaron, in which

and substituting for ()po '/()x by differentiating
(4.4)—valid to leading order in (Kp/hp) (Ref. 43}—
yields

2 (1)
(i) ( —'F } ~ &o — (i)eofo =UF ~, +(~o ~)fp

2 o

(4.5a)

or

2 2 2 2 (1)
KOUF (i) VF () 40
2b () 2b,o c)x 2

(4.5b)

This clearly has the form of a Schrodinger equa-
tion [cf. (3.4)] with potential 8=ho b, . From—
(3.12a) we see that

1

2
(u„+u„),

—i
4n = (i(n Un} ~

2

(4.2a)

(4.2b)

Z= (KouF) cop 'sechKo(x+xo)sechKo(x —xp),

(4.6a)

so that Eqs. (3.11) read

(2)

enlln +UF +~In
()x

(&)
(2)

en 4n UF
X

and the gap equation (3.11c) becomes

2

b,(x)= — y'(
~

@"'
~

' —
~

lt)"'
~

')
COg

(4.3a)

(4.3b)

(4.3c)

For a weakly bound polaron we expect 6 to differ
only slightly from its ground-state value [viz. ,
(3.12a) in the limit (4.1)]. Thus we write b, =kp —Z
and study Eqs. (4.3) in powers of I/hp. For elec-
tron states near the bottom of the conduction band,

so that for KpvF /b, p « 1, to leading order,

b, =(KpuF) hp 'sech Kpx+ (4.6b)

where the ellipsis represents higher orders. Similar-

ly, from (3.13) and (4.2a), we see that fp", which, in
general, is given by

fp —— (up+up)
2

=v 2No[seclvco(x+xo)+sechKo(x —xo)] ~

(4.7)

with Np ~icp/4, becomes, to leading order for
KpuF/kp (( l~
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Kp

' 1/2

sechKpx,

with

f dx I/0"(x)
I

=1.
(4.8)

By inspection, we see that (4.6b) and (4.8) imply

2 2

(4.9)
hp

and hence (4.5b) can be rewritten as

2 (1) 2 2 2
VF () $0 2KOUF (&) 2 (() KOVF (])

ISO I
t)'0 = —

2~ 40
2hp &~2 hp p

(4.10)

with the solution as above in (4.8). Clearly, Eqs.
(3.4) and (4.8) are identical in structure. Before
showing that they are precisely equivalent—
constants and all—let us discuss briefly the con-
sistency of the limiting result (4.9) with the general
form of the self-consistency equation for b„(3.11c)
or (3.4c). In particular, in (4.9), what has happened
to all the states in the valence band and to the
negative-energy bound state (at e= —(vo)? From
Fig. 2(d), one sees that for small KOUF/60 these
states are all separated by a "large" energy (-2b,o)
from the state at e = +cvo. Further, these states are
all fully occupied in the polaron configuration just
as they are in the ground state. This motivates the
"frozen-valence-band approximation, " in which one
argues that, since b,(x) differs only slightly from its
ground-state value, the shifts in the states in and
near the valence band are small, and one can ap-

2
g

Vn un +un Vn

g e„(p s

(4.11)

The last term —the sum over all states with energy
less than zero—is, in the frozen-valence-band ap-
proximation, replaced by its ground-state value,
which is just b,o. ' Thus, recalling that $0 ' is
0 (KOUF/60) smaller than 1(to", we see that we can
approximate (4.11) as

2

~0—~=—,
I |to"

I
'+~0+

Ng
(4.12a)

or

2

COg

(4.12b)

The comparison of this result to (4.9) shows that
KovF for the weakly bound polaron is determined in
terms of known parameters to be

proximate the sum over all states with energies less
than zero by its value in the ground state. This ap-
proximation is indicated graphically in Fig. 3. In
the Appendix we show that, to leading order in
(KOUF/50), this frozen-valence-band aPProximation
is valid.

To see what this implies, let us rewrite (3.11c) as
I

&F(x)=40—E=—,g' v„'u„+u„'U„
g n, s

2

(
I

y"'
I

—
I
((("'

I

'}
COg

FYB

ALENCE
//y~BA NO&

ENCE
AND&

GS

(c)

FIG. 3. Graphic illustration of the frozen-valence-band (FVB) approximation. The actual full one-electron spectrum
for the polaron configuration {a) is approximated (FVB) by replacing the states below the Fermi energy by their values in
the ground state (b) so that the spectrum corresponds directj. y to that considered in the molecular-crystal model (c).
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g'~p
KOUF =

2QPg UF
(4.13) KpVF = kp,4

(4.18)

It is now a matter of straightforward algebra to
establish the exact equivalence of the two polaron
solutions in the weakly bound hmit. Starting from
the form of the two wave functions a„' ' [Eq. (3.5)]
and t/io" [Eq. (4.8)], we see that, recalling the rela-
tion na~x, these solutions are identical provided

Koan. From (4.13) and the definition of y, using
the correspondences in (2.3}and (2.7},we find

ag ~p 1 16a 2 ~o 1 3 1
KpQ= 2 2

= 2~ 2
2Q)g VF 2 4K UF 2 MQp p

(4.14)

which proves the relation. Similarly, again recalling
x~na, one can see that each term in (4.10) corre-
sponds precisely to a term in (3.4). In particular,
from (3.7) the energy of the occupied electron state
1s

2 2 2
K pUF VF=—(koa) 2~—y J,
2hp 2~o

(4.15)

Minimizing this expression yields the actual values
of KQUF and binding energy appropriate to the po-
laron in trans-(CH)». In the limit KQVF ((kp ex-

panding (4.16) gives

2 2 3 3
KpUF 4 KpUF

E(KQUF) bp +—
2

+-
26 o m 3&p2

(4.17}

This expression has a minimum at

as expected.
The comparison of the full energy of the two po-

larons proves quite interesting. For the continuum
version of the molecular-crystal model, by direct
calculation the binding energy is, as given in (3.8),
Jy /3. One could similarly calculate directly the
total energy for the polaron of the continuum
electron-phonon model, and by the equivalence of
the solutions, would find the same result. It is more
instructive, however, to start from the general ex-
pression' ' in the electron-phonon model of trans

(CH) for the energy of the polaron configuration
as a function of KpVF,

4 4 i KOUF
E(KQVF ) =coo+ KpUF cootan— —

7P 7T Np

(4.16)

at which point O'F =+A p
—EF(KpUF),

1 (KpUF )
(4.19}

4 KpUF
+—6pI tanh

—KouF/~o (4.20)

Here the full gap Zp ——5,+b„, where 5, is a con-
stant extrinsic gap, and only 6; is sensitive to elec-
tron feedback. The existence of an extrinsic gap
breaks the ground-state degeneracy and leads to a
unique ground state for cis-(CH}„. The parameter
I —=6, /A, ,Ep, where A,, is the dimensionless
electron-phonon coupling appropriate to cis-(CH)„.
Since (KpvF) +c0p=Z p we can exPress EF(KpuF) in
terms of 8 where KovF ——bosin8 and cop —Epcos8.
Minimizing with respect to L9 then yields

8+ I tan8 =m /4 . (4.21)

For I =0—no extrinsic gap and a degenerate
ground state —the solution to (4.21) gives

KpuF =ELQ/V 2, which is the trans-(CH)„result and
is clearly not in the weakly bound limit. For large
I, however, the solution to (4.21) yields a small
value for 0, and this implies that KpUF/60 is much
less than 1.

which, by comparison with (4.15), can be seen to
correspond exactly to (3.8).

Note that (4.18), which gives KQVF /kp
=n. /4=0(1), directly contradicts the assumption
that KpUF QQkp —under which it was derived. This
is an explicit illustration of our earlier remarks that,
although one can formally study the weakly bound
polaron limit, this limit is not applicable to trans-

(CH)„. However, there are expected to be physical-

ly interesting systems to which the weakly bound
limit does apply. In particular, for cis-(CH)„and
related systems with nondegenerate ground states, if
the ratio of the extrinsic gap to the intrinsic gap is
large and the electron-phonon coupling is
small, ' ' single-polaron states mill have KpUF

QQ kp. To see this explicitly, we recall that the
expression analogous to (4.16) giving the energy of a
polaron configuration in cis-(CH)„ is'9 2Q

1 4
EF(KpuF)=c0p+ KQUF — cpptan (KpUF/cop)
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For our final direct comparison of the two po-
larons we study the respective polaron masses. To
some extent, these masses, which influence polaron
dynamics, go beyorid the static properties we have
thus far considered. It is worth emphasizing that
this dynamical information is limited in that the
masses are calculated in the adiabatic approxima-
tion.

In the molecular-crystal model the effective mass
of the polaron is given by

Ol

D
CP
4A

a
D

D

-4—O

-5
0.0 0.2 04 0.6 0.8

I I

X2

I.O

By„' '(n —g/a)

Bg
(4.22)

where g( =npa) is the (physical) location of the po-
laron on the lattice. Using the form of u„' ' from
(3.1) and (3.5) and changing the sum to an integral,
one readily obtains

4y A

15a MmE
(4.23)

which, for the parameters relevant to trans (CH)„, -

gives Mz/M=0. 62X 10,or

FIG. 4. Logarithm of the effective mass (in arbitrary
units) of the polaron in the continuum electron-phonon
model vs X=KpUp/5o. The value at the point labeled X~
corresponds to the value expected in the molecular-
crystal model for the parameters appropriate to trans-

(CH)„. The value of X2 is the prediction of the coupled
electron-phonon model for trans-(CH), . Note that, as
calculated in the text, these differ by nearly a factor of
70.

than the polaron in the molecular-crystal model. In
the weakly bound limit, X«1 [Eq. (4.26)] reduces
to

Mp ——0.015m, (4.24)

(where m, is the electron mass), indicative of the
very small distortion which this polaron represents.

For the continuum electron-phonon model, the
expression analogous to (4.22) is '

Mp

M

3
' '5

1 ~p 16 &pvF
+ 0 ~ ~

16~ QVF 15 ~p

(4.28)

Mp

M
Bhp

16~2 a Bxp
(4.25)

Mp 1 6p

M 16~ avF

&( . —,X —4(1—X ) ln
1 —X

—2X

(4.26)

For arbitrary X (in the physical interval 0&X& 1)
this function is plotted in Fig. 4. For X=1/W2,
the value for the polaron in trans (CH)„, one finds, -

inserting the appropriate parameters, Mz /M
=4.21)&10,so that

Mp 1.0m, , (4.27)

which, although light, is substantially "heavier"

which can be evalutated as a function of
X=ttpUF/bp,

Using the correspondences in (2.3) and (2.7) and re-
calling apa~y, one can easily see that (4.28) is pre-
cisely the same as (4.23) and hence the masses of the
polarons in the two models become the same.

Although for the parameters appropriate to
trans-(CH), the polaron masses predicted by the
two models differ by a factor of nearly 70, in both
cases the polaron mass is surprisingly small. This
small mass should be quite significant in the

dynamics involving polarons, including recombina-
tion of polaron pairs to soliton pairs and charge
transport, both intra- and interchain. More precise,
quantitative statements on either of these effects
will require a more detailed understanding of the
overall dynamics of the models. Some analytic pro-
gress has been made for the molecular-crystal
model, 27 but for the coupled electron-phonon
model, one must so far rely on numerical simula-
tions for guidance. ' Another aspect of the srnall-

ness of the polaron's mass is the potential impor-
tance of quantum fluctuation effects; for example,
for polarons which are bound to charged dopant
molecules or defects by Coulomb attraction, the
small mass will mean larger zero-point motion.
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V. DISCUSSION AND CONCLUSIONS

The results of the previous sections have clearly
established that the polarons of the coupled
electron-phonon and molecular-crystal models are
qualitatively similar and, in the weakly bound limit,
become identical. Outside this limit, there are
quantitative differences, in that for corresponding
values of the parameters the polaron of the coupled
electron-phonon model is less spatially extended,
more bound, and more massive than its molecular-
crystal counterpart.

The implications of these differences depend
strongly on the physical system being modeled. For
trans-(CH)„, for example, one is not in the weakly
bound limit, and the actual polaron excitation is
therefore presumably closer to that described by the
coupled electron-phonon model, since this model is
nearer to the microphysics of the material. More
importantly, in trans-(CH)„ the possibility of kink
solitons radically changes the conventional picture
of polaron dynamics and transport. To see this, we
recall that the energy of a kink (S) or antikink (S) is

Es Es 2b pi——~ a——nd that, by topological con-

straints, kinks must be produced in SS pairs from
the ground state. The implications of this are that
polarons are the lowest state available to a single
electron,

Ep ——(2~2/m. )b p &Es+Es,

and hence will be important at light levels of doping
by single carriers. At heavier doping levels, howev-

er, since

2&22' =2 ~o &Es+Es=
7T

rather than forming additional polaron states, the
excess carriers will be accommodated on SS pairs.
Hence, in this case, to understand properly the
transport and dynamical properties in trans-(CH)„
it is essential to have a model which incorporates
both kink and polaron excitations.

In contrast, in cis-(CH)„and related systems with
nondegenerate ground states, the absence of kink
solitons removes the striking qualitative effects of
PP~SS. Further, depending on parameters, the
weakly bound limit may apply, so that the two stat-
ic polarons are quantitatively essentially identical.
Since the molecular-crystal model considers only
the single localized electron state, whereas the con-
tinuum electron-phonon model incorporates all oc-

cupied electronic states, dynamical calculations are
much simpler in the framework of the molecular-
crystal model. This simplicity offers the potential
for qualitatively accurate, analytic insights into ef-
fects that, in the more complicated model, are prob-
ably accessible only through numerical studies.

Finally, we should comment on the optical ab-
sorption from polarons, particularly in view of its
importance as a potential signature of these excita-
tions. ' In the continuum electron-phonon
model, the underlying electron-hole symmetry au-

tomatically means that when a localized state is
formed below the conduction band at +cop, a simi-
lar state is formed at —coo, just above the valence
band. Thus, although the polaron involves the ad-
dition of only a single electron to the dimerized
ground state, the self-consistency reflected in the

gap equation (3.11c} leads to changes in the elec-
tronic spectrum in the valence band as well as in the
conduction band. For an electron polaron, the lo-
calized state at —coo is doubly occupied, whereas
that at +cop is singly occupied. Hence, apart from
interband transitions, for the electron polaron there
are three (independent) transitions involving local-
ized levels [see Fig. 2(d}]: —pip~+cop(=a i),
+Np~ conduction band (—:a2), and —cop~ con-
duction band (+ —=a3}. A striking prediction2 of
the continuum electron phonon is that a2»a3,
even though both involve a transition from an ex-
tended to a localized state.

In the molecular-crystal model (or any related
single electronic state, i.e., "frozen-band" model),
the absence of a dynamic valence band means that
one would not automatically have the doubly occu-
pied state at —cop in the presence of a singly occu-
pied localized level at +coo. It would be rather na-
tural, though, to consider a state just above the
valence band, and hence to predict a "hole" polaron
at —cop. One could also calculate the phase-shift
effects of the polaron-lattice configuration on
plane-wave states in the valence and conduction
bands and, with these, work out the appropriate
optical-absorption matrix elements. In this manner
one could effectively produce in the molecular-
crystal model the optical transitions predicted by
the continuum electron-phonon model. However, it
is hard to see how, with further ad hoc assumptions,
one could obtain the surprising result a2 »a3.
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EF(x)= —
2 [1(upvp+vpup)

COg

+2(u pU p+U pu p)

APPENDIX

In this appendix we establish the validity of the
frozen-valence-band approximation (see Sec. IV and
Fig. 3) in the weakly bound polaron limit,
KpUF (kp. The general form of the self-consistency
relation for the polaron gap parameter is

+2f dk(u v +v u )],
(Al)

where we have explicitly displayed the contributions
of the Positive- (up, vp) and negative- (u p, v p) en-

ergy localized-state wave functions. Using the ex-
plicit forms of the wave functions (Al) can be
written as

2

co(2 UF 2UF 'Ir — (k UF+kp) k vF+KpUF

(A2)
where t+ =tanhKp(x+xp) and E is a momentum cutoff. To study the limit KVUF «bp, we write EF(x) in the
form shown in (3.12) and collect terms as

Ap KpvF(—t+ —t ) = + 2 2 2 2 &&2
dip —

2 (t+ —t )
neo(2 (k UF+hp) cpt2 2vF

2g 1 ~ dk KpUFCOO
2

(t+ t ) ——
2 —

~ p (k2V2+g2)1/2 k2U2+K2U2
KpUF +

COp

2VF
(A3)

(A4)

(A5)

we see that the final term in (A3) becomes

From the definition b,p= 8'e '~ of b,p in terms of the full bandwidth 8'=2K and coupling constant
A, =2g /(m UFtpt2), the first term on the right-hand side of (A3) reduces to

P (kv+6)'
so that Ap can be canceled from both sides of (A3). Using (A4) a second time together with the result

2
1 I(: dk o 1o

&
o 1om.

~
KovF

2 2
——— ta — =— ——tan

(k UF+Qp) k VF+KpVF K VF KpVF V' UF 2 . &p

2g 1 & dk KpVFQP p
2

rdg & (k UF+bp)'
(t+ —tp) 2 2 KpUF+

k2V2+ 2 2

COp

2VF

2g cog 1 cop ) KpUF
2 2

2 (t+ t ) KVUF ———tan
Ng g K UF COp

(A6)

which, upon expanding the tan ', can be seen to be
higher order in KpVF than the remaining term—
which is just the contribution of the positive-energy
localized state —on the right-hand side of (A3).
Thus ignoring the higher-order terms is precisely
the frozen-valence-band approximation and is clear-
ly valid to leading order. To leading order, then,

g2 o
KpUF(t+ —t )~—— (t —t )2 2 +

Ng VF

or, since top bp+O(KpvF), this ——self-consistency
constraint requires

g'~o
OUF =

2COg UF
(AS)

which is precisely the result [(4.13)] found in the
text.
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