
PHYSICAL REVIEW B VOLUME 26, NUMBER 12 15 DECEMBER 1982

Theory of coherent propagation of a light wave in semiconductors. I
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This paper contains the first part of a theory of coherent propagation of a light wave

in semiconductors. In the framework of the single-electron band theory and with the

neglect of the interaction between electrons, the equations describing the interband transi-

tions induced by coherent light in semiconductors are similar to the Bloch equations for
an inhomogeneously broadened two-level system in a light field. Special types of multi-

photon processes which are the results of a combination of the interband and intraband

transitions are predicted.

I. INTRODUCTION

When an intense coherent light beam enters a
semiconductor in which resonant transitions can be
induced, several processes will occur: (I) creation
and recombination of electron-hole pairs induced

by the coherent light, (2) the interaction between
the electrons and the holes, (3) the interaction of
electrons and holes with phonon and other imper-
fections in the crystal, and (4) recombination of the
electron-hole pairs through spontaneous emission
or other recombination processes. If the intensity
of the light is sufficiently high, the rate of process
(I) is greater than the rates of the other processes.
In such a case, the coherence between the excited
state of the semiconductor and the light wave be-

comes important, and a number of phenomena that
are typical of coherent propagation will occur. We
are already familiar with these phenomena in gase-
ous media as well as in solids. The observation of
effects such as self-induced transparency and the
saturation of absorption in interband transition
have been reported. ' Some theoretical work has
also been reported in the literature. The pur-
pose of our work is to develop an adequate theory
for dealing with such phenomena.

This paper discusses the first part of our work.
Here we investigate the problem only in the frame-
work of the single-electron band theory and neglect
the interaction between the electrons. At first
sight, this system is equivalent to an inhomogene-
ously broadened two-level system. But the intense
light field induces not only interband transitions,

but also intraband transitions of electrons and
holes in the conduction and valence bands, respec-
tively. Hence our system is different from an ordi-
nary inhomogeneously broadened two-level system.
In our treatment of this problem, we have adopted
the "space-translation approximation, " i.e., the ap-
proximate steady states of the carriers moving
within their respective bands under the action of
the light field are taken as the base for treating the
interband transitions. This is affected by a
transformation, which renders the system formally
analogous to an inhomogeneously broadened two-
level system; at the same time, however, a special
type of multiphoton process will be seen to occur.

In the second part of our work, we shall take
into account the interaction between electrons. '

From the point of view of the coherence between
the excited state and the light wave, the interaction
between electrons can be partitioned into a part
that does not change the total momentum of the
relevant electron-hole pair and another part that
changes the total momentum. In fact, the former
is the interaction of the electron with its hole
partner which gives rise to the binding of the exci-
ton state, and the latter represents collisions be-
tween the electrons and holes which destroys the
coherence of the process. When we consider
coherent propagation, it is reasonable to focus first
on the first type of process, i.e., to assume that the
result of light excitation is an exciton state, and to
take into account the relaxation processes of these
excitons at a later stage. Because the intense light
wave can generate a high density of excitons, we

26 6826



26 THEORY OF COHERENT PROPAGATION OF A LIGHT WAVE IN. . . . I 6827

must treat the electrons and holes, which make up
the excitons, as "fermions. " This treatment differs
from usual ones that represent low density excitons
as "bosons. "" We have introduced exciton
coherent states to describe the process of excitation
of excitons by a light wave, and obtained a set of
nonlinear equations. These equations can naturally
account for the saturation of light absorption of
the excitons and for the shift of the exciton line

under intense illumination. Within certain approx-
imations, the coherent excitation of discrete exciton
hnes can be described by a Bloch equation analo-

gous to that for two-level systems in a light field.
Hence, the concepts and methods for treating the
near-resonant coherent excitation of two-level sys-

tems can be used to describe the near-resonant
coherent excitation of exciton lines; the corre-
sponding density of the equivalent "two-level
atoms" is determined by the properties of the wave
function of the exciton state.

In the third part of our work, we shall analyze
the coherent propagation of a light pulse in this

system. ' To take into account the propagation of
an electromagnetic wave and of the excited state in

the system, we have derived Maxwell-Bloch equa-
tions describing this process. After some approxi-
mations, we can cast these equations in a standard
form which can be solved by the "inverse scatter-

ing method. " From that, we obtained the theoreti-
cal form describing the shaping of self-induced

transparency pulses in the system.

f2
E,(k) = , Es—+ k

2me (3)

iA =(Hp+H)+H2)g,. ay
Bt

where

(4)

Hp ——QE, (k)a, -„a,-„+E„(k)

X( ~ k uk

a, k,a, k,a„k,a„k are the annihilation and creation

operators for electrons in the conduction and
valence band, respectively. With a small change of
notations, we introduce the annihilation and
creation operators for electrons and holes as fol-
lows:

a-=a, - a-=a, -k ck~ k ck

and

2m'

where the indices c and U refer, respectively, to the
conduction and valence band, m„mI, are the elec-
trons' and holes* effective masses, and Eg is the
forbidden gap width. In the dipole approximation,
and neglecting spatial variation of the light field,
we can write (1) in the formalism of second quanti-
zation as follows:

We investigate the interaction between the semi-

conductor and a light wave in the self-consistent
single-electron approximation. The Schrodinger
equation for the electron is

2r

P+ —A +V g,
2m

where V is the periodic potential for an electron
moving in the crystal lattice, and A is the vector
potential for the light wave, which is assumed to
be a plane wave,

A =Apsin(cot —q. r + y) .

II. THE INTERACTION BETWEEN
THE CARRIER AND ELECTROMAGNETIC 'WAVE

b =a„b -=a,- .—k vk~ —k vk

Thus, Ho becomes

Hp QE, (k)a -ka k
E—„(k)b k

b—

H~ in (4) represents the interaction with the hght
wave responsible for interband effects:

H )
——g A.P,„(k)

mc
k

X(a kb k+b kak ), (7)

As A is weaker than V, we can take the Bloch
wave functions of the periodic potential as the base
to treat this problem. For the sake of simplicity,
we consider a simple two-band model:

where P,„(k) is the interband matrix element of
the operator P. By a suitable choice of the phases
of the Bloch wave functions, A P,„(k ) can be
made real. The two terms in (7) correspond to the
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generation and recombination of electron-hole

pairs, respectively.
H2 in (4) represents that part of the interaction

which is responsible for intraband effects: i t e, 1S-=exp —— A(—t'). V-—E (k)dt'a-a-k
—

A c,5 k c k k

e- 1
H2 g ———A —V'k E,(k )a q a q2 g k c

k

l te~ IA(—t') V-—E (k)dt'b -b
k v —k —k

e 1——A.—VkE (k)b qb q . (8)
C

the intraband term can be eliminated from (4), giv-

ing thus

If we take the dipole approximation and neglect
the spatial variation of A, the A term in (1) can
be eliminated by introducing a common phase fac-
tor which is identical for all states. Hence, this
term is not included in (4).

By introducing the canonical transformation

In Eq. (10}we have

g, =s
and

H, = g [E,(k)a-„a-„—E„(k)b -„b -„]
k

where

A.P,„(k)Iexp[i(8&+qr z)]a zb -„+exp[—i(8-„+q -„)]b &a z J,- mc
k

1 te-, 1 1 te-, 1
8 =— A(t') —VE (k—}dt', g) -=— A(t') ———V E (k)dt' .k ~ ~ k c ~ k ~ ~ k v (12)

For the sake of simplicity, in the following we leave out the subscript s of 1(,.
The physical meaning of the transformation (9) is easily understood. For the electron, it corresponds to a

transformation from a base e' "'
U, k to a new base

exp ik r+ . I A(t')dt' U, -„(r) .
mec

r

If we neglect the spatial dependence of A, it is just the wave function for the steady-state motion of the elec-

tron in the conduction band under the action of the electromagnetic wave. For the hole, the situation is

similar. Thus we may designate the transformation S as the "space translation approximation. "'~

III. INTRABAND-INTERBAND MULTIPHOTON TRANSITION

The explicit expression of exp[i(8p+P k}] is

1
exp[i(8k +y z)]=exp i Ao.— + k cos(cot+8)

coc me mh

(13}
r

. e 1 1
exp[ i (8-„+qr z

—)]=exp i Ao. + k cos(cot +8)
coc m mh
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where

8=y —q r.
If we expand (13), we obtain

exp[ —i (8g+y k )]=exp[i(8k+p z )]*= g i J (ri)exp[im (cot+8)], (14)

where

e - 1
Ap. +

m~ mp
k

and where J denotes the m-order Bessel function.

Obviously, the interband transition represented by

(10) is different from the interband term in (4); the
former includes various harmonic terms of the
fundamental frequency of the light wave. Hence,
provided E,(k) E„(k)—=nba (n is an arbitrary in-

teger), the interband transition can occur. This is a
n-quantum transition. This is an intraband-

interband multiphoton transition, which is distinct
from the usual high-order interband transitions.
Some papers have already discussed this type of
process. ' ' Of course, if we take into account
the complex structure of. the band in the semicon-

ductors, the expressions of this transition will be-

come complicated, but the character of the process
will still be represented by (14).

completely filled);
~ Pz ~

represents the probabili-

ty of finding the electron in the state having wave
vector k in the conduction band and a hole in the
state having wave vector k in the valence band. In
other words,

~
P k ~

is the expectation value of the

operators a ka z and b kb k Sim. ilarly, a*kPk
is the expectation value of b k a k and a i, P 'k of

k —k'
On substituting (15) into (10), we obtain the fol-

lowing equations for a z,P k
..

e
iiri az — A——P,„(k.)exp[ i (8 k

—+qr -„)]p&,
mc

(16)
iA'—Pp=[E, (k) —E„(k)]Pq

+ A.P,„(k)exp[i(8k +gr -„)]ak .

After introducing the notations

IV. THE BLOCH EQUATIONS
FOR INTERBAND TRANSITIONS

to-„=—[E,(k)—E„(k)],

We shall assume the wave function of the sys-
tem to have the following form:

g = g [a-„(t)+P-„(t)a-„b' -„]P, , (15)
k

where Po is the wave function of ground state (the

conduction band is empty and the valence band is

Q-„= Ao.P,„(k),
emcee

and

p~ p~e ~&&i

Eq. (16) can be rewritten in the form

ak = ——Q k [exp[i (co —to k )t +i8 i (8 & +qr z
—)]—exp[ —i (co +co z )t i8 i (8 g—+p—k )]IP-„,

(17)
= —Q k Iexp[i(to+to-„)t+i8+i (8 k +y p)] —exp[ i (co co k )—t i8+i —(8 k /p—-„)]Ia-„.

With the help of Eq. (14), the right-hand side of (17) can be represented as a sum of various harmonic
terms. For example, one has

de k + 00

dt
=—Q k g i J ( )i()expIi[( m+I) co co k ]t+i (—m+ 1)8I

m =—oo

expIi [(m ——1)co+cop]t+i (m —1)8I )P-„.

If one of the harmonic terms satisfies the condition (m +1)to—co k =0, the contribution of this term will
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clearly be the largest, and the rest of the terms can be neglected; this is equivalent to the rotating-eave ap-
proximation in magnetic resonance. Physically, this approximation corresponds to taking into account
only the resonant (m + 1)-photon transition. After introducing the notations

hco-„=(m+1)co —ai q, G =i J (ji),

Eq. (17) can be rewritten approximately in the form

—a s
———0 k(G~ —G~+2)expIi [hco kt+(m +1)8]]p-k,

d-

—pi, ——Qi, (G' —6~+i)expI i [5—cokt+(m+1)8]]a& .m -+
(18)

Equation (18) describes the creation of an
electron-hole pair by the absorption of the (m + 1)
photon and the recombination of an electron-hole
pair by the emission of the (m +. 1) photon. For-
mally, they are entirely analogous to the equation
for a two-level system in a near-resonant light
field. We can treat the system in analogy with a
spin system in an external field; thus we introduce

mi, =-'(ai, p'k+a-„pk),k,x 2

m - = , i (a-p—'- a'-p-—),k,y 2 k k k k (19a)

and
v 1,

=II i, I
G~ G~+2I—

4= —(m+1)0—6, (19b)

where 5 is defined by

G~ —G~+z ——
I G~ —6~+2 I

e'

With the use of (19), Eq. (18) can be written in
the form

—m =m )(hk k k (20)

where

m-=(m-, m-, m- )k k x~ ky& kjz

and the components of h s are given by

h s „=2p,csin(hco-„t —4),
h k 2p k cos(b,c——o k t —4),k,y

hk ——0.jZ

(21)

Equation (20) is formally identical to the equation
of motion for a magnetic moment precessing in an
external field which is rotating with an angular
frequency bc@s +(d@/dt). If th—e amplitude Ao
and the phase 8 of light wave are independent of

V. RELAXATION TIME

We introduce the definitions

' 7'm- =—((a-b -)ek,x 2 k —k

+(b -„a-„)e""),
—' 7'm- = i((a-b -)e-k,y 2 k —k

—(b -„.-„).'""'),

mk, = —,((a-„a-„)+(b kb z ) —1),j

where ( ) represents the expectation value of an

(23)

I

time, we can transform to a rotating coordinate
system with frequency —b,co-„. In this case, (20)
can be transformed into the precession equation for
a constant field. The solution in such a case is
well known. ' ' The frequency of precession (Rabi
frequency) is

~k =[(~~k )'+4m'k 1'" . (22)

This just represents the frequency of the interband
transition back and forth between the two bands.
If the intensity of the light is of the order of 10
MW/cm -100 MW/cm, typical values of
2 Ipz I

are 10' -10' sec '. Hence, as em-

phasized in the introduction, when the intensity of
light is high enough, the rate of the coherent exci-
tation process (-cok) can become much larger than
the rates of all the other main processes, and the
coherent propagation phenomena will become ap-
parent. If the incident light is a coherent laser
pulse, some transient phenomena (self-induced
transparency, photon echos, etc.) can occur. Even
if the incident light is not very intense, but the fre-
quency of the light is near resonant with the inter-
band transition, and if the relaxation time of the
system is longer, some coherent propagating phe-
nomena can also occur. This problem will be dis-
cussed in the third paper of this series.
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—m =m-Xh —8 (m —m ),
dt k. k k k k ko

where m k o is the thermal equilibrium value of
m k~

(24)

mk, o= (25)

operator. From the Hamiltonian (11), we can
derive Eq. (20) directly from the equations of
motion of the operators a-ka k, b kb k, and

b k a z, without using the form of the wave func-

tion (15).
Now we must consider the processes that were

mentioned in the Introduction and that are not in-
cluded in Eq. (11). They are the interaction be-

tween electrons (holes) and phonons, and crystal
imperfections, the collisions between electrons and
holes, the spontaneous emission and other recom-
bination processes, etc. Of course, in this mse, the
equations of motion of the operators become very
complicated. But because these processes (except
for the interaction between an electron and its hole
partner) have certain random and incoherent char-
acter, their effect is to induce relaxation for the
coherent excitation of the system. Therefore, we
can understand the brackets ( ) in (23) as ensem-
ble averages on a statistical ensemble. Under some
very general assumption about the statistical prop-
erties of these processes, the relaxation can be
characterized by a suitable relaxation time.
Phenomenologically, Eq. (20) can be modified as
follows:

lows:

co k
———[E,(k+ q) —E„(k)],k g c (2g)

and the same modifications must be applied to
(20)—(23). Obviously, after these changes, the
preceding description is also correct.

Thus, we can understand the wave function (27)
to be the electron-hole polarization wave, which is
excited by a light field in the semiconductor.
Specifically, an electron suffers a change from the
state of the valence band with wave vector k to the
state described by the wave function a k P„z
+P k g, i, +-. The functions a-„P*-„and a'-„P-„

[or(mk „—imz )e " and(mk +imk )—ECO~g t
Xe " ] represent the coherence properties of the
interaction and the average of this function on a
statistical ensemble describes the polarization con-
tribution by the electron-hole pair. The function

~Pk ~

(or m k, ) represents the occupation probabil-

ity of the conduction-band electron with wave vec-
tor k+ q (or valence-band hole with wave vector
—k). Hence, the transverse relaxation time
represents the dephasing time of the polarization
wave. The longitudinal relaxation time represents
the lifetime of the electron-hole pair in the state
(k+ q, —k). Of course, this relaxation process not
only includes the recombination of electron-hole
pairs, but also the scattering from one to another
state. The value of ~, k may be smaller than ~
but the difference between them will not be very
large.

VI. CONCLUSION

R k is the so-called "relaxation time matrix",

0 0

R k (26)

0

1 = II (~ k+I i a i ~ qb —i )1 o
k

(27)

The frequency cok in (16) must be modified as fol-

0

~, k is mlled the transverse relaxation time, and

~I k is called the longitudinal relaxation time.
The physical meaning of the relaxation time can

be explained as follows: First we introduce the
wave vector of the light wave into the preceeding
discussion. More precisely, we introduce the
operators a k+-b k and b -a-+- into the
Hamiltonian (11) instead of a kb -„and b ka i„
and we modify the wave function (15) as

It follows from our analysis that the interband
transition in semiconductors may be described by a
set of equations, which are formally identical to
the Bloch equations for a two-level system, as long
as the interaction between the electrons is neglect-
ed. In this case, the various wave vectors k corre-
spond to the inhomogeneously broadening of two-
level systems. We have also introduced the relaxa-
tion times phenomenologically. Hence, the known
techniques which have been developed for the in-
teraction between a two-level system and a near-
resonant light wave in laser spectroscopy can be
applied. In papers II and III of this series, we
shall discuss the interaction between electrons and
the coherent propagation of a light pulse.
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